1
by brian
clean slate |
1 |
/* Copyright (C) 2004 MySQL AB
|
2 |
||
3 |
This program is free software; you can redistribute it and/or modify
|
|
4 |
it under the terms of the GNU General Public License as published by
|
|
5 |
the Free Software Foundation; version 2 of the License.
|
|
6 |
||
7 |
This program is distributed in the hope that it will be useful,
|
|
8 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
9 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
10 |
GNU General Public License for more details.
|
|
11 |
||
12 |
You should have received a copy of the GNU General Public License
|
|
13 |
along with this program; if not, write to the Free Software
|
|
14 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
15 |
||
16 |
/*
|
|
17 |
Most of the following code and structures were derived from
|
|
18 |
public domain code from ftp://elsie.nci.nih.gov/pub
|
|
19 |
(We will refer to this code as to elsie-code further.)
|
|
20 |
*/
|
|
21 |
||
22 |
/*
|
|
23 |
We should not include mysql_priv.h in mysql_tzinfo_to_sql utility since
|
|
24 |
it creates unsolved link dependencies on some platforms.
|
|
25 |
*/
|
|
26 |
||
27 |
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
28 |
#pragma implementation // gcc: Class implementation |
|
29 |
#endif
|
|
30 |
||
31 |
#include <my_global.h> |
|
32 |
#if !defined(TZINFO2SQL) && !defined(TESTTIME)
|
|
33 |
#include "mysql_priv.h" |
|
34 |
#else
|
|
35 |
#include <my_time.h> |
|
36 |
#include "tztime.h" |
|
37 |
#include <my_sys.h> |
|
38 |
#endif
|
|
39 |
||
40 |
#include "tzfile.h" |
|
41 |
#include <m_string.h> |
|
42 |
#include <my_dir.h> |
|
43 |
||
44 |
/*
|
|
45 |
Now we don't use abbreviations in server but we will do this in future.
|
|
46 |
*/
|
|
47 |
#if defined(TZINFO2SQL) || defined(TESTTIME)
|
|
48 |
#define ABBR_ARE_USED
|
|
49 |
#else
|
|
50 |
#if !defined(DBUG_OFF)
|
|
51 |
/* Let use abbreviations for debug purposes */
|
|
52 |
#undef ABBR_ARE_USED
|
|
53 |
#define ABBR_ARE_USED
|
|
54 |
#endif /* !defined(DBUG_OFF) */ |
|
55 |
#endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
|
56 |
||
57 |
/* Structure describing local time type (e.g. Moscow summer time (MSD)) */
|
|
58 |
typedef struct ttinfo |
|
59 |
{
|
|
60 |
long tt_gmtoff; // Offset from UTC in seconds |
|
61 |
uint tt_isdst; // Is daylight saving time or not. Used to set tm_isdst |
|
62 |
#ifdef ABBR_ARE_USED
|
|
63 |
uint tt_abbrind; // Index of start of abbreviation for this time type. |
|
64 |
#endif
|
|
65 |
/*
|
|
66 |
We don't use tt_ttisstd and tt_ttisgmt members of original elsie-code
|
|
67 |
struct since we don't support POSIX-style TZ descriptions in variables.
|
|
68 |
*/
|
|
69 |
} TRAN_TYPE_INFO; |
|
70 |
||
71 |
/* Structure describing leap-second corrections. */
|
|
72 |
typedef struct lsinfo |
|
73 |
{
|
|
74 |
my_time_t ls_trans; // Transition time |
|
75 |
long ls_corr; // Correction to apply |
|
76 |
} LS_INFO; |
|
77 |
||
78 |
/*
|
|
79 |
Structure with information describing ranges of my_time_t shifted to local
|
|
80 |
time (my_time_t + offset). Used for local MYSQL_TIME -> my_time_t conversion.
|
|
81 |
See comments for TIME_to_gmt_sec() for more info.
|
|
82 |
*/
|
|
83 |
typedef struct revtinfo |
|
84 |
{
|
|
85 |
long rt_offset; // Offset of local time from UTC in seconds |
|
86 |
uint rt_type; // Type of period 0 - Normal period. 1 - Spring time-gap |
|
87 |
} REVT_INFO; |
|
88 |
||
89 |
#ifdef TZNAME_MAX
|
|
90 |
#define MY_TZNAME_MAX TZNAME_MAX
|
|
91 |
#endif
|
|
92 |
#ifndef TZNAME_MAX
|
|
93 |
#define MY_TZNAME_MAX 255
|
|
94 |
#endif
|
|
95 |
||
96 |
/*
|
|
97 |
Structure which fully describes time zone which is
|
|
98 |
described in our db or in zoneinfo files.
|
|
99 |
*/
|
|
100 |
typedef struct st_time_zone_info |
|
101 |
{
|
|
102 |
uint leapcnt; // Number of leap-second corrections |
|
103 |
uint timecnt; // Number of transitions between time types |
|
104 |
uint typecnt; // Number of local time types |
|
105 |
uint charcnt; // Number of characters used for abbreviations |
|
106 |
uint revcnt; // Number of transition descr. for TIME->my_time_t conversion |
|
107 |
/* The following are dynamical arrays are allocated in MEM_ROOT */
|
|
108 |
my_time_t *ats; // Times of transitions between time types |
|
109 |
uchar *types; // Local time types for transitions |
|
110 |
TRAN_TYPE_INFO *ttis; // Local time types descriptions |
|
111 |
#ifdef ABBR_ARE_USED
|
|
112 |
/* Storage for local time types abbreviations. They are stored as ASCIIZ */
|
|
113 |
char *chars; |
|
114 |
#endif
|
|
115 |
/*
|
|
116 |
Leap seconds corrections descriptions, this array is shared by
|
|
117 |
all time zones who use leap seconds.
|
|
118 |
*/
|
|
119 |
LS_INFO *lsis; |
|
120 |
/*
|
|
121 |
Starting points and descriptions of shifted my_time_t (my_time_t + offset)
|
|
122 |
ranges on which shifted my_time_t -> my_time_t mapping is linear or undefined.
|
|
123 |
Used for tm -> my_time_t conversion.
|
|
124 |
*/
|
|
125 |
my_time_t *revts; |
|
126 |
REVT_INFO *revtis; |
|
127 |
/*
|
|
128 |
Time type which is used for times smaller than first transition or if
|
|
129 |
there are no transitions at all.
|
|
130 |
*/
|
|
131 |
TRAN_TYPE_INFO *fallback_tti; |
|
132 |
||
133 |
} TIME_ZONE_INFO; |
|
134 |
||
135 |
||
136 |
static my_bool prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage); |
|
137 |
||
138 |
||
139 |
#if defined(TZINFO2SQL) || defined(TESTTIME)
|
|
140 |
||
141 |
/*
|
|
142 |
Load time zone description from zoneinfo (TZinfo) file.
|
|
143 |
||
144 |
SYNOPSIS
|
|
145 |
tz_load()
|
|
146 |
name - path to zoneinfo file
|
|
147 |
sp - TIME_ZONE_INFO structure to fill
|
|
148 |
||
149 |
RETURN VALUES
|
|
150 |
0 - Ok
|
|
151 |
1 - Error
|
|
152 |
*/
|
|
153 |
static my_bool |
|
154 |
tz_load(const char *name, TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
|
155 |
{
|
|
156 |
uchar *p; |
|
157 |
int read_from_file; |
|
158 |
uint i; |
|
159 |
FILE *file; |
|
160 |
||
161 |
if (!(file= my_fopen(name, O_RDONLY|O_BINARY, MYF(MY_WME)))) |
|
162 |
return 1; |
|
163 |
{
|
|
164 |
union
|
|
165 |
{
|
|
166 |
struct tzhead tzhead; |
|
167 |
uchar buf[sizeof(struct tzhead) + sizeof(my_time_t) * TZ_MAX_TIMES + |
|
168 |
TZ_MAX_TIMES + sizeof(TRAN_TYPE_INFO) * TZ_MAX_TYPES + |
|
169 |
#ifdef ABBR_ARE_USED
|
|
170 |
max(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1))) + |
|
171 |
#endif
|
|
172 |
sizeof(LS_INFO) * TZ_MAX_LEAPS]; |
|
173 |
} u; |
|
174 |
uint ttisstdcnt; |
|
175 |
uint ttisgmtcnt; |
|
176 |
char *tzinfo_buf; |
|
177 |
||
178 |
read_from_file= my_fread(file, u.buf, sizeof(u.buf), MYF(MY_WME)); |
|
179 |
||
180 |
if (my_fclose(file, MYF(MY_WME)) != 0) |
|
181 |
return 1; |
|
182 |
||
183 |
if (read_from_file < (int)sizeof(struct tzhead)) |
|
184 |
return 1; |
|
185 |
||
186 |
ttisstdcnt= int4net(u.tzhead.tzh_ttisgmtcnt); |
|
187 |
ttisgmtcnt= int4net(u.tzhead.tzh_ttisstdcnt); |
|
188 |
sp->leapcnt= int4net(u.tzhead.tzh_leapcnt); |
|
189 |
sp->timecnt= int4net(u.tzhead.tzh_timecnt); |
|
190 |
sp->typecnt= int4net(u.tzhead.tzh_typecnt); |
|
191 |
sp->charcnt= int4net(u.tzhead.tzh_charcnt); |
|
192 |
p= u.tzhead.tzh_charcnt + sizeof(u.tzhead.tzh_charcnt); |
|
193 |
if (sp->leapcnt > TZ_MAX_LEAPS || |
|
194 |
sp->typecnt == 0 || sp->typecnt > TZ_MAX_TYPES || |
|
195 |
sp->timecnt > TZ_MAX_TIMES || |
|
196 |
sp->charcnt > TZ_MAX_CHARS || |
|
197 |
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
|
198 |
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
|
199 |
return 1; |
|
200 |
if ((uint)(read_from_file - (p - u.buf)) < |
|
201 |
sp->timecnt * 4 + /* ats */ |
|
202 |
sp->timecnt + /* types */ |
|
203 |
sp->typecnt * (4 + 2) + /* ttinfos */ |
|
204 |
sp->charcnt + /* chars */ |
|
205 |
sp->leapcnt * (4 + 4) + /* lsinfos */ |
|
206 |
ttisstdcnt + /* ttisstds */ |
|
207 |
ttisgmtcnt) /* ttisgmts */ |
|
208 |
return 1; |
|
209 |
||
210 |
if (!(tzinfo_buf= (char *)alloc_root(storage, |
|
211 |
ALIGN_SIZE(sp->timecnt * |
|
212 |
sizeof(my_time_t)) + |
|
213 |
ALIGN_SIZE(sp->timecnt) + |
|
214 |
ALIGN_SIZE(sp->typecnt * |
|
215 |
sizeof(TRAN_TYPE_INFO)) + |
|
216 |
#ifdef ABBR_ARE_USED
|
|
217 |
ALIGN_SIZE(sp->charcnt) + |
|
218 |
#endif
|
|
219 |
sp->leapcnt * sizeof(LS_INFO)))) |
|
220 |
return 1; |
|
221 |
||
222 |
sp->ats= (my_time_t *)tzinfo_buf; |
|
223 |
tzinfo_buf+= ALIGN_SIZE(sp->timecnt * sizeof(my_time_t)); |
|
224 |
sp->types= (uchar *)tzinfo_buf; |
|
225 |
tzinfo_buf+= ALIGN_SIZE(sp->timecnt); |
|
226 |
sp->ttis= (TRAN_TYPE_INFO *)tzinfo_buf; |
|
227 |
tzinfo_buf+= ALIGN_SIZE(sp->typecnt * sizeof(TRAN_TYPE_INFO)); |
|
228 |
#ifdef ABBR_ARE_USED
|
|
229 |
sp->chars= tzinfo_buf; |
|
230 |
tzinfo_buf+= ALIGN_SIZE(sp->charcnt); |
|
231 |
#endif
|
|
232 |
sp->lsis= (LS_INFO *)tzinfo_buf; |
|
233 |
||
234 |
for (i= 0; i < sp->timecnt; i++, p+= 4) |
|
235 |
sp->ats[i]= int4net(p); |
|
236 |
||
237 |
for (i= 0; i < sp->timecnt; i++) |
|
238 |
{
|
|
239 |
sp->types[i]= (uchar) *p++; |
|
240 |
if (sp->types[i] >= sp->typecnt) |
|
241 |
return 1; |
|
242 |
}
|
|
243 |
for (i= 0; i < sp->typecnt; i++) |
|
244 |
{
|
|
245 |
TRAN_TYPE_INFO * ttisp; |
|
246 |
||
247 |
ttisp= &sp->ttis[i]; |
|
248 |
ttisp->tt_gmtoff= int4net(p); |
|
249 |
p+= 4; |
|
250 |
ttisp->tt_isdst= (uchar) *p++; |
|
251 |
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
|
252 |
return 1; |
|
253 |
ttisp->tt_abbrind= (uchar) *p++; |
|
254 |
if (ttisp->tt_abbrind > sp->charcnt) |
|
255 |
return 1; |
|
256 |
}
|
|
257 |
for (i= 0; i < sp->charcnt; i++) |
|
258 |
sp->chars[i]= *p++; |
|
259 |
sp->chars[i]= '\0'; /* ensure '\0' at end */ |
|
260 |
for (i= 0; i < sp->leapcnt; i++) |
|
261 |
{
|
|
262 |
LS_INFO *lsisp; |
|
263 |
||
264 |
lsisp= &sp->lsis[i]; |
|
265 |
lsisp->ls_trans= int4net(p); |
|
266 |
p+= 4; |
|
267 |
lsisp->ls_corr= int4net(p); |
|
268 |
p+= 4; |
|
269 |
}
|
|
270 |
/*
|
|
271 |
Since we don't support POSIX style TZ definitions in variables we
|
|
272 |
don't read further like glibc or elsie code.
|
|
273 |
*/
|
|
274 |
}
|
|
275 |
||
276 |
return prepare_tz_info(sp, storage); |
|
277 |
}
|
|
278 |
#endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
|
279 |
||
280 |
||
281 |
/*
|
|
282 |
Finish preparation of time zone description for use in TIME_to_gmt_sec()
|
|
283 |
and gmt_sec_to_TIME() functions.
|
|
284 |
||
285 |
SYNOPSIS
|
|
286 |
prepare_tz_info()
|
|
287 |
sp - pointer to time zone description
|
|
288 |
storage - pointer to MEM_ROOT where arrays for map allocated
|
|
289 |
||
290 |
DESCRIPTION
|
|
291 |
First task of this function is to find fallback time type which will
|
|
292 |
be used if there are no transitions or we have moment in time before
|
|
293 |
any transitions.
|
|
294 |
Second task is to build "shifted my_time_t" -> my_time_t map used in
|
|
295 |
MYSQL_TIME -> my_time_t conversion.
|
|
296 |
Note: See description of TIME_to_gmt_sec() function first.
|
|
297 |
In order to perform MYSQL_TIME -> my_time_t conversion we need to build table
|
|
298 |
which defines "shifted by tz offset and leap seconds my_time_t" ->
|
|
299 |
my_time_t function wich is almost the same (except ranges of ambiguity)
|
|
300 |
as reverse function to piecewise linear function used for my_time_t ->
|
|
301 |
"shifted my_time_t" conversion and which is also specified as table in
|
|
302 |
zoneinfo file or in our db (It is specified as start of time type ranges
|
|
303 |
and time type offsets). So basic idea is very simple - let us iterate
|
|
304 |
through my_time_t space from one point of discontinuity of my_time_t ->
|
|
305 |
"shifted my_time_t" function to another and build our approximation of
|
|
306 |
reverse function. (Actually we iterate through ranges on which
|
|
307 |
my_time_t -> "shifted my_time_t" is linear function).
|
|
308 |
||
309 |
RETURN VALUES
|
|
310 |
0 Ok
|
|
311 |
1 Error
|
|
312 |
*/
|
|
313 |
static my_bool |
|
314 |
prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
|
315 |
{
|
|
316 |
my_time_t cur_t= MY_TIME_T_MIN; |
|
317 |
my_time_t cur_l, end_t, end_l; |
|
318 |
my_time_t cur_max_seen_l= MY_TIME_T_MIN; |
|
319 |
long cur_offset, cur_corr, cur_off_and_corr; |
|
320 |
uint next_trans_idx, next_leap_idx; |
|
321 |
uint i; |
|
322 |
/*
|
|
323 |
Temporary arrays where we will store tables. Needed because
|
|
324 |
we don't know table sizes ahead. (Well we can estimate their
|
|
325 |
upper bound but this will take extra space.)
|
|
326 |
*/
|
|
327 |
my_time_t revts[TZ_MAX_REV_RANGES]; |
|
328 |
REVT_INFO revtis[TZ_MAX_REV_RANGES]; |
|
329 |
||
330 |
/*
|
|
331 |
Let us setup fallback time type which will be used if we have not any
|
|
332 |
transitions or if we have moment of time before first transition.
|
|
333 |
We will find first non-DST local time type and use it (or use first
|
|
334 |
local time type if all of them are DST types).
|
|
335 |
*/
|
|
336 |
for (i= 0; i < sp->typecnt && sp->ttis[i].tt_isdst; i++) |
|
337 |
/* no-op */ ; |
|
338 |
if (i == sp->typecnt) |
|
339 |
i= 0; |
|
340 |
sp->fallback_tti= &(sp->ttis[i]); |
|
341 |
||
342 |
||
343 |
/*
|
|
344 |
Let us build shifted my_time_t -> my_time_t map.
|
|
345 |
*/
|
|
346 |
sp->revcnt= 0; |
|
347 |
||
348 |
/* Let us find initial offset */
|
|
349 |
if (sp->timecnt == 0 || cur_t < sp->ats[0]) |
|
350 |
{
|
|
351 |
/*
|
|
352 |
If we have not any transitions or t is before first transition we are using
|
|
353 |
already found fallback time type which index is already in i.
|
|
354 |
*/
|
|
355 |
next_trans_idx= 0; |
|
356 |
}
|
|
357 |
else
|
|
358 |
{
|
|
359 |
/* cur_t == sp->ats[0] so we found transition */
|
|
360 |
i= sp->types[0]; |
|
361 |
next_trans_idx= 1; |
|
362 |
}
|
|
363 |
||
364 |
cur_offset= sp->ttis[i].tt_gmtoff; |
|
365 |
||
366 |
||
367 |
/* let us find leap correction... unprobable, but... */
|
|
368 |
for (next_leap_idx= 0; next_leap_idx < sp->leapcnt && |
|
369 |
cur_t >= sp->lsis[next_leap_idx].ls_trans; |
|
370 |
++next_leap_idx) |
|
371 |
continue; |
|
372 |
||
373 |
if (next_leap_idx > 0) |
|
374 |
cur_corr= sp->lsis[next_leap_idx - 1].ls_corr; |
|
375 |
else
|
|
376 |
cur_corr= 0; |
|
377 |
||
378 |
/* Iterate trough t space */
|
|
379 |
while (sp->revcnt < TZ_MAX_REV_RANGES - 1) |
|
380 |
{
|
|
381 |
cur_off_and_corr= cur_offset - cur_corr; |
|
382 |
||
383 |
/*
|
|
384 |
We assuming that cur_t could be only overflowed downwards,
|
|
385 |
we also assume that end_t won't be overflowed in this case.
|
|
386 |
*/
|
|
387 |
if (cur_off_and_corr < 0 && |
|
388 |
cur_t < MY_TIME_T_MIN - cur_off_and_corr) |
|
389 |
cur_t= MY_TIME_T_MIN - cur_off_and_corr; |
|
390 |
||
391 |
cur_l= cur_t + cur_off_and_corr; |
|
392 |
||
393 |
/*
|
|
394 |
Let us choose end_t as point before next time type change or leap
|
|
395 |
second correction.
|
|
396 |
*/
|
|
397 |
end_t= min((next_trans_idx < sp->timecnt) ? sp->ats[next_trans_idx] - 1: |
|
398 |
MY_TIME_T_MAX, |
|
399 |
(next_leap_idx < sp->leapcnt) ? |
|
400 |
sp->lsis[next_leap_idx].ls_trans - 1: MY_TIME_T_MAX); |
|
401 |
/*
|
|
402 |
again assuming that end_t can be overlowed only in positive side
|
|
403 |
we also assume that end_t won't be overflowed in this case.
|
|
404 |
*/
|
|
405 |
if (cur_off_and_corr > 0 && |
|
406 |
end_t > MY_TIME_T_MAX - cur_off_and_corr) |
|
407 |
end_t= MY_TIME_T_MAX - cur_off_and_corr; |
|
408 |
||
409 |
end_l= end_t + cur_off_and_corr; |
|
410 |
||
411 |
||
412 |
if (end_l > cur_max_seen_l) |
|
413 |
{
|
|
414 |
/* We want special handling in the case of first range */
|
|
415 |
if (cur_max_seen_l == MY_TIME_T_MIN) |
|
416 |
{
|
|
417 |
revts[sp->revcnt]= cur_l; |
|
418 |
revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
|
419 |
revtis[sp->revcnt].rt_type= 0; |
|
420 |
sp->revcnt++; |
|
421 |
cur_max_seen_l= end_l; |
|
422 |
}
|
|
423 |
else
|
|
424 |
{
|
|
425 |
if (cur_l > cur_max_seen_l + 1) |
|
426 |
{
|
|
427 |
/* We have a spring time-gap and we are not at the first range */
|
|
428 |
revts[sp->revcnt]= cur_max_seen_l + 1; |
|
429 |
revtis[sp->revcnt].rt_offset= revtis[sp->revcnt-1].rt_offset; |
|
430 |
revtis[sp->revcnt].rt_type= 1; |
|
431 |
sp->revcnt++; |
|
432 |
if (sp->revcnt == TZ_MAX_TIMES + TZ_MAX_LEAPS + 1) |
|
433 |
break; /* That was too much */ |
|
434 |
cur_max_seen_l= cur_l - 1; |
|
435 |
}
|
|
436 |
||
437 |
/* Assume here end_l > cur_max_seen_l (because end_l>=cur_l) */
|
|
438 |
||
439 |
revts[sp->revcnt]= cur_max_seen_l + 1; |
|
440 |
revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
|
441 |
revtis[sp->revcnt].rt_type= 0; |
|
442 |
sp->revcnt++; |
|
443 |
cur_max_seen_l= end_l; |
|
444 |
}
|
|
445 |
}
|
|
446 |
||
447 |
if (end_t == MY_TIME_T_MAX || |
|
448 |
(cur_off_and_corr > 0) && |
|
449 |
(end_t >= MY_TIME_T_MAX - cur_off_and_corr)) |
|
450 |
/* end of t space */
|
|
451 |
break; |
|
452 |
||
453 |
cur_t= end_t + 1; |
|
454 |
||
455 |
/*
|
|
456 |
Let us find new offset and correction. Because of our choice of end_t
|
|
457 |
cur_t can only be point where new time type starts or/and leap
|
|
458 |
correction is performed.
|
|
459 |
*/
|
|
460 |
if (sp->timecnt != 0 && cur_t >= sp->ats[0]) /* else reuse old offset */ |
|
461 |
if (next_trans_idx < sp->timecnt && |
|
462 |
cur_t == sp->ats[next_trans_idx]) |
|
463 |
{
|
|
464 |
/* We are at offset point */
|
|
465 |
cur_offset= sp->ttis[sp->types[next_trans_idx]].tt_gmtoff; |
|
466 |
++next_trans_idx; |
|
467 |
}
|
|
468 |
||
469 |
if (next_leap_idx < sp->leapcnt && |
|
470 |
cur_t == sp->lsis[next_leap_idx].ls_trans) |
|
471 |
{
|
|
472 |
/* we are at leap point */
|
|
473 |
cur_corr= sp->lsis[next_leap_idx].ls_corr; |
|
474 |
++next_leap_idx; |
|
475 |
}
|
|
476 |
}
|
|
477 |
||
478 |
/* check if we have had enough space */
|
|
479 |
if (sp->revcnt == TZ_MAX_REV_RANGES - 1) |
|
480 |
return 1; |
|
481 |
||
482 |
/* set maximum end_l as finisher */
|
|
483 |
revts[sp->revcnt]= end_l; |
|
484 |
||
485 |
/* Allocate arrays of proper size in sp and copy result there */
|
|
486 |
if (!(sp->revts= (my_time_t *)alloc_root(storage, |
|
487 |
sizeof(my_time_t) * (sp->revcnt + 1))) || |
|
488 |
!(sp->revtis= (REVT_INFO *)alloc_root(storage, |
|
489 |
sizeof(REVT_INFO) * sp->revcnt))) |
|
490 |
return 1; |
|
491 |
||
492 |
memcpy(sp->revts, revts, sizeof(my_time_t) * (sp->revcnt + 1)); |
|
493 |
memcpy(sp->revtis, revtis, sizeof(REVT_INFO) * sp->revcnt); |
|
494 |
||
495 |
return 0; |
|
496 |
}
|
|
497 |
||
498 |
||
499 |
#if !defined(TZINFO2SQL)
|
|
500 |
||
501 |
static const uint mon_lengths[2][MONS_PER_YEAR]= |
|
502 |
{
|
|
503 |
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
|
504 |
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
|
505 |
};
|
|
506 |
||
507 |
static const uint mon_starts[2][MONS_PER_YEAR]= |
|
508 |
{
|
|
509 |
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }, |
|
510 |
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 } |
|
511 |
};
|
|
512 |
||
513 |
static const uint year_lengths[2]= |
|
514 |
{
|
|
515 |
DAYS_PER_NYEAR, DAYS_PER_LYEAR |
|
516 |
};
|
|
517 |
||
518 |
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
|
|
519 |
||
520 |
||
521 |
/*
|
|
522 |
Converts time from my_time_t representation (seconds in UTC since Epoch)
|
|
523 |
to broken down representation using given local time zone offset.
|
|
524 |
||
525 |
SYNOPSIS
|
|
526 |
sec_to_TIME()
|
|
527 |
tmp - pointer to structure for broken down representation
|
|
528 |
t - my_time_t value to be converted
|
|
529 |
offset - local time zone offset
|
|
530 |
||
531 |
DESCRIPTION
|
|
532 |
Convert my_time_t with offset to MYSQL_TIME struct. Differs from timesub
|
|
533 |
(from elsie code) because doesn't contain any leap correction and
|
|
534 |
TM_GMTOFF and is_dst setting and contains some MySQL specific
|
|
535 |
initialization. Funny but with removing of these we almost have
|
|
536 |
glibc's offtime function.
|
|
537 |
*/
|
|
538 |
static void |
|
539 |
sec_to_TIME(MYSQL_TIME * tmp, my_time_t t, long offset) |
|
540 |
{
|
|
541 |
long days; |
|
542 |
long rem; |
|
543 |
int y; |
|
544 |
int yleap; |
|
545 |
const uint *ip; |
|
546 |
||
547 |
days= (long) (t / SECS_PER_DAY); |
|
548 |
rem= (long) (t % SECS_PER_DAY); |
|
549 |
||
550 |
/*
|
|
551 |
We do this as separate step after dividing t, because this
|
|
552 |
allows us handle times near my_time_t bounds without overflows.
|
|
553 |
*/
|
|
554 |
rem+= offset; |
|
555 |
while (rem < 0) |
|
556 |
{
|
|
557 |
rem+= SECS_PER_DAY; |
|
558 |
days--; |
|
559 |
}
|
|
560 |
while (rem >= SECS_PER_DAY) |
|
561 |
{
|
|
562 |
rem -= SECS_PER_DAY; |
|
563 |
days++; |
|
564 |
}
|
|
565 |
tmp->hour= (uint)(rem / SECS_PER_HOUR); |
|
566 |
rem= rem % SECS_PER_HOUR; |
|
567 |
tmp->minute= (uint)(rem / SECS_PER_MIN); |
|
568 |
/*
|
|
569 |
A positive leap second requires a special
|
|
570 |
representation. This uses "... ??:59:60" et seq.
|
|
571 |
*/
|
|
572 |
tmp->second= (uint)(rem % SECS_PER_MIN); |
|
573 |
||
574 |
y= EPOCH_YEAR; |
|
575 |
while (days < 0 || days >= (long)year_lengths[yleap= isleap(y)]) |
|
576 |
{
|
|
577 |
int newy; |
|
578 |
||
579 |
newy= y + days / DAYS_PER_NYEAR; |
|
580 |
if (days < 0) |
|
581 |
newy--; |
|
582 |
days-= (newy - y) * DAYS_PER_NYEAR + |
|
583 |
LEAPS_THRU_END_OF(newy - 1) - |
|
584 |
LEAPS_THRU_END_OF(y - 1); |
|
585 |
y= newy; |
|
586 |
}
|
|
587 |
tmp->year= y; |
|
588 |
||
589 |
ip= mon_lengths[yleap]; |
|
590 |
for (tmp->month= 0; days >= (long) ip[tmp->month]; tmp->month++) |
|
591 |
days= days - (long) ip[tmp->month]; |
|
592 |
tmp->month++; |
|
593 |
tmp->day= (uint)(days + 1); |
|
594 |
||
595 |
/* filling MySQL specific MYSQL_TIME members */
|
|
596 |
tmp->neg= 0; tmp->second_part= 0; |
|
597 |
tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
|
598 |
}
|
|
599 |
||
600 |
||
601 |
/*
|
|
602 |
Find time range wich contains given my_time_t value
|
|
603 |
||
604 |
SYNOPSIS
|
|
605 |
find_time_range()
|
|
606 |
t - my_time_t value for which we looking for range
|
|
607 |
range_boundaries - sorted array of range starts.
|
|
608 |
higher_bound - number of ranges
|
|
609 |
||
610 |
DESCRIPTION
|
|
611 |
Performs binary search for range which contains given my_time_t value.
|
|
612 |
It has sense if number of ranges is greater than zero and my_time_t value
|
|
613 |
is greater or equal than beginning of first range. It also assumes that
|
|
614 |
t belongs to some range specified or end of last is MY_TIME_T_MAX.
|
|
615 |
||
616 |
With this localtime_r on real data may takes less time than with linear
|
|
617 |
search (I've seen 30% speed up).
|
|
618 |
||
619 |
RETURN VALUE
|
|
620 |
Index of range to which t belongs
|
|
621 |
*/
|
|
622 |
static uint |
|
623 |
find_time_range(my_time_t t, const my_time_t *range_boundaries, |
|
624 |
uint higher_bound) |
|
625 |
{
|
|
626 |
uint i, lower_bound= 0; |
|
627 |
||
628 |
/*
|
|
629 |
Function will work without this assertion but result would be meaningless.
|
|
630 |
*/
|
|
631 |
DBUG_ASSERT(higher_bound > 0 && t >= range_boundaries[0]); |
|
632 |
||
633 |
/*
|
|
634 |
Do binary search for minimal interval which contain t. We preserve:
|
|
635 |
range_boundaries[lower_bound] <= t < range_boundaries[higher_bound]
|
|
636 |
invariant and decrease this higher_bound - lower_bound gap twice
|
|
637 |
times on each step.
|
|
638 |
*/
|
|
639 |
||
640 |
while (higher_bound - lower_bound > 1) |
|
641 |
{
|
|
642 |
i= (lower_bound + higher_bound) >> 1; |
|
643 |
if (range_boundaries[i] <= t) |
|
644 |
lower_bound= i; |
|
645 |
else
|
|
646 |
higher_bound= i; |
|
647 |
}
|
|
648 |
return lower_bound; |
|
649 |
}
|
|
650 |
||
651 |
/*
|
|
652 |
Find local time transition for given my_time_t.
|
|
653 |
||
654 |
SYNOPSIS
|
|
655 |
find_transition_type()
|
|
656 |
t - my_time_t value to be converted
|
|
657 |
sp - pointer to struct with time zone description
|
|
658 |
||
659 |
RETURN VALUE
|
|
660 |
Pointer to structure in time zone description describing
|
|
661 |
local time type for given my_time_t.
|
|
662 |
*/
|
|
663 |
static
|
|
664 |
const TRAN_TYPE_INFO * |
|
665 |
find_transition_type(my_time_t t, const TIME_ZONE_INFO *sp) |
|
666 |
{
|
|
667 |
if (unlikely(sp->timecnt == 0 || t < sp->ats[0])) |
|
668 |
{
|
|
669 |
/*
|
|
670 |
If we have not any transitions or t is before first transition let
|
|
671 |
us use fallback time type.
|
|
672 |
*/
|
|
673 |
return sp->fallback_tti; |
|
674 |
}
|
|
675 |
||
676 |
/*
|
|
677 |
Do binary search for minimal interval between transitions which
|
|
678 |
contain t. With this localtime_r on real data may takes less
|
|
679 |
time than with linear search (I've seen 30% speed up).
|
|
680 |
*/
|
|
681 |
return &(sp->ttis[sp->types[find_time_range(t, sp->ats, sp->timecnt)]]); |
|
682 |
}
|
|
683 |
||
684 |
||
685 |
/*
|
|
686 |
Converts time in my_time_t representation (seconds in UTC since Epoch) to
|
|
687 |
broken down MYSQL_TIME representation in local time zone.
|
|
688 |
||
689 |
SYNOPSIS
|
|
690 |
gmt_sec_to_TIME()
|
|
691 |
tmp - pointer to structure for broken down represenatation
|
|
692 |
sec_in_utc - my_time_t value to be converted
|
|
693 |
sp - pointer to struct with time zone description
|
|
694 |
||
695 |
TODO
|
|
696 |
We can improve this function by creating joined array of transitions and
|
|
697 |
leap corrections. This will require adding extra field to TRAN_TYPE_INFO
|
|
698 |
for storing number of "extra" seconds to minute occured due to correction
|
|
699 |
(60th and 61st second, look how we calculate them as "hit" in this
|
|
700 |
function).
|
|
701 |
Under realistic assumptions about frequency of transitions the same array
|
|
702 |
can be used fot MYSQL_TIME -> my_time_t conversion. For this we need to
|
|
703 |
implement tweaked binary search which will take into account that some
|
|
704 |
MYSQL_TIME has two matching my_time_t ranges and some of them have none.
|
|
705 |
*/
|
|
706 |
static void |
|
707 |
gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t sec_in_utc, const TIME_ZONE_INFO *sp) |
|
708 |
{
|
|
709 |
const TRAN_TYPE_INFO *ttisp; |
|
710 |
const LS_INFO *lp; |
|
711 |
long corr= 0; |
|
712 |
int hit= 0; |
|
713 |
int i; |
|
714 |
||
715 |
/*
|
|
716 |
Find proper transition (and its local time type) for our sec_in_utc value.
|
|
717 |
Funny but again by separating this step in function we receive code
|
|
718 |
which very close to glibc's code. No wonder since they obviously use
|
|
719 |
the same base and all steps are sensible.
|
|
720 |
*/
|
|
721 |
ttisp= find_transition_type(sec_in_utc, sp); |
|
722 |
||
723 |
/*
|
|
724 |
Let us find leap correction for our sec_in_utc value and number of extra
|
|
725 |
secs to add to this minute.
|
|
726 |
This loop is rarely used because most users will use time zones without
|
|
727 |
leap seconds, and even in case when we have such time zone there won't
|
|
728 |
be many iterations (we have about 22 corrections at this moment (2004)).
|
|
729 |
*/
|
|
730 |
for ( i= sp->leapcnt; i-- > 0; ) |
|
731 |
{
|
|
732 |
lp= &sp->lsis[i]; |
|
733 |
if (sec_in_utc >= lp->ls_trans) |
|
734 |
{
|
|
735 |
if (sec_in_utc == lp->ls_trans) |
|
736 |
{
|
|
737 |
hit= ((i == 0 && lp->ls_corr > 0) || |
|
738 |
lp->ls_corr > sp->lsis[i - 1].ls_corr); |
|
739 |
if (hit) |
|
740 |
{
|
|
741 |
while (i > 0 && |
|
742 |
sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && |
|
743 |
sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1) |
|
744 |
{
|
|
745 |
hit++; |
|
746 |
i--; |
|
747 |
}
|
|
748 |
}
|
|
749 |
}
|
|
750 |
corr= lp->ls_corr; |
|
751 |
break; |
|
752 |
}
|
|
753 |
}
|
|
754 |
||
755 |
sec_to_TIME(tmp, sec_in_utc, ttisp->tt_gmtoff - corr); |
|
756 |
||
757 |
tmp->second+= hit; |
|
758 |
}
|
|
759 |
||
760 |
||
761 |
/*
|
|
762 |
Converts local time in broken down representation to local
|
|
763 |
time zone analog of my_time_t represenation.
|
|
764 |
||
765 |
SYNOPSIS
|
|
766 |
sec_since_epoch()
|
|
767 |
year, mon, mday, hour, min, sec - broken down representation.
|
|
768 |
||
769 |
DESCRIPTION
|
|
770 |
Converts time in broken down representation to my_time_t representation
|
|
771 |
ignoring time zone. Note that we cannot convert back some valid _local_
|
|
772 |
times near ends of my_time_t range because of my_time_t overflow. But we
|
|
773 |
ignore this fact now since MySQL will never pass such argument.
|
|
774 |
||
775 |
RETURN VALUE
|
|
776 |
Seconds since epoch time representation.
|
|
777 |
*/
|
|
778 |
static my_time_t |
|
779 |
sec_since_epoch(int year, int mon, int mday, int hour, int min ,int sec) |
|
780 |
{
|
|
781 |
/* Guard against my_time_t overflow(on system with 32 bit my_time_t) */
|
|
782 |
DBUG_ASSERT(!(year == TIMESTAMP_MAX_YEAR && mon == 1 && mday > 17)); |
|
783 |
#ifndef WE_WANT_TO_HANDLE_UNORMALIZED_DATES
|
|
784 |
/*
|
|
785 |
It turns out that only whenever month is normalized or unnormalized
|
|
786 |
plays role.
|
|
787 |
*/
|
|
788 |
DBUG_ASSERT(mon > 0 && mon < 13); |
|
789 |
long days= year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
|
790 |
LEAPS_THRU_END_OF(year - 1) - |
|
791 |
LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
|
792 |
days+= mon_starts[isleap(year)][mon - 1]; |
|
793 |
#else
|
|
794 |
long norm_month= (mon - 1) % MONS_PER_YEAR; |
|
795 |
long a_year= year + (mon - 1)/MONS_PER_YEAR - (int)(norm_month < 0); |
|
796 |
long days= a_year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
|
797 |
LEAPS_THRU_END_OF(a_year - 1) - |
|
798 |
LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
|
799 |
days+= mon_starts[isleap(a_year)] |
|
800 |
[norm_month + (norm_month < 0 ? MONS_PER_YEAR : 0)]; |
|
801 |
#endif
|
|
802 |
days+= mday - 1; |
|
803 |
||
804 |
return ((days * HOURS_PER_DAY + hour) * MINS_PER_HOUR + min) * |
|
805 |
SECS_PER_MIN + sec; |
|
806 |
}
|
|
807 |
||
808 |
/*
|
|
809 |
Converts local time in broken down MYSQL_TIME representation to my_time_t
|
|
810 |
representation.
|
|
811 |
||
812 |
SYNOPSIS
|
|
813 |
TIME_to_gmt_sec()
|
|
814 |
t - pointer to structure for broken down represenatation
|
|
815 |
sp - pointer to struct with time zone description
|
|
816 |
in_dst_time_gap - pointer to bool which is set to true if datetime
|
|
817 |
value passed doesn't really exist (i.e. falls into
|
|
818 |
spring time-gap) and is not touched otherwise.
|
|
819 |
||
820 |
DESCRIPTION
|
|
821 |
This is mktime analog for MySQL. It is essentially different
|
|
822 |
from mktime (or hypotetical my_mktime) because:
|
|
823 |
- It has no idea about tm_isdst member so if it
|
|
824 |
has two answers it will give the smaller one
|
|
825 |
- If we are in spring time gap then it will return
|
|
826 |
beginning of the gap
|
|
827 |
- It can give wrong results near the ends of my_time_t due to
|
|
828 |
overflows, but we are safe since in MySQL we will never
|
|
829 |
call this function for such dates (its restriction for year
|
|
830 |
between 1970 and 2038 gives us several days of reserve).
|
|
831 |
- By default it doesn't support un-normalized input. But if
|
|
832 |
sec_since_epoch() function supports un-normalized dates
|
|
833 |
then this function should handle un-normalized input right,
|
|
834 |
altough it won't normalize structure TIME.
|
|
835 |
||
836 |
Traditional approach to problem of conversion from broken down
|
|
837 |
representation to time_t is iterative. Both elsie's and glibc
|
|
838 |
implementation try to guess what time_t value should correspond to
|
|
839 |
this broken-down value. They perform localtime_r function on their
|
|
840 |
guessed value and then calculate the difference and try to improve
|
|
841 |
their guess. Elsie's code guesses time_t value in bit by bit manner,
|
|
842 |
Glibc's code tries to add difference between broken-down value
|
|
843 |
corresponding to guess and target broken-down value to current guess.
|
|
844 |
It also uses caching of last found correction... So Glibc's approach
|
|
845 |
is essentially faster but introduces some undetermenism (in case if
|
|
846 |
is_dst member of broken-down representation (tm struct) is not known
|
|
847 |
and we have two possible answers).
|
|
848 |
||
849 |
We use completely different approach. It is better since it is both
|
|
850 |
faster than iterative implementations and fully determenistic. If you
|
|
851 |
look at my_time_t to MYSQL_TIME conversion then you'll find that it consist
|
|
852 |
of two steps:
|
|
853 |
The first is calculating shifted my_time_t value and the second - TIME
|
|
854 |
calculation from shifted my_time_t value (well it is a bit simplified
|
|
855 |
picture). The part in which we are interested in is my_time_t -> shifted
|
|
856 |
my_time_t conversion. It is piecewise linear function which is defined
|
|
857 |
by combination of transition times as break points and times offset
|
|
858 |
as changing function parameter. The possible inverse function for this
|
|
859 |
converison would be ambiguos but with MySQL's restrictions we can use
|
|
860 |
some function which is the same as inverse function on unambigiuos
|
|
861 |
ranges and coincides with one of branches of inverse function in
|
|
862 |
other ranges. Thus we just need to build table which will determine
|
|
863 |
this shifted my_time_t -> my_time_t conversion similar to existing
|
|
864 |
(my_time_t -> shifted my_time_t table). We do this in
|
|
865 |
prepare_tz_info function.
|
|
866 |
||
867 |
TODO
|
|
868 |
If we can even more improve this function. For doing this we will need to
|
|
869 |
build joined map of transitions and leap corrections for gmt_sec_to_TIME()
|
|
870 |
function (similar to revts/revtis). Under realistic assumptions about
|
|
871 |
frequency of transitions we can use the same array for TIME_to_gmt_sec().
|
|
872 |
We need to implement special version of binary search for this. Such step
|
|
873 |
will be beneficial to CPU cache since we will decrease data-set used for
|
|
874 |
conversion twice.
|
|
875 |
||
876 |
RETURN VALUE
|
|
877 |
Seconds in UTC since Epoch.
|
|
878 |
0 in case of error.
|
|
879 |
*/
|
|
880 |
static my_time_t |
|
881 |
TIME_to_gmt_sec(const MYSQL_TIME *t, const TIME_ZONE_INFO *sp, |
|
882 |
my_bool *in_dst_time_gap) |
|
883 |
{
|
|
884 |
my_time_t local_t; |
|
885 |
uint saved_seconds; |
|
886 |
uint i; |
|
887 |
int shift= 0; |
|
888 |
||
889 |
DBUG_ENTER("TIME_to_gmt_sec"); |
|
890 |
||
891 |
if (!validate_timestamp_range(t)) |
|
892 |
DBUG_RETURN(0); |
|
893 |
||
894 |
||
895 |
/* We need this for correct leap seconds handling */
|
|
896 |
if (t->second < SECS_PER_MIN) |
|
897 |
saved_seconds= 0; |
|
898 |
else
|
|
899 |
saved_seconds= t->second; |
|
900 |
||
901 |
/*
|
|
902 |
NOTE: to convert full my_time_t range we do a shift of the
|
|
903 |
boundary dates here to avoid overflow of my_time_t.
|
|
904 |
We use alike approach in my_system_gmt_sec().
|
|
905 |
||
906 |
However in that function we also have to take into account
|
|
907 |
overflow near 0 on some platforms. That's because my_system_gmt_sec
|
|
908 |
uses localtime_r(), which doesn't work with negative values correctly
|
|
909 |
on platforms with unsigned time_t (QNX). Here we don't use localtime()
|
|
910 |
=> we negative values of local_t are ok.
|
|
911 |
*/
|
|
912 |
||
913 |
if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
|
914 |
{
|
|
915 |
/*
|
|
916 |
We will pass (t->day - shift) to sec_since_epoch(), and
|
|
917 |
want this value to be a positive number, so we shift
|
|
918 |
only dates > 4.01.2038 (to avoid owerflow).
|
|
919 |
*/
|
|
920 |
shift= 2; |
|
921 |
}
|
|
922 |
||
923 |
||
924 |
local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
|
925 |
t->hour, t->minute, |
|
926 |
saved_seconds ? 0 : t->second); |
|
927 |
||
928 |
/* We have at least one range */
|
|
929 |
DBUG_ASSERT(sp->revcnt >= 1); |
|
930 |
||
931 |
if (local_t < sp->revts[0] || local_t > sp->revts[sp->revcnt]) |
|
932 |
{
|
|
933 |
/*
|
|
934 |
This means that source time can't be represented as my_time_t due to
|
|
935 |
limited my_time_t range.
|
|
936 |
*/
|
|
937 |
DBUG_RETURN(0); |
|
938 |
}
|
|
939 |
||
940 |
/* binary search for our range */
|
|
941 |
i= find_time_range(local_t, sp->revts, sp->revcnt); |
|
942 |
||
943 |
/*
|
|
944 |
As there are no offset switches at the end of TIMESTAMP range,
|
|
945 |
we could simply check for overflow here (and don't need to bother
|
|
946 |
about DST gaps etc)
|
|
947 |
*/
|
|
948 |
if (shift) |
|
949 |
{
|
|
950 |
if (local_t > (my_time_t) (TIMESTAMP_MAX_VALUE - shift * SECS_PER_DAY + |
|
951 |
sp->revtis[i].rt_offset - saved_seconds)) |
|
952 |
{
|
|
953 |
DBUG_RETURN(0); /* my_time_t overflow */ |
|
954 |
}
|
|
955 |
local_t+= shift * SECS_PER_DAY; |
|
956 |
}
|
|
957 |
||
958 |
if (sp->revtis[i].rt_type) |
|
959 |
{
|
|
960 |
/*
|
|
961 |
Oops! We are in spring time gap.
|
|
962 |
May be we should return error here?
|
|
963 |
Now we are returning my_time_t value corresponding to the
|
|
964 |
beginning of the gap.
|
|
965 |
*/
|
|
966 |
*in_dst_time_gap= 1; |
|
967 |
local_t= sp->revts[i] - sp->revtis[i].rt_offset + saved_seconds; |
|
968 |
}
|
|
969 |
else
|
|
970 |
local_t= local_t - sp->revtis[i].rt_offset + saved_seconds; |
|
971 |
||
972 |
/* check for TIMESTAMP_MAX_VALUE was already done above */
|
|
973 |
if (local_t < TIMESTAMP_MIN_VALUE) |
|
974 |
local_t= 0; |
|
975 |
||
976 |
DBUG_RETURN(local_t); |
|
977 |
}
|
|
978 |
||
979 |
||
980 |
/*
|
|
981 |
End of elsie derived code.
|
|
982 |
*/
|
|
983 |
#endif /* !defined(TZINFO2SQL) */ |
|
984 |
||
985 |
||
986 |
#if !defined(TESTTIME) && !defined(TZINFO2SQL)
|
|
987 |
||
988 |
/*
|
|
989 |
String with names of SYSTEM time zone.
|
|
990 |
*/
|
|
991 |
static const String tz_SYSTEM_name("SYSTEM", 6, &my_charset_latin1); |
|
992 |
||
993 |
||
994 |
/*
|
|
995 |
Instance of this class represents local time zone used on this system
|
|
996 |
(specified by TZ environment variable or via any other system mechanism).
|
|
997 |
It uses system functions (localtime_r, my_system_gmt_sec) for conversion
|
|
998 |
and is always available. Because of this it is used by default - if there
|
|
999 |
were no explicit time zone specified. On the other hand because of this
|
|
1000 |
conversion methods provided by this class is significantly slower and
|
|
1001 |
possibly less multi-threaded-friendly than corresponding Time_zone_db
|
|
1002 |
methods so the latter should be preffered there it is possible.
|
|
1003 |
*/
|
|
1004 |
class Time_zone_system : public Time_zone |
|
1005 |
{
|
|
1006 |
public: |
|
1007 |
Time_zone_system() {} /* Remove gcc warning */ |
|
1008 |
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
|
1009 |
my_bool *in_dst_time_gap) const; |
|
1010 |
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
|
1011 |
virtual const String * get_name() const; |
|
1012 |
};
|
|
1013 |
||
1014 |
||
1015 |
/*
|
|
1016 |
Converts local time in system time zone in MYSQL_TIME representation
|
|
1017 |
to its my_time_t representation.
|
|
1018 |
||
1019 |
SYNOPSIS
|
|
1020 |
TIME_to_gmt_sec()
|
|
1021 |
t - pointer to MYSQL_TIME structure with local time in
|
|
1022 |
broken-down representation.
|
|
1023 |
in_dst_time_gap - pointer to bool which is set to true if datetime
|
|
1024 |
value passed doesn't really exist (i.e. falls into
|
|
1025 |
spring time-gap) and is not touched otherwise.
|
|
1026 |
||
1027 |
DESCRIPTION
|
|
1028 |
This method uses system function (localtime_r()) for conversion
|
|
1029 |
local time in system time zone in MYSQL_TIME structure to its my_time_t
|
|
1030 |
representation. Unlike the same function for Time_zone_db class
|
|
1031 |
it it won't handle unnormalized input properly. Still it will
|
|
1032 |
return lowest possible my_time_t in case of ambiguity or if we
|
|
1033 |
provide time corresponding to the time-gap.
|
|
1034 |
||
1035 |
You should call init_time() function before using this function.
|
|
1036 |
||
1037 |
RETURN VALUE
|
|
1038 |
Corresponding my_time_t value or 0 in case of error
|
|
1039 |
*/
|
|
1040 |
my_time_t
|
|
1041 |
Time_zone_system::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const |
|
1042 |
{
|
|
1043 |
long not_used; |
|
1044 |
return my_system_gmt_sec(t, ¬_used, in_dst_time_gap); |
|
1045 |
}
|
|
1046 |
||
1047 |
||
1048 |
/*
|
|
1049 |
Converts time from UTC seconds since Epoch (my_time_t) representation
|
|
1050 |
to system local time zone broken-down representation.
|
|
1051 |
||
1052 |
SYNOPSIS
|
|
1053 |
gmt_sec_to_TIME()
|
|
1054 |
tmp - pointer to MYSQL_TIME structure to fill-in
|
|
1055 |
t - my_time_t value to be converted
|
|
1056 |
||
1057 |
NOTE
|
|
1058 |
We assume that value passed to this function will fit into time_t range
|
|
1059 |
supported by localtime_r. This conversion is putting restriction on
|
|
1060 |
TIMESTAMP range in MySQL. If we can get rid of SYSTEM time zone at least
|
|
1061 |
for interaction with client then we can extend TIMESTAMP range down to
|
|
1062 |
the 1902 easily.
|
|
1063 |
*/
|
|
1064 |
void
|
|
1065 |
Time_zone_system::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
|
1066 |
{
|
|
1067 |
struct tm tmp_tm; |
|
1068 |
time_t tmp_t= (time_t)t; |
|
1069 |
||
1070 |
localtime_r(&tmp_t, &tmp_tm); |
|
1071 |
localtime_to_TIME(tmp, &tmp_tm); |
|
1072 |
tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
|
1073 |
}
|
|
1074 |
||
1075 |
||
1076 |
/*
|
|
1077 |
Get name of time zone
|
|
1078 |
||
1079 |
SYNOPSIS
|
|
1080 |
get_name()
|
|
1081 |
||
1082 |
RETURN VALUE
|
|
1083 |
Name of time zone as String
|
|
1084 |
*/
|
|
1085 |
const String * |
|
1086 |
Time_zone_system::get_name() const |
|
1087 |
{
|
|
1088 |
return &tz_SYSTEM_name; |
|
1089 |
}
|
|
1090 |
||
1091 |
||
1092 |
/*
|
|
1093 |
Instance of this class represents UTC time zone. It uses system gmtime_r
|
|
1094 |
function for conversions and is always available. It is used only for
|
|
1095 |
my_time_t -> MYSQL_TIME conversions in various UTC_... functions, it is not
|
|
1096 |
intended for MYSQL_TIME -> my_time_t conversions and shouldn't be exposed to user.
|
|
1097 |
*/
|
|
1098 |
class Time_zone_utc : public Time_zone |
|
1099 |
{
|
|
1100 |
public: |
|
1101 |
Time_zone_utc() {} /* Remove gcc warning */ |
|
1102 |
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
|
1103 |
my_bool *in_dst_time_gap) const; |
|
1104 |
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
|
1105 |
virtual const String * get_name() const; |
|
1106 |
};
|
|
1107 |
||
1108 |
||
1109 |
/*
|
|
1110 |
Convert UTC time from MYSQL_TIME representation to its my_time_t representation.
|
|
1111 |
||
1112 |
SYNOPSIS
|
|
1113 |
TIME_to_gmt_sec()
|
|
1114 |
t - pointer to MYSQL_TIME structure with local time
|
|
1115 |
in broken-down representation.
|
|
1116 |
in_dst_time_gap - pointer to bool which is set to true if datetime
|
|
1117 |
value passed doesn't really exist (i.e. falls into
|
|
1118 |
spring time-gap) and is not touched otherwise.
|
|
1119 |
||
1120 |
DESCRIPTION
|
|
1121 |
Since Time_zone_utc is used only internally for my_time_t -> TIME
|
|
1122 |
conversions, this function of Time_zone interface is not implemented for
|
|
1123 |
this class and should not be called.
|
|
1124 |
||
1125 |
RETURN VALUE
|
|
1126 |
0
|
|
1127 |
*/
|
|
1128 |
my_time_t
|
|
1129 |
Time_zone_utc::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const |
|
1130 |
{
|
|
1131 |
/* Should be never called */
|
|
1132 |
DBUG_ASSERT(0); |
|
1133 |
return 0; |
|
1134 |
}
|
|
1135 |
||
1136 |
||
1137 |
/*
|
|
1138 |
Converts time from UTC seconds since Epoch (my_time_t) representation
|
|
1139 |
to broken-down representation (also in UTC).
|
|
1140 |
||
1141 |
SYNOPSIS
|
|
1142 |
gmt_sec_to_TIME()
|
|
1143 |
tmp - pointer to MYSQL_TIME structure to fill-in
|
|
1144 |
t - my_time_t value to be converted
|
|
1145 |
||
1146 |
NOTE
|
|
1147 |
See note for apropriate Time_zone_system method.
|
|
1148 |
*/
|
|
1149 |
void
|
|
1150 |
Time_zone_utc::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
|
1151 |
{
|
|
1152 |
struct tm tmp_tm; |
|
1153 |
time_t tmp_t= (time_t)t; |
|
1154 |
gmtime_r(&tmp_t, &tmp_tm); |
|
1155 |
localtime_to_TIME(tmp, &tmp_tm); |
|
1156 |
tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
|
1157 |
}
|
|
1158 |
||
1159 |
||
1160 |
/*
|
|
1161 |
Get name of time zone
|
|
1162 |
||
1163 |
SYNOPSIS
|
|
1164 |
get_name()
|
|
1165 |
||
1166 |
DESCRIPTION
|
|
1167 |
Since Time_zone_utc is used only internally by SQL's UTC_* functions it
|
|
1168 |
is not accessible directly, and hence this function of Time_zone
|
|
1169 |
interface is not implemented for this class and should not be called.
|
|
1170 |
||
1171 |
RETURN VALUE
|
|
1172 |
0
|
|
1173 |
*/
|
|
1174 |
const String * |
|
1175 |
Time_zone_utc::get_name() const |
|
1176 |
{
|
|
1177 |
/* Should be never called */
|
|
1178 |
DBUG_ASSERT(0); |
|
1179 |
return 0; |
|
1180 |
}
|
|
1181 |
||
1182 |
||
1183 |
/*
|
|
1184 |
Instance of this class represents some time zone which is
|
|
1185 |
described in mysql.time_zone family of tables.
|
|
1186 |
*/
|
|
1187 |
class Time_zone_db : public Time_zone |
|
1188 |
{
|
|
1189 |
public: |
|
1190 |
Time_zone_db(TIME_ZONE_INFO *tz_info_arg, const String * tz_name_arg); |
|
1191 |
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
|
1192 |
my_bool *in_dst_time_gap) const; |
|
1193 |
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
|
1194 |
virtual const String * get_name() const; |
|
1195 |
private: |
|
1196 |
TIME_ZONE_INFO *tz_info; |
|
1197 |
const String *tz_name; |
|
1198 |
};
|
|
1199 |
||
1200 |
||
1201 |
/*
|
|
1202 |
Initializes object representing time zone described by mysql.time_zone
|
|
1203 |
tables.
|
|
1204 |
||
1205 |
SYNOPSIS
|
|
1206 |
Time_zone_db()
|
|
1207 |
tz_info_arg - pointer to TIME_ZONE_INFO structure which is filled
|
|
1208 |
according to db or other time zone description
|
|
1209 |
(for example by my_tz_init()).
|
|
1210 |
Several Time_zone_db instances can share one
|
|
1211 |
TIME_ZONE_INFO structure.
|
|
1212 |
tz_name_arg - name of time zone.
|
|
1213 |
*/
|
|
1214 |
Time_zone_db::Time_zone_db(TIME_ZONE_INFO *tz_info_arg, |
|
1215 |
const String *tz_name_arg): |
|
1216 |
tz_info(tz_info_arg), tz_name(tz_name_arg) |
|
1217 |
{
|
|
1218 |
}
|
|
1219 |
||
1220 |
||
1221 |
/*
|
|
1222 |
Converts local time in time zone described from TIME
|
|
1223 |
representation to its my_time_t representation.
|
|
1224 |
||
1225 |
SYNOPSIS
|
|
1226 |
TIME_to_gmt_sec()
|
|
1227 |
t - pointer to MYSQL_TIME structure with local time
|
|
1228 |
in broken-down representation.
|
|
1229 |
in_dst_time_gap - pointer to bool which is set to true if datetime
|
|
1230 |
value passed doesn't really exist (i.e. falls into
|
|
1231 |
spring time-gap) and is not touched otherwise.
|
|
1232 |
||
1233 |
DESCRIPTION
|
|
1234 |
Please see ::TIME_to_gmt_sec for function description and
|
|
1235 |
parameter restrictions.
|
|
1236 |
||
1237 |
RETURN VALUE
|
|
1238 |
Corresponding my_time_t value or 0 in case of error
|
|
1239 |
*/
|
|
1240 |
my_time_t
|
|
1241 |
Time_zone_db::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const |
|
1242 |
{
|
|
1243 |
return ::TIME_to_gmt_sec(t, tz_info, in_dst_time_gap); |
|
1244 |
}
|
|
1245 |
||
1246 |
||
1247 |
/*
|
|
1248 |
Converts time from UTC seconds since Epoch (my_time_t) representation
|
|
1249 |
to local time zone described in broken-down representation.
|
|
1250 |
||
1251 |
SYNOPSIS
|
|
1252 |
gmt_sec_to_TIME()
|
|
1253 |
tmp - pointer to MYSQL_TIME structure to fill-in
|
|
1254 |
t - my_time_t value to be converted
|
|
1255 |
*/
|
|
1256 |
void
|
|
1257 |
Time_zone_db::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
|
1258 |
{
|
|
1259 |
::gmt_sec_to_TIME(tmp, t, tz_info); |
|
1260 |
}
|
|
1261 |
||
1262 |
||
1263 |
/*
|
|
1264 |
Get name of time zone
|
|
1265 |
||
1266 |
SYNOPSIS
|
|
1267 |
get_name()
|
|
1268 |
||
1269 |
RETURN VALUE
|
|
1270 |
Name of time zone as ASCIIZ-string
|
|
1271 |
*/
|
|
1272 |
const String * |
|
1273 |
Time_zone_db::get_name() const |
|
1274 |
{
|
|
1275 |
return tz_name; |
|
1276 |
}
|
|
1277 |
||
1278 |
||
1279 |
/*
|
|
1280 |
Instance of this class represents time zone which
|
|
1281 |
was specified as offset from UTC.
|
|
1282 |
*/
|
|
1283 |
class Time_zone_offset : public Time_zone |
|
1284 |
{
|
|
1285 |
public: |
|
1286 |
Time_zone_offset(long tz_offset_arg); |
|
1287 |
virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
|
1288 |
my_bool *in_dst_time_gap) const; |
|
1289 |
virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
|
1290 |
virtual const String * get_name() const; |
|
1291 |
/*
|
|
1292 |
This have to be public because we want to be able to access it from
|
|
1293 |
my_offset_tzs_get_key() function
|
|
1294 |
*/
|
|
1295 |
long offset; |
|
1296 |
private: |
|
1297 |
/* Extra reserve because of snprintf */
|
|
1298 |
char name_buff[7+16]; |
|
1299 |
String name; |
|
1300 |
};
|
|
1301 |
||
1302 |
||
1303 |
/*
|
|
1304 |
Initializes object representing time zone described by its offset from UTC.
|
|
1305 |
||
1306 |
SYNOPSIS
|
|
1307 |
Time_zone_offset()
|
|
1308 |
tz_offset_arg - offset from UTC in seconds.
|
|
1309 |
Positive for direction to east.
|
|
1310 |
*/
|
|
1311 |
Time_zone_offset::Time_zone_offset(long tz_offset_arg): |
|
1312 |
offset(tz_offset_arg) |
|
1313 |
{
|
|
1314 |
uint hours= abs((int)(offset / SECS_PER_HOUR)); |
|
1315 |
uint minutes= abs((int)(offset % SECS_PER_HOUR / SECS_PER_MIN)); |
|
1316 |
ulong length= my_snprintf(name_buff, sizeof(name_buff), "%s%02d:%02d", |
|
1317 |
(offset>=0) ? "+" : "-", hours, minutes); |
|
1318 |
name.set(name_buff, length, &my_charset_latin1); |
|
1319 |
}
|
|
1320 |
||
1321 |
||
1322 |
/*
|
|
1323 |
Converts local time in time zone described as offset from UTC
|
|
1324 |
from MYSQL_TIME representation to its my_time_t representation.
|
|
1325 |
||
1326 |
SYNOPSIS
|
|
1327 |
TIME_to_gmt_sec()
|
|
1328 |
t - pointer to MYSQL_TIME structure with local time
|
|
1329 |
in broken-down representation.
|
|
1330 |
in_dst_time_gap - pointer to bool which should be set to true if
|
|
1331 |
datetime value passed doesn't really exist
|
|
1332 |
(i.e. falls into spring time-gap) and is not
|
|
1333 |
touched otherwise.
|
|
1334 |
It is not really used in this class.
|
|
1335 |
||
1336 |
RETURN VALUE
|
|
1337 |
Corresponding my_time_t value or 0 in case of error
|
|
1338 |
*/
|
|
1339 |
my_time_t
|
|
1340 |
Time_zone_offset::TIME_to_gmt_sec(const MYSQL_TIME *t, my_bool *in_dst_time_gap) const |
|
1341 |
{
|
|
1342 |
my_time_t local_t; |
|
1343 |
int shift= 0; |
|
1344 |
||
1345 |
/*
|
|
1346 |
Check timestamp range.we have to do this as calling function relies on
|
|
1347 |
us to make all validation checks here.
|
|
1348 |
*/
|
|
1349 |
if (!validate_timestamp_range(t)) |
|
1350 |
return 0; |
|
1351 |
||
1352 |
/*
|
|
1353 |
Do a temporary shift of the boundary dates to avoid
|
|
1354 |
overflow of my_time_t if the time value is near it's
|
|
1355 |
maximum range
|
|
1356 |
*/
|
|
1357 |
if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
|
1358 |
shift= 2; |
|
1359 |
||
1360 |
local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
|
1361 |
t->hour, t->minute, t->second) - |
|
1362 |
offset; |
|
1363 |
||
1364 |
if (shift) |
|
1365 |
{
|
|
1366 |
/* Add back the shifted time */
|
|
1367 |
local_t+= shift * SECS_PER_DAY; |
|
1368 |
}
|
|
1369 |
||
1370 |
if (local_t >= TIMESTAMP_MIN_VALUE && local_t <= TIMESTAMP_MAX_VALUE) |
|
1371 |
return local_t; |
|
1372 |
||
1373 |
/* range error*/
|
|
1374 |
return 0; |
|
1375 |
}
|
|
1376 |
||
1377 |
||
1378 |
/*
|
|
1379 |
Converts time from UTC seconds since Epoch (my_time_t) representation
|
|
1380 |
to local time zone described as offset from UTC and in broken-down
|
|
1381 |
representation.
|
|
1382 |
||
1383 |
SYNOPSIS
|
|
1384 |
gmt_sec_to_TIME()
|
|
1385 |
tmp - pointer to MYSQL_TIME structure to fill-in
|
|
1386 |
t - my_time_t value to be converted
|
|
1387 |
*/
|
|
1388 |
void
|
|
1389 |
Time_zone_offset::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
|
1390 |
{
|
|
1391 |
sec_to_TIME(tmp, t, offset); |
|
1392 |
}
|
|
1393 |
||
1394 |
||
1395 |
/*
|
|
1396 |
Get name of time zone
|
|
1397 |
||
1398 |
SYNOPSIS
|
|
1399 |
get_name()
|
|
1400 |
||
1401 |
RETURN VALUE
|
|
1402 |
Name of time zone as pointer to String object
|
|
1403 |
*/
|
|
1404 |
const String * |
|
1405 |
Time_zone_offset::get_name() const |
|
1406 |
{
|
|
1407 |
return &name; |
|
1408 |
}
|
|
1409 |
||
1410 |
||
1411 |
static Time_zone_utc tz_UTC; |
|
1412 |
static Time_zone_system tz_SYSTEM; |
|
1413 |
static Time_zone_offset tz_OFFSET0(0); |
|
1414 |
||
1415 |
Time_zone *my_tz_OFFSET0= &tz_OFFSET0; |
|
1416 |
Time_zone *my_tz_UTC= &tz_UTC; |
|
1417 |
Time_zone *my_tz_SYSTEM= &tz_SYSTEM; |
|
1418 |
||
1419 |
static HASH tz_names; |
|
1420 |
static HASH offset_tzs; |
|
1421 |
static MEM_ROOT tz_storage; |
|
1422 |
||
1423 |
/*
|
|
1424 |
These mutex protects offset_tzs and tz_storage.
|
|
1425 |
These protection needed only when we are trying to set
|
|
1426 |
time zone which is specified as offset, and searching for existing
|
|
1427 |
time zone in offset_tzs or creating if it didn't existed before in
|
|
1428 |
tz_storage. So contention is low.
|
|
1429 |
*/
|
|
1430 |
static pthread_mutex_t tz_LOCK; |
|
1431 |
static bool tz_inited= 0; |
|
1432 |
||
1433 |
/*
|
|
1434 |
This two static variables are inteded for holding info about leap seconds
|
|
1435 |
shared by all time zones.
|
|
1436 |
*/
|
|
1437 |
static uint tz_leapcnt= 0; |
|
1438 |
static LS_INFO *tz_lsis= 0; |
|
1439 |
||
1440 |
/*
|
|
1441 |
Shows whenever we have found time zone tables during start-up.
|
|
1442 |
Used for avoiding of putting those tables to global table list
|
|
1443 |
for queries that use time zone info.
|
|
1444 |
*/
|
|
1445 |
static bool time_zone_tables_exist= 1; |
|
1446 |
||
1447 |
||
1448 |
/*
|
|
1449 |
Names of tables (with their lengths) that are needed
|
|
1450 |
for dynamical loading of time zone descriptions.
|
|
1451 |
*/
|
|
1452 |
||
1453 |
static const LEX_STRING tz_tables_names[MY_TZ_TABLES_COUNT]= |
|
1454 |
{
|
|
1455 |
{ C_STRING_WITH_LEN("time_zone_name")}, |
|
1456 |
{ C_STRING_WITH_LEN("time_zone")}, |
|
1457 |
{ C_STRING_WITH_LEN("time_zone_transition_type")}, |
|
1458 |
{ C_STRING_WITH_LEN("time_zone_transition")} |
|
1459 |
};
|
|
1460 |
||
1461 |
/* Name of database to which those tables belong. */
|
|
1462 |
||
1463 |
static const LEX_STRING tz_tables_db_name= { C_STRING_WITH_LEN("mysql")}; |
|
1464 |
||
1465 |
||
1466 |
class Tz_names_entry: public Sql_alloc |
|
1467 |
{
|
|
1468 |
public: |
|
1469 |
String name; |
|
1470 |
Time_zone *tz; |
|
1471 |
};
|
|
1472 |
||
1473 |
||
1474 |
/*
|
|
1475 |
We are going to call both of these functions from C code so
|
|
1476 |
they should obey C calling conventions.
|
|
1477 |
*/
|
|
1478 |
||
1479 |
extern "C" uchar * |
|
1480 |
my_tz_names_get_key(Tz_names_entry *entry, size_t *length, |
|
1481 |
my_bool not_used __attribute__((unused))) |
|
1482 |
{
|
|
1483 |
*length= entry->name.length(); |
|
1484 |
return (uchar*) entry->name.ptr(); |
|
1485 |
}
|
|
1486 |
||
1487 |
extern "C" uchar * |
|
1488 |
my_offset_tzs_get_key(Time_zone_offset *entry, |
|
1489 |
size_t *length, |
|
1490 |
my_bool not_used __attribute__((unused))) |
|
1491 |
{
|
|
1492 |
*length= sizeof(long); |
|
1493 |
return (uchar*) &entry->offset; |
|
1494 |
}
|
|
1495 |
||
1496 |
||
1497 |
/*
|
|
1498 |
Prepare table list with time zone related tables from preallocated array.
|
|
1499 |
||
1500 |
SYNOPSIS
|
|
1501 |
tz_init_table_list()
|
|
1502 |
tz_tabs - pointer to preallocated array of MY_TZ_TABLES_COUNT
|
|
1503 |
TABLE_LIST objects
|
|
1504 |
||
1505 |
DESCRIPTION
|
|
1506 |
This function prepares list of TABLE_LIST objects which can be used
|
|
1507 |
for opening of time zone tables from preallocated array.
|
|
1508 |
*/
|
|
1509 |
||
1510 |
static void |
|
1511 |
tz_init_table_list(TABLE_LIST *tz_tabs) |
|
1512 |
{
|
|
1513 |
bzero(tz_tabs, sizeof(TABLE_LIST) * MY_TZ_TABLES_COUNT); |
|
1514 |
||
1515 |
for (int i= 0; i < MY_TZ_TABLES_COUNT; i++) |
|
1516 |
{
|
|
1517 |
tz_tabs[i].alias= tz_tabs[i].table_name= tz_tables_names[i].str; |
|
1518 |
tz_tabs[i].table_name_length= tz_tables_names[i].length; |
|
1519 |
tz_tabs[i].db= tz_tables_db_name.str; |
|
1520 |
tz_tabs[i].db_length= tz_tables_db_name.length; |
|
1521 |
tz_tabs[i].lock_type= TL_READ; |
|
1522 |
||
1523 |
if (i != MY_TZ_TABLES_COUNT - 1) |
|
1524 |
tz_tabs[i].next_global= tz_tabs[i].next_local= &tz_tabs[i+1]; |
|
1525 |
if (i != 0) |
|
1526 |
tz_tabs[i].prev_global= &tz_tabs[i-1].next_global; |
|
1527 |
}
|
|
1528 |
}
|
|
1529 |
||
1530 |
||
1531 |
/*
|
|
1532 |
Initialize time zone support infrastructure.
|
|
1533 |
||
1534 |
SYNOPSIS
|
|
1535 |
my_tz_init()
|
|
1536 |
thd - current thread object
|
|
1537 |
default_tzname - default time zone or 0 if none.
|
|
1538 |
bootstrap - indicates whenever we are in bootstrap mode
|
|
1539 |
||
1540 |
DESCRIPTION
|
|
1541 |
This function will init memory structures needed for time zone support,
|
|
1542 |
it will register mandatory SYSTEM time zone in them. It will try to open
|
|
1543 |
mysql.time_zone* tables and load information about default time zone and
|
|
1544 |
information which further will be shared among all time zones loaded.
|
|
1545 |
If system tables with time zone descriptions don't exist it won't fail
|
|
1546 |
(unless default_tzname is time zone from tables). If bootstrap parameter
|
|
1547 |
is true then this routine assumes that we are in bootstrap mode and won't
|
|
1548 |
load time zone descriptions unless someone specifies default time zone
|
|
1549 |
which is supposedly stored in those tables.
|
|
1550 |
It'll also set default time zone if it is specified.
|
|
1551 |
||
1552 |
RETURN VALUES
|
|
1553 |
0 - ok
|
|
1554 |
1 - Error
|
|
1555 |
*/
|
|
1556 |
my_bool
|
|
1557 |
my_tz_init(THD *org_thd, const char *default_tzname, my_bool bootstrap) |
|
1558 |
{
|
|
1559 |
THD *thd; |
|
1560 |
TABLE_LIST tz_tables[1+MY_TZ_TABLES_COUNT]; |
|
1561 |
Open_tables_state open_tables_state_backup; |
|
1562 |
TABLE *table; |
|
1563 |
Tz_names_entry *tmp_tzname; |
|
1564 |
my_bool return_val= 1; |
|
1565 |
char db[]= "mysql"; |
|
1566 |
int res; |
|
1567 |
DBUG_ENTER("my_tz_init"); |
|
1568 |
||
1569 |
/*
|
|
1570 |
To be able to run this from boot, we allocate a temporary THD
|
|
1571 |
*/
|
|
1572 |
if (!(thd= new THD)) |
|
1573 |
DBUG_RETURN(1); |
|
1574 |
thd->thread_stack= (char*) &thd; |
|
1575 |
thd->store_globals(); |
|
1576 |
lex_start(thd); |
|
1577 |
||
1578 |
/* Init all memory structures that require explicit destruction */
|
|
1579 |
if (hash_init(&tz_names, &my_charset_latin1, 20, |
|
1580 |
0, 0, (hash_get_key) my_tz_names_get_key, 0, 0)) |
|
1581 |
{
|
|
1582 |
sql_print_error("Fatal error: OOM while initializing time zones"); |
|
1583 |
goto end; |
|
1584 |
}
|
|
1585 |
if (hash_init(&offset_tzs, &my_charset_latin1, 26, 0, 0, |
|
1586 |
(hash_get_key)my_offset_tzs_get_key, 0, 0)) |
|
1587 |
{
|
|
1588 |
sql_print_error("Fatal error: OOM while initializing time zones"); |
|
1589 |
hash_free(&tz_names); |
|
1590 |
goto end; |
|
1591 |
}
|
|
1592 |
init_sql_alloc(&tz_storage, 32 * 1024, 0); |
|
1593 |
VOID(pthread_mutex_init(&tz_LOCK, MY_MUTEX_INIT_FAST)); |
|
1594 |
tz_inited= 1; |
|
1595 |
||
1596 |
/* Add 'SYSTEM' time zone to tz_names hash */
|
|
1597 |
if (!(tmp_tzname= new (&tz_storage) Tz_names_entry())) |
|
1598 |
{
|
|
1599 |
sql_print_error("Fatal error: OOM while initializing time zones"); |
|
1600 |
goto end_with_cleanup; |
|
1601 |
}
|
|
1602 |
tmp_tzname->name.set(STRING_WITH_LEN("SYSTEM"), &my_charset_latin1); |
|
1603 |
tmp_tzname->tz= my_tz_SYSTEM; |
|
1604 |
if (my_hash_insert(&tz_names, (const uchar *)tmp_tzname)) |
|
1605 |
{
|
|
1606 |
sql_print_error("Fatal error: OOM while initializing time zones"); |
|
1607 |
goto end_with_cleanup; |
|
1608 |
}
|
|
1609 |
||
1610 |
if (bootstrap) |
|
1611 |
{
|
|
1612 |
/* If we are in bootstrap mode we should not load time zone tables */
|
|
1613 |
return_val= time_zone_tables_exist= 0; |
|
1614 |
goto end_with_setting_default_tz; |
|
1615 |
}
|
|
1616 |
||
1617 |
/*
|
|
1618 |
After this point all memory structures are inited and we even can live
|
|
1619 |
without time zone description tables. Now try to load information about
|
|
1620 |
leap seconds shared by all time zones.
|
|
1621 |
*/
|
|
1622 |
||
1623 |
thd->set_db(db, sizeof(db)-1); |
|
1624 |
bzero((char*) &tz_tables[0], sizeof(TABLE_LIST)); |
|
1625 |
tz_tables[0].alias= tz_tables[0].table_name= |
|
1626 |
(char*)"time_zone_leap_second"; |
|
1627 |
tz_tables[0].table_name_length= 21; |
|
1628 |
tz_tables[0].db= db; |
|
1629 |
tz_tables[0].db_length= sizeof(db)-1; |
|
1630 |
tz_tables[0].lock_type= TL_READ; |
|
1631 |
||
1632 |
tz_init_table_list(tz_tables+1); |
|
1633 |
tz_tables[0].next_global= tz_tables[0].next_local= &tz_tables[1]; |
|
1634 |
tz_tables[1].prev_global= &tz_tables[0].next_global; |
|
1635 |
||
1636 |
/*
|
|
1637 |
We need to open only mysql.time_zone_leap_second, but we try to
|
|
1638 |
open all time zone tables to see if they exist.
|
|
1639 |
*/
|
|
1640 |
if (open_system_tables_for_read(thd, tz_tables, &open_tables_state_backup)) |
|
1641 |
{
|
|
1642 |
sql_print_warning("Can't open and lock time zone table: %s " |
|
1643 |
"trying to live without them", thd->main_da.message()); |
|
1644 |
/* We will try emulate that everything is ok */
|
|
1645 |
return_val= time_zone_tables_exist= 0; |
|
1646 |
goto end_with_setting_default_tz; |
|
1647 |
}
|
|
1648 |
||
1649 |
/*
|
|
1650 |
Now we are going to load leap seconds descriptions that are shared
|
|
1651 |
between all time zones that use them. We are using index for getting
|
|
1652 |
records in proper order. Since we share the same MEM_ROOT between
|
|
1653 |
all time zones we just allocate enough memory for it first.
|
|
1654 |
*/
|
|
1655 |
if (!(tz_lsis= (LS_INFO*) alloc_root(&tz_storage, |
|
1656 |
sizeof(LS_INFO) * TZ_MAX_LEAPS))) |
|
1657 |
{
|
|
1658 |
sql_print_error("Fatal error: Out of memory while loading " |
|
1659 |
"mysql.time_zone_leap_second table"); |
|
1660 |
goto end_with_close; |
|
1661 |
}
|
|
1662 |
||
1663 |
table= tz_tables[0].table; |
|
1664 |
/*
|
|
1665 |
It is OK to ignore ha_index_init()/ha_index_end() return values since
|
|
1666 |
mysql.time_zone* tables are MyISAM and these operations always succeed
|
|
1667 |
for MyISAM.
|
|
1668 |
*/
|
|
1669 |
(void)table->file->ha_index_init(0, 1); |
|
1670 |
table->use_all_columns(); |
|
1671 |
||
1672 |
tz_leapcnt= 0; |
|
1673 |
||
1674 |
res= table->file->index_first(table->record[0]); |
|
1675 |
||
1676 |
while (!res) |
|
1677 |
{
|
|
1678 |
if (tz_leapcnt + 1 > TZ_MAX_LEAPS) |
|
1679 |
{
|
|
1680 |
sql_print_error("Fatal error: While loading mysql.time_zone_leap_second" |
|
1681 |
" table: too much leaps"); |
|
1682 |
table->file->ha_index_end(); |
|
1683 |
goto end_with_close; |
|
1684 |
}
|
|
1685 |
||
1686 |
tz_lsis[tz_leapcnt].ls_trans= (my_time_t)table->field[0]->val_int(); |
|
1687 |
tz_lsis[tz_leapcnt].ls_corr= (long)table->field[1]->val_int(); |
|
1688 |
||
1689 |
tz_leapcnt++; |
|
1690 |
||
1691 |
DBUG_PRINT("info", |
|
1692 |
("time_zone_leap_second table: tz_leapcnt: %u tt_time: %lu offset: %ld", |
|
1693 |
tz_leapcnt, (ulong) tz_lsis[tz_leapcnt-1].ls_trans, |
|
1694 |
tz_lsis[tz_leapcnt-1].ls_corr)); |
|
1695 |
||
1696 |
res= table->file->index_next(table->record[0]); |
|
1697 |
}
|
|
1698 |
||
1699 |
(void)table->file->ha_index_end(); |
|
1700 |
||
1701 |
if (res != HA_ERR_END_OF_FILE) |
|
1702 |
{
|
|
1703 |
sql_print_error("Fatal error: Error while loading " |
|
1704 |
"mysql.time_zone_leap_second table"); |
|
1705 |
goto end_with_close; |
|
1706 |
}
|
|
1707 |
||
1708 |
/*
|
|
1709 |
Loading of info about leap seconds succeeded
|
|
1710 |
*/
|
|
1711 |
||
1712 |
return_val= 0; |
|
1713 |
||
1714 |
||
1715 |
end_with_setting_default_tz: |
|
1716 |
/* If we have default time zone try to load it */
|
|
1717 |
if (default_tzname) |
|
1718 |
{
|
|
1719 |
String tmp_tzname2(default_tzname, &my_charset_latin1); |
|
1720 |
/*
|
|
1721 |
Time zone tables may be open here, and my_tz_find() may open
|
|
1722 |
most of them once more, but this is OK for system tables open
|
|
1723 |
for READ.
|
|
1724 |
*/
|
|
1725 |
if (!(global_system_variables.time_zone= my_tz_find(thd, &tmp_tzname2))) |
|
1726 |
{
|
|
1727 |
sql_print_error("Fatal error: Illegal or unknown default time zone '%s'", |
|
1728 |
default_tzname); |
|
1729 |
return_val= 1; |
|
1730 |
}
|
|
1731 |
}
|
|
1732 |
||
1733 |
end_with_close: |
|
1734 |
if (time_zone_tables_exist) |
|
1735 |
{
|
|
1736 |
thd->version--; /* Force close to free memory */ |
|
1737 |
close_system_tables(thd, &open_tables_state_backup); |
|
1738 |
}
|
|
1739 |
||
1740 |
end_with_cleanup: |
|
1741 |
||
1742 |
/* if there were error free time zone describing structs */
|
|
1743 |
if (return_val) |
|
1744 |
my_tz_free(); |
|
1745 |
end: |
|
1746 |
delete thd; |
|
1747 |
if (org_thd) |
|
1748 |
org_thd->store_globals(); /* purecov: inspected */ |
|
1749 |
else
|
|
1750 |
{
|
|
1751 |
/* Remember that we don't have a THD */
|
|
1752 |
my_pthread_setspecific_ptr(THR_THD, 0); |
|
1753 |
my_pthread_setspecific_ptr(THR_MALLOC, 0); |
|
1754 |
}
|
|
1755 |
DBUG_RETURN(return_val); |
|
1756 |
}
|
|
1757 |
||
1758 |
||
1759 |
/*
|
|
1760 |
Free resources used by time zone support infrastructure.
|
|
1761 |
||
1762 |
SYNOPSIS
|
|
1763 |
my_tz_free()
|
|
1764 |
*/
|
|
1765 |
||
1766 |
void my_tz_free() |
|
1767 |
{
|
|
1768 |
if (tz_inited) |
|
1769 |
{
|
|
1770 |
tz_inited= 0; |
|
1771 |
VOID(pthread_mutex_destroy(&tz_LOCK)); |
|
1772 |
hash_free(&offset_tzs); |
|
1773 |
hash_free(&tz_names); |
|
1774 |
free_root(&tz_storage, MYF(0)); |
|
1775 |
}
|
|
1776 |
}
|
|
1777 |
||
1778 |
||
1779 |
/*
|
|
1780 |
Load time zone description from system tables.
|
|
1781 |
||
1782 |
SYNOPSIS
|
|
1783 |
tz_load_from_open_tables()
|
|
1784 |
tz_name - name of time zone that should be loaded.
|
|
1785 |
tz_tables - list of tables from which time zone description
|
|
1786 |
should be loaded
|
|
1787 |
||
1788 |
DESCRIPTION
|
|
1789 |
This function will try to load information about time zone specified
|
|
1790 |
from the list of the already opened and locked tables (first table in
|
|
1791 |
tz_tables should be time_zone_name, next time_zone, then
|
|
1792 |
time_zone_transition_type and time_zone_transition should be last).
|
|
1793 |
It will also update information in hash used for time zones lookup.
|
|
1794 |
||
1795 |
RETURN VALUES
|
|
1796 |
Returns pointer to newly created Time_zone object or 0 in case of error.
|
|
1797 |
||
1798 |
*/
|
|
1799 |
||
1800 |
static Time_zone* |
|
1801 |
tz_load_from_open_tables(const String *tz_name, TABLE_LIST *tz_tables) |
|
1802 |
{
|
|
1803 |
TABLE *table= 0; |
|
1804 |
TIME_ZONE_INFO *tz_info; |
|
1805 |
Tz_names_entry *tmp_tzname; |
|
1806 |
Time_zone *return_val= 0; |
|
1807 |
int res; |
|
1808 |
uint tzid, ttid; |
|
1809 |
my_time_t ttime; |
|
1810 |
char buff[MAX_FIELD_WIDTH]; |
|
1811 |
String abbr(buff, sizeof(buff), &my_charset_latin1); |
|
1812 |
char *alloc_buff, *tz_name_buff; |
|
1813 |
/*
|
|
1814 |
Temporary arrays that are used for loading of data for filling
|
|
1815 |
TIME_ZONE_INFO structure
|
|
1816 |
*/
|
|
1817 |
my_time_t ats[TZ_MAX_TIMES]; |
|
1818 |
uchar types[TZ_MAX_TIMES]; |
|
1819 |
TRAN_TYPE_INFO ttis[TZ_MAX_TYPES]; |
|
1820 |
#ifdef ABBR_ARE_USED
|
|
1821 |
char chars[max(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1)))]; |
|
1822 |
#endif
|
|
1823 |
DBUG_ENTER("tz_load_from_open_tables"); |
|
1824 |
||
1825 |
/* Prepare tz_info for loading also let us make copy of time zone name */
|
|
1826 |
if (!(alloc_buff= (char*) alloc_root(&tz_storage, sizeof(TIME_ZONE_INFO) + |
|
1827 |
tz_name->length() + 1))) |
|
1828 |
{
|
|
1829 |
sql_print_error("Out of memory while loading time zone description"); |
|
1830 |
return 0; |
|
1831 |
}
|
|
1832 |
tz_info= (TIME_ZONE_INFO *)alloc_buff; |
|
1833 |
bzero(tz_info, sizeof(TIME_ZONE_INFO)); |
|
1834 |
tz_name_buff= alloc_buff + sizeof(TIME_ZONE_INFO); |
|
1835 |
/*
|
|
1836 |
By writing zero to the end we guarantee that we can call ptr()
|
|
1837 |
instead of c_ptr() for time zone name.
|
|
1838 |
*/
|
|
1839 |
strmake(tz_name_buff, tz_name->ptr(), tz_name->length()); |
|
1840 |
||
1841 |
/*
|
|
1842 |
Let us find out time zone id by its name (there is only one index
|
|
1843 |
and it is specifically for this purpose).
|
|
1844 |
*/
|
|
1845 |
table= tz_tables->table; |
|
1846 |
tz_tables= tz_tables->next_local; |
|
1847 |
table->field[0]->store(tz_name->ptr(), tz_name->length(), |
|
1848 |
&my_charset_latin1); |
|
1849 |
/*
|
|
1850 |
It is OK to ignore ha_index_init()/ha_index_end() return values since
|
|
1851 |
mysql.time_zone* tables are MyISAM and these operations always succeed
|
|
1852 |
for MyISAM.
|
|
1853 |
*/
|
|
1854 |
(void)table->file->ha_index_init(0, 1); |
|
1855 |
||
1856 |
if (table->file->index_read_map(table->record[0], table->field[0]->ptr, |
|
1857 |
HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
|
1858 |
{
|
|
1859 |
#ifdef EXTRA_DEBUG
|
|
1860 |
/*
|
|
1861 |
Most probably user has mistyped time zone name, so no need to bark here
|
|
1862 |
unless we need it for debugging.
|
|
1863 |
*/
|
|
1864 |
sql_print_error("Can't find description of time zone '%s'", tz_name_buff); |
|
1865 |
#endif
|
|
1866 |
goto end; |
|
1867 |
}
|
|
1868 |
||
1869 |
tzid= (uint)table->field[1]->val_int(); |
|
1870 |
||
1871 |
(void)table->file->ha_index_end(); |
|
1872 |
||
1873 |
/*
|
|
1874 |
Now we need to lookup record in mysql.time_zone table in order to
|
|
1875 |
understand whenever this timezone uses leap seconds (again we are
|
|
1876 |
using the only index in this table).
|
|
1877 |
*/
|
|
1878 |
table= tz_tables->table; |
|
1879 |
tz_tables= tz_tables->next_local; |
|
1880 |
table->field[0]->store((longlong) tzid, TRUE); |
|
1881 |
(void)table->file->ha_index_init(0, 1); |
|
1882 |
||
1883 |
if (table->file->index_read_map(table->record[0], table->field[0]->ptr, |
|
1884 |
HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
|
1885 |
{
|
|
1886 |
sql_print_error("Can't find description of time zone '%u'", tzid); |
|
1887 |
goto end; |
|
1888 |
}
|
|
1889 |
||
1890 |
/* If Uses_leap_seconds == 'Y' */
|
|
1891 |
if (table->field[1]->val_int() == 1) |
|
1892 |
{
|
|
1893 |
tz_info->leapcnt= tz_leapcnt; |
|
1894 |
tz_info->lsis= tz_lsis; |
|
1895 |
}
|
|
1896 |
||
1897 |
(void)table->file->ha_index_end(); |
|
1898 |
||
1899 |
/*
|
|
1900 |
Now we will iterate through records for out time zone in
|
|
1901 |
mysql.time_zone_transition_type table. Because we want records
|
|
1902 |
only for our time zone guess what are we doing?
|
|
1903 |
Right - using special index.
|
|
1904 |
*/
|
|
1905 |
table= tz_tables->table; |
|
1906 |
tz_tables= tz_tables->next_local; |
|
1907 |
table->field[0]->store((longlong) tzid, TRUE); |
|
1908 |
(void)table->file->ha_index_init(0, 1); |
|
1909 |
||
1910 |
res= table->file->index_read_map(table->record[0], table->field[0]->ptr, |
|
1911 |
(key_part_map)1, HA_READ_KEY_EXACT); |
|
1912 |
while (!res) |
|
1913 |
{
|
|
1914 |
ttid= (uint)table->field[1]->val_int(); |
|
1915 |
||
1916 |
if (ttid >= TZ_MAX_TYPES) |
|
1917 |
{
|
|
1918 |
sql_print_error("Error while loading time zone description from " |
|
1919 |
"mysql.time_zone_transition_type table: too big "
|
|
1920 |
"transition type id"); |
|
1921 |
goto end; |
|
1922 |
}
|
|
1923 |
||
1924 |
ttis[ttid].tt_gmtoff= (long)table->field[2]->val_int(); |
|
1925 |
ttis[ttid].tt_isdst= (table->field[3]->val_int() > 0); |
|
1926 |
||
1927 |
#ifdef ABBR_ARE_USED
|
|
1928 |
// FIXME should we do something with duplicates here ?
|
|
1929 |
table->field[4]->val_str(&abbr, &abbr); |
|
1930 |
if (tz_info->charcnt + abbr.length() + 1 > sizeof(chars)) |
|
1931 |
{
|
|
1932 |
sql_print_error("Error while loading time zone description from " |
|
1933 |
"mysql.time_zone_transition_type table: not enough "
|
|
1934 |
"room for abbreviations"); |
|
1935 |
goto end; |
|
1936 |
}
|
|
1937 |
ttis[ttid].tt_abbrind= tz_info->charcnt; |
|
1938 |
memcpy(chars + tz_info->charcnt, abbr.ptr(), abbr.length()); |
|
1939 |
tz_info->charcnt+= abbr.length(); |
|
1940 |
chars[tz_info->charcnt]= 0; |
|
1941 |
tz_info->charcnt++; |
|
1942 |
||
1943 |
DBUG_PRINT("info", |
|
1944 |
("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
|
1945 |
"abbr='%s' tt_isdst=%u", tzid, ttid, ttis[ttid].tt_gmtoff, |
|
1946 |
chars + ttis[ttid].tt_abbrind, ttis[ttid].tt_isdst)); |
|
1947 |
#else
|
|
1948 |
DBUG_PRINT("info", |
|
1949 |
("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
|
1950 |
"tt_isdst=%u", tzid, ttid, ttis[ttid].tt_gmtoff, ttis[ttid].tt_isdst)); |
|
1951 |
#endif
|
|
1952 |
||
1953 |
/* ttid is increasing because we are reading using index */
|
|
1954 |
DBUG_ASSERT(ttid >= tz_info->typecnt); |
|
1955 |
||
1956 |
tz_info->typecnt= ttid + 1; |
|
1957 |
||
1958 |
res= table->file->index_next_same(table->record[0], |
|
1959 |
table->field[0]->ptr, 4); |
|
1960 |
}
|
|
1961 |
||
1962 |
if (res != HA_ERR_END_OF_FILE) |
|
1963 |
{
|
|
1964 |
sql_print_error("Error while loading time zone description from " |
|
1965 |
"mysql.time_zone_transition_type table"); |
|
1966 |
goto end; |
|
1967 |
}
|
|
1968 |
||
1969 |
(void)table->file->ha_index_end(); |
|
1970 |
||
1971 |
||
1972 |
/*
|
|
1973 |
At last we are doing the same thing for records in
|
|
1974 |
mysql.time_zone_transition table. Here we additionaly need records
|
|
1975 |
in ascending order by index scan also satisfies us.
|
|
1976 |
*/
|
|
1977 |
table= tz_tables->table; |
|
1978 |
table->field[0]->store((longlong) tzid, TRUE); |
|
1979 |
(void)table->file->ha_index_init(0, 1); |
|
1980 |
||
1981 |
res= table->file->index_read_map(table->record[0], table->field[0]->ptr, |
|
1982 |
(key_part_map)1, HA_READ_KEY_EXACT); |
|
1983 |
while (!res) |
|
1984 |
{
|
|
1985 |
ttime= (my_time_t)table->field[1]->val_int(); |
|
1986 |
ttid= (uint)table->field[2]->val_int(); |
|
1987 |
||
1988 |
if (tz_info->timecnt + 1 > TZ_MAX_TIMES) |
|
1989 |
{
|
|
1990 |
sql_print_error("Error while loading time zone description from " |
|
1991 |
"mysql.time_zone_transition table: "
|
|
1992 |
"too much transitions"); |
|
1993 |
goto end; |
|
1994 |
}
|
|
1995 |
if (ttid + 1 > tz_info->typecnt) |
|
1996 |
{
|
|
1997 |
sql_print_error("Error while loading time zone description from " |
|
1998 |
"mysql.time_zone_transition table: "
|
|
1999 |
"bad transition type id"); |
|
2000 |
goto end; |
|
2001 |
}
|
|
2002 |
||
2003 |
ats[tz_info->timecnt]= ttime; |
|
2004 |
types[tz_info->timecnt]= ttid; |
|
2005 |
tz_info->timecnt++; |
|
2006 |
||
2007 |
DBUG_PRINT("info", |
|
2008 |
("time_zone_transition table: tz_id: %u tt_time: %lu tt_id: %u", |
|
2009 |
tzid, (ulong) ttime, ttid)); |
|
2010 |
||
2011 |
res= table->file->index_next_same(table->record[0], |
|
2012 |
table->field[0]->ptr, 4); |
|
2013 |
}
|
|
2014 |
||
2015 |
/*
|
|
2016 |
We have to allow HA_ERR_KEY_NOT_FOUND because some time zones
|
|
2017 |
for example UTC have no transitons.
|
|
2018 |
*/
|
|
2019 |
if (res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND) |
|
2020 |
{
|
|
2021 |
sql_print_error("Error while loading time zone description from " |
|
2022 |
"mysql.time_zone_transition table"); |
|
2023 |
goto end; |
|
2024 |
}
|
|
2025 |
||
2026 |
(void)table->file->ha_index_end(); |
|
2027 |
table= 0; |
|
2028 |
||
2029 |
/*
|
|
2030 |
Now we will allocate memory and init TIME_ZONE_INFO structure.
|
|
2031 |
*/
|
|
2032 |
if (!(alloc_buff= (char*) alloc_root(&tz_storage, |
|
2033 |
ALIGN_SIZE(sizeof(my_time_t) * |
|
2034 |
tz_info->timecnt) + |
|
2035 |
ALIGN_SIZE(tz_info->timecnt) + |
|
2036 |
#ifdef ABBR_ARE_USED
|
|
2037 |
ALIGN_SIZE(tz_info->charcnt) + |
|
2038 |
#endif
|
|
2039 |
sizeof(TRAN_TYPE_INFO) * |
|
2040 |
tz_info->typecnt))) |
|
2041 |
{
|
|
2042 |
sql_print_error("Out of memory while loading time zone description"); |
|
2043 |
goto end; |
|
2044 |
}
|
|
2045 |
||
2046 |
tz_info->ats= (my_time_t *) alloc_buff; |
|
2047 |
memcpy(tz_info->ats, ats, tz_info->timecnt * sizeof(my_time_t)); |
|
2048 |
alloc_buff+= ALIGN_SIZE(sizeof(my_time_t) * tz_info->timecnt); |
|
2049 |
tz_info->types= (uchar *)alloc_buff; |
|
2050 |
memcpy(tz_info->types, types, tz_info->timecnt); |
|
2051 |
alloc_buff+= ALIGN_SIZE(tz_info->timecnt); |
|
2052 |
#ifdef ABBR_ARE_USED
|
|
2053 |
tz_info->chars= alloc_buff; |
|
2054 |
memcpy(tz_info->chars, chars, tz_info->charcnt); |
|
2055 |
alloc_buff+= ALIGN_SIZE(tz_info->charcnt); |
|
2056 |
#endif
|
|
2057 |
tz_info->ttis= (TRAN_TYPE_INFO *)alloc_buff; |
|
2058 |
memcpy(tz_info->ttis, ttis, tz_info->typecnt * sizeof(TRAN_TYPE_INFO)); |
|
2059 |
||
2060 |
/*
|
|
2061 |
Let us check how correct our time zone description and build
|
|
2062 |
reversed map. We don't check for tz->timecnt < 1 since it ok for GMT.
|
|
2063 |
*/
|
|
2064 |
if (tz_info->typecnt < 1) |
|
2065 |
{
|
|
2066 |
sql_print_error("loading time zone without transition types"); |
|
2067 |
goto end; |
|
2068 |
}
|
|
2069 |
if (prepare_tz_info(tz_info, &tz_storage)) |
|
2070 |
{
|
|
2071 |
sql_print_error("Unable to build mktime map for time zone"); |
|
2072 |
goto end; |
|
2073 |
}
|
|
2074 |
||
2075 |
||
2076 |
if (!(tmp_tzname= new (&tz_storage) Tz_names_entry()) || |
|
2077 |
!(tmp_tzname->tz= new (&tz_storage) Time_zone_db(tz_info, |
|
2078 |
&(tmp_tzname->name))) || |
|
2079 |
(tmp_tzname->name.set(tz_name_buff, tz_name->length(), |
|
2080 |
&my_charset_latin1), |
|
2081 |
my_hash_insert(&tz_names, (const uchar *)tmp_tzname))) |
|
2082 |
{
|
|
2083 |
sql_print_error("Out of memory while loading time zone"); |
|
2084 |
goto end; |
|
2085 |
}
|
|
2086 |
||
2087 |
/*
|
|
2088 |
Loading of time zone succeeded
|
|
2089 |
*/
|
|
2090 |
return_val= tmp_tzname->tz; |
|
2091 |
||
2092 |
end: |
|
2093 |
||
2094 |
if (table) |
|
2095 |
(void)table->file->ha_index_end(); |
|
2096 |
||
2097 |
DBUG_RETURN(return_val); |
|
2098 |
}
|
|
2099 |
||
2100 |
||
2101 |
/*
|
|
2102 |
Parse string that specifies time zone as offset from UTC.
|
|
2103 |
||
2104 |
SYNOPSIS
|
|
2105 |
str_to_offset()
|
|
2106 |
str - pointer to string which contains offset
|
|
2107 |
length - length of string
|
|
2108 |
offset - out parameter for storing found offset in seconds.
|
|
2109 |
||
2110 |
DESCRIPTION
|
|
2111 |
This function parses string which contains time zone offset
|
|
2112 |
in form similar to '+10:00' and converts found value to
|
|
2113 |
seconds from UTC form (east is positive).
|
|
2114 |
||
2115 |
RETURN VALUE
|
|
2116 |
0 - Ok
|
|
2117 |
1 - String doesn't contain valid time zone offset
|
|
2118 |
*/
|
|
2119 |
my_bool
|
|
2120 |
str_to_offset(const char *str, uint length, long *offset) |
|
2121 |
{
|
|
2122 |
const char *end= str + length; |
|
2123 |
my_bool negative; |
|
2124 |
ulong number_tmp; |
|
2125 |
long offset_tmp; |
|
2126 |
||
2127 |
if (length < 4) |
|
2128 |
return 1; |
|
2129 |
||
2130 |
if (*str == '+') |
|
2131 |
negative= 0; |
|
2132 |
else if (*str == '-') |
|
2133 |
negative= 1; |
|
2134 |
else
|
|
2135 |
return 1; |
|
2136 |
str++; |
|
2137 |
||
2138 |
number_tmp= 0; |
|
2139 |
||
2140 |
while (str < end && my_isdigit(&my_charset_latin1, *str)) |
|
2141 |
{
|
|
2142 |
number_tmp= number_tmp*10 + *str - '0'; |
|
2143 |
str++; |
|
2144 |
}
|
|
2145 |
||
2146 |
if (str + 1 >= end || *str != ':') |
|
2147 |
return 1; |
|
2148 |
str++; |
|
2149 |
||
2150 |
offset_tmp = number_tmp * MINS_PER_HOUR; number_tmp= 0; |
|
2151 |
||
2152 |
while (str < end && my_isdigit(&my_charset_latin1, *str)) |
|
2153 |
{
|
|
2154 |
number_tmp= number_tmp * 10 + *str - '0'; |
|
2155 |
str++; |
|
2156 |
}
|
|
2157 |
||
2158 |
if (str != end) |
|
2159 |
return 1; |
|
2160 |
||
2161 |
offset_tmp= (offset_tmp + number_tmp) * SECS_PER_MIN; |
|
2162 |
||
2163 |
if (negative) |
|
2164 |
offset_tmp= -offset_tmp; |
|
2165 |
||
2166 |
/*
|
|
2167 |
Check if offset is in range prescribed by standard
|
|
2168 |
(from -12:59 to 13:00).
|
|
2169 |
*/
|
|
2170 |
||
2171 |
if (number_tmp > 59 || offset_tmp < -13 * SECS_PER_HOUR + 1 || |
|
2172 |
offset_tmp > 13 * SECS_PER_HOUR) |
|
2173 |
return 1; |
|
2174 |
||
2175 |
*offset= offset_tmp; |
|
2176 |
||
2177 |
return 0; |
|
2178 |
}
|
|
2179 |
||
2180 |
||
2181 |
/*
|
|
2182 |
Get Time_zone object for specified time zone.
|
|
2183 |
||
2184 |
SYNOPSIS
|
|
2185 |
my_tz_find()
|
|
2186 |
thd - pointer to thread THD structure
|
|
2187 |
name - time zone specification
|
|
2188 |
||
2189 |
DESCRIPTION
|
|
2190 |
This function checks if name is one of time zones described in db,
|
|
2191 |
predefined SYSTEM time zone or valid time zone specification as
|
|
2192 |
offset from UTC (In last case it will create proper Time_zone_offset
|
|
2193 |
object if there were not any.). If name is ok it returns corresponding
|
|
2194 |
Time_zone object.
|
|
2195 |
||
2196 |
Clients of this function are not responsible for releasing resources
|
|
2197 |
occupied by returned Time_zone object so they can just forget pointers
|
|
2198 |
to Time_zone object if they are not needed longer.
|
|
2199 |
||
2200 |
Other important property of this function: if some Time_zone found once
|
|
2201 |
it will be for sure found later, so this function can also be used for
|
|
2202 |
checking if proper Time_zone object exists (and if there will be error
|
|
2203 |
it will be reported during first call).
|
|
2204 |
||
2205 |
If name pointer is 0 then this function returns 0 (this allows to pass 0
|
|
2206 |
values as parameter without additional external check and this property
|
|
2207 |
is used by @@time_zone variable handling code).
|
|
2208 |
||
2209 |
It will perform lookup in system tables (mysql.time_zone*),
|
|
2210 |
opening and locking them, and closing afterwards. It won't perform
|
|
2211 |
such lookup if no time zone describing tables were found during
|
|
2212 |
server start up.
|
|
2213 |
||
2214 |
RETURN VALUE
|
|
2215 |
Pointer to corresponding Time_zone object. 0 - in case of bad time zone
|
|
2216 |
specification or other error.
|
|
2217 |
||
2218 |
*/
|
|
2219 |
Time_zone * |
|
2220 |
my_tz_find(THD *thd, const String *name) |
|
2221 |
{
|
|
2222 |
Tz_names_entry *tmp_tzname; |
|
2223 |
Time_zone *result_tz= 0; |
|
2224 |
long offset; |
|
2225 |
DBUG_ENTER("my_tz_find"); |
|
2226 |
DBUG_PRINT("enter", ("time zone name='%s'", |
|
2227 |
name ? ((String *)name)->c_ptr_safe() : "NULL")); |
|
2228 |
||
2229 |
if (!name) |
|
2230 |
DBUG_RETURN(0); |
|
2231 |
||
2232 |
VOID(pthread_mutex_lock(&tz_LOCK)); |
|
2233 |
||
2234 |
if (!str_to_offset(name->ptr(), name->length(), &offset)) |
|
2235 |
{
|
|
2236 |
||
2237 |
if (!(result_tz= (Time_zone_offset *)hash_search(&offset_tzs, |
|
2238 |
(const uchar *)&offset, |
|
2239 |
sizeof(long)))) |
|
2240 |
{
|
|
2241 |
DBUG_PRINT("info", ("Creating new Time_zone_offset object")); |
|
2242 |
||
2243 |
if (!(result_tz= new (&tz_storage) Time_zone_offset(offset)) || |
|
2244 |
my_hash_insert(&offset_tzs, (const uchar *) result_tz)) |
|
2245 |
{
|
|
2246 |
result_tz= 0; |
|
2247 |
sql_print_error("Fatal error: Out of memory " |
|
2248 |
"while setting new time zone"); |
|
2249 |
}
|
|
2250 |
}
|
|
2251 |
}
|
|
2252 |
else
|
|
2253 |
{
|
|
2254 |
result_tz= 0; |
|
2255 |
if ((tmp_tzname= (Tz_names_entry *)hash_search(&tz_names, |
|
2256 |
(const uchar *)name->ptr(), |
|
2257 |
name->length()))) |
|
2258 |
result_tz= tmp_tzname->tz; |
|
2259 |
else if (time_zone_tables_exist) |
|
2260 |
{
|
|
2261 |
TABLE_LIST tz_tables[MY_TZ_TABLES_COUNT]; |
|
2262 |
Open_tables_state open_tables_state_backup; |
|
2263 |
||
2264 |
tz_init_table_list(tz_tables); |
|
2265 |
if (!open_system_tables_for_read(thd, tz_tables, |
|
2266 |
&open_tables_state_backup)) |
|
2267 |
{
|
|
2268 |
result_tz= tz_load_from_open_tables(name, tz_tables); |
|
2269 |
close_system_tables(thd, &open_tables_state_backup); |
|
2270 |
}
|
|
2271 |
}
|
|
2272 |
}
|
|
2273 |
||
2274 |
VOID(pthread_mutex_unlock(&tz_LOCK)); |
|
2275 |
||
2276 |
DBUG_RETURN(result_tz); |
|
2277 |
}
|
|
2278 |
||
2279 |
||
2280 |
#endif /* !defined(TESTTIME) && !defined(TZINFO2SQL) */ |
|
2281 |
||
2282 |
||
2283 |
#ifdef TZINFO2SQL
|
|
2284 |
/*
|
|
2285 |
This code belongs to mysql_tzinfo_to_sql converter command line utility.
|
|
2286 |
This utility should be used by db admin for populating mysql.time_zone
|
|
2287 |
tables.
|
|
2288 |
*/
|
|
2289 |
||
2290 |
||
2291 |
/*
|
|
2292 |
Print info about time zone described by TIME_ZONE_INFO struct as
|
|
2293 |
SQL statements populating mysql.time_zone* tables.
|
|
2294 |
||
2295 |
SYNOPSIS
|
|
2296 |
print_tz_as_sql()
|
|
2297 |
tz_name - name of time zone
|
|
2298 |
sp - structure describing time zone
|
|
2299 |
*/
|
|
2300 |
void
|
|
2301 |
print_tz_as_sql(const char* tz_name, const TIME_ZONE_INFO *sp) |
|
2302 |
{
|
|
2303 |
uint i; |
|
2304 |
||
2305 |
/* Here we assume that all time zones have same leap correction tables */
|
|
2306 |
printf("INSERT INTO time_zone (Use_leap_seconds) VALUES ('%s');\n", |
|
2307 |
sp->leapcnt ? "Y" : "N"); |
|
2308 |
printf("SET @time_zone_id= LAST_INSERT_ID();\n"); |
|
2309 |
printf("INSERT INTO time_zone_name (Name, Time_zone_id) VALUES \ |
|
2310 |
('%s', @time_zone_id);\n", tz_name); |
|
2311 |
||
2312 |
if (sp->timecnt) |
|
2313 |
{
|
|
2314 |
printf("INSERT INTO time_zone_transition \ |
|
2315 |
(Time_zone_id, Transition_time, Transition_type_id) VALUES\n"); |
|
2316 |
for (i= 0; i < sp->timecnt; i++) |
|
2317 |
printf("%s(@time_zone_id, %ld, %u)\n", (i == 0 ? " " : ","), sp->ats[i], |
|
2318 |
(uint)sp->types[i]); |
|
2319 |
printf(";\n"); |
|
2320 |
}
|
|
2321 |
||
2322 |
printf("INSERT INTO time_zone_transition_type \ |
|
2323 |
(Time_zone_id, Transition_type_id, Offset, Is_DST, Abbreviation) VALUES\n"); |
|
2324 |
||
2325 |
for (i= 0; i < sp->typecnt; i++) |
|
2326 |
printf("%s(@time_zone_id, %u, %ld, %d, '%s')\n", (i == 0 ? " " : ","), i, |
|
2327 |
sp->ttis[i].tt_gmtoff, sp->ttis[i].tt_isdst, |
|
2328 |
sp->chars + sp->ttis[i].tt_abbrind); |
|
2329 |
printf(";\n"); |
|
2330 |
}
|
|
2331 |
||
2332 |
||
2333 |
/*
|
|
2334 |
Print info about leap seconds in time zone as SQL statements
|
|
2335 |
populating mysql.time_zone_leap_second table.
|
|
2336 |
||
2337 |
SYNOPSIS
|
|
2338 |
print_tz_leaps_as_sql()
|
|
2339 |
sp - structure describing time zone
|
|
2340 |
*/
|
|
2341 |
void
|
|
2342 |
print_tz_leaps_as_sql(const TIME_ZONE_INFO *sp) |
|
2343 |
{
|
|
2344 |
uint i; |
|
2345 |
||
2346 |
/*
|
|
2347 |
We are assuming that there are only one list of leap seconds
|
|
2348 |
For all timezones.
|
|
2349 |
*/
|
|
2350 |
printf("TRUNCATE TABLE time_zone_leap_second;\n"); |
|
2351 |
||
2352 |
if (sp->leapcnt) |
|
2353 |
{
|
|
2354 |
printf("INSERT INTO time_zone_leap_second \ |
|
2355 |
(Transition_time, Correction) VALUES\n"); |
|
2356 |
for (i= 0; i < sp->leapcnt; i++) |
|
2357 |
printf("%s(%ld, %ld)\n", (i == 0 ? " " : ","), |
|
2358 |
sp->lsis[i].ls_trans, sp->lsis[i].ls_corr); |
|
2359 |
printf(";\n"); |
|
2360 |
}
|
|
2361 |
||
2362 |
printf("ALTER TABLE time_zone_leap_second ORDER BY Transition_time;\n"); |
|
2363 |
}
|
|
2364 |
||
2365 |
||
2366 |
/*
|
|
2367 |
Some variables used as temporary or as parameters
|
|
2368 |
in recursive scan_tz_dir() code.
|
|
2369 |
*/
|
|
2370 |
TIME_ZONE_INFO tz_info; |
|
2371 |
MEM_ROOT tz_storage; |
|
2372 |
char fullname[FN_REFLEN + 1]; |
|
2373 |
char *root_name_end; |
|
2374 |
||
2375 |
||
2376 |
/*
|
|
2377 |
Recursively scan zoneinfo directory and print all found time zone
|
|
2378 |
descriptions as SQL.
|
|
2379 |
||
2380 |
SYNOPSIS
|
|
2381 |
scan_tz_dir()
|
|
2382 |
name_end - pointer to end of path to directory to be searched.
|
|
2383 |
||
2384 |
DESCRIPTION
|
|
2385 |
This auxiliary recursive function also uses several global
|
|
2386 |
variables as in parameters and for storing temporary values.
|
|
2387 |
||
2388 |
fullname - path to directory that should be scanned.
|
|
2389 |
root_name_end - pointer to place in fullname where part with
|
|
2390 |
path to initial directory ends.
|
|
2391 |
current_tz_id - last used time zone id
|
|
2392 |
||
2393 |
RETURN VALUE
|
|
2394 |
0 - Ok, 1 - Fatal error
|
|
2395 |
||
2396 |
*/
|
|
2397 |
my_bool
|
|
2398 |
scan_tz_dir(char * name_end) |
|
2399 |
{
|
|
2400 |
MY_DIR *cur_dir; |
|
2401 |
char *name_end_tmp; |
|
2402 |
uint i; |
|
2403 |
||
2404 |
if (!(cur_dir= my_dir(fullname, MYF(MY_WANT_STAT)))) |
|
2405 |
return 1; |
|
2406 |
||
2407 |
name_end= strmake(name_end, "/", FN_REFLEN - (name_end - fullname)); |
|
2408 |
||
2409 |
for (i= 0; i < cur_dir->number_off_files; i++) |
|
2410 |
{
|
|
2411 |
if (cur_dir->dir_entry[i].name[0] != '.') |
|
2412 |
{
|
|
2413 |
name_end_tmp= strmake(name_end, cur_dir->dir_entry[i].name, |
|
2414 |
FN_REFLEN - (name_end - fullname)); |
|
2415 |
||
2416 |
if (MY_S_ISDIR(cur_dir->dir_entry[i].mystat->st_mode)) |
|
2417 |
{
|
|
2418 |
if (scan_tz_dir(name_end_tmp)) |
|
2419 |
{
|
|
2420 |
my_dirend(cur_dir); |
|
2421 |
return 1; |
|
2422 |
}
|
|
2423 |
}
|
|
2424 |
else if (MY_S_ISREG(cur_dir->dir_entry[i].mystat->st_mode)) |
|
2425 |
{
|
|
2426 |
init_alloc_root(&tz_storage, 32768, 0); |
|
2427 |
if (!tz_load(fullname, &tz_info, &tz_storage)) |
|
2428 |
print_tz_as_sql(root_name_end + 1, &tz_info); |
|
2429 |
else
|
|
2430 |
fprintf(stderr, |
|
2431 |
"Warning: Unable to load '%s' as time zone. Skipping it.\n", |
|
2432 |
fullname); |
|
2433 |
free_root(&tz_storage, MYF(0)); |
|
2434 |
}
|
|
2435 |
else
|
|
2436 |
fprintf(stderr, "Warning: '%s' is not regular file or directory\n", |
|
2437 |
fullname); |
|
2438 |
}
|
|
2439 |
}
|
|
2440 |
||
2441 |
my_dirend(cur_dir); |
|
2442 |
||
2443 |
return 0; |
|
2444 |
}
|
|
2445 |
||
2446 |
||
2447 |
int
|
|
2448 |
main(int argc, char **argv) |
|
2449 |
{
|
|
2450 |
#ifndef __NETWARE__
|
|
2451 |
MY_INIT(argv[0]); |
|
2452 |
||
2453 |
if (argc != 2 && argc != 3) |
|
2454 |
{
|
|
2455 |
fprintf(stderr, "Usage:\n"); |
|
2456 |
fprintf(stderr, " %s timezonedir\n", argv[0]); |
|
2457 |
fprintf(stderr, " %s timezonefile timezonename\n", argv[0]); |
|
2458 |
fprintf(stderr, " %s --leap timezonefile\n", argv[0]); |
|
2459 |
return 1; |
|
2460 |
}
|
|
2461 |
||
2462 |
if (argc == 2) |
|
2463 |
{
|
|
2464 |
root_name_end= strmake(fullname, argv[1], FN_REFLEN); |
|
2465 |
||
2466 |
printf("TRUNCATE TABLE time_zone;\n"); |
|
2467 |
printf("TRUNCATE TABLE time_zone_name;\n"); |
|
2468 |
printf("TRUNCATE TABLE time_zone_transition;\n"); |
|
2469 |
printf("TRUNCATE TABLE time_zone_transition_type;\n"); |
|
2470 |
||
2471 |
if (scan_tz_dir(root_name_end)) |
|
2472 |
{
|
|
2473 |
fprintf(stderr, "There were fatal errors during processing " |
|
2474 |
"of zoneinfo directory\n"); |
|
2475 |
return 1; |
|
2476 |
}
|
|
2477 |
||
2478 |
printf("ALTER TABLE time_zone_transition " |
|
2479 |
"ORDER BY Time_zone_id, Transition_time;\n"); |
|
2480 |
printf("ALTER TABLE time_zone_transition_type " |
|
2481 |
"ORDER BY Time_zone_id, Transition_type_id;\n"); |
|
2482 |
}
|
|
2483 |
else
|
|
2484 |
{
|
|
2485 |
init_alloc_root(&tz_storage, 32768, 0); |
|
2486 |
||
2487 |
if (strcmp(argv[1], "--leap") == 0) |
|
2488 |
{
|
|
2489 |
if (tz_load(argv[2], &tz_info, &tz_storage)) |
|
2490 |
{
|
|
2491 |
fprintf(stderr, "Problems with zoneinfo file '%s'\n", argv[2]); |
|
2492 |
return 1; |
|
2493 |
}
|
|
2494 |
print_tz_leaps_as_sql(&tz_info); |
|
2495 |
}
|
|
2496 |
else
|
|
2497 |
{
|
|
2498 |
if (tz_load(argv[1], &tz_info, &tz_storage)) |
|
2499 |
{
|
|
2500 |
fprintf(stderr, "Problems with zoneinfo file '%s'\n", argv[2]); |
|
2501 |
return 1; |
|
2502 |
}
|
|
2503 |
print_tz_as_sql(argv[2], &tz_info); |
|
2504 |
}
|
|
2505 |
||
2506 |
free_root(&tz_storage, MYF(0)); |
|
2507 |
}
|
|
2508 |
||
2509 |
#else
|
|
2510 |
fprintf(stderr, "This tool has not been ported to NetWare\n"); |
|
2511 |
#endif /* __NETWARE__ */ |
|
2512 |
||
2513 |
return 0; |
|
2514 |
}
|
|
2515 |
||
2516 |
#endif /* defined(TZINFO2SQL) */ |
|
2517 |
||
2518 |
||
2519 |
#ifdef TESTTIME
|
|
2520 |
||
2521 |
/*
|
|
2522 |
Some simple brute-force test wich allowed to catch a pair of bugs.
|
|
2523 |
Also can provide interesting facts about system's time zone support
|
|
2524 |
implementation.
|
|
2525 |
*/
|
|
2526 |
||
2527 |
#ifndef CHAR_BIT
|
|
2528 |
#define CHAR_BIT 8
|
|
2529 |
#endif
|
|
2530 |
||
2531 |
#ifndef TYPE_BIT
|
|
2532 |
#define TYPE_BIT(type) (sizeof (type) * CHAR_BIT)
|
|
2533 |
#endif
|
|
2534 |
||
2535 |
#ifndef TYPE_SIGNED
|
|
2536 |
#define TYPE_SIGNED(type) (((type) -1) < 0)
|
|
2537 |
#endif
|
|
2538 |
||
2539 |
my_bool
|
|
2540 |
is_equal_TIME_tm(const TIME* time_arg, const struct tm * tm_arg) |
|
2541 |
{
|
|
2542 |
return (time_arg->year == (uint)tm_arg->tm_year+TM_YEAR_BASE) && |
|
2543 |
(time_arg->month == (uint)tm_arg->tm_mon+1) && |
|
2544 |
(time_arg->day == (uint)tm_arg->tm_mday) && |
|
2545 |
(time_arg->hour == (uint)tm_arg->tm_hour) && |
|
2546 |
(time_arg->minute == (uint)tm_arg->tm_min) && |
|
2547 |
(time_arg->second == (uint)tm_arg->tm_sec) && |
|
2548 |
time_arg->second_part == 0; |
|
2549 |
}
|
|
2550 |
||
2551 |
||
2552 |
int
|
|
2553 |
main(int argc, char **argv) |
|
2554 |
{
|
|
2555 |
my_bool localtime_negative; |
|
2556 |
TIME_ZONE_INFO tz_info; |
|
2557 |
struct tm tmp; |
|
2558 |
MYSQL_TIME time_tmp; |
|
2559 |
time_t t, t1, t2; |
|
2560 |
char fullname[FN_REFLEN+1]; |
|
2561 |
char *str_end; |
|
2562 |
MEM_ROOT tz_storage; |
|
2563 |
||
2564 |
MY_INIT(argv[0]); |
|
2565 |
||
2566 |
init_alloc_root(&tz_storage, 32768, 0); |
|
2567 |
||
2568 |
/* let us set some well known timezone */
|
|
2569 |
setenv("TZ", "MET", 1); |
|
2570 |
tzset(); |
|
2571 |
||
2572 |
/* Some initial time zone related system info */
|
|
2573 |
printf("time_t: %s %u bit\n", TYPE_SIGNED(time_t) ? "signed" : "unsigned", |
|
2574 |
(uint)TYPE_BIT(time_t)); |
|
2575 |
if (TYPE_SIGNED(time_t)) |
|
2576 |
{
|
|
2577 |
t= -100; |
|
2578 |
localtime_negative= test(localtime_r(&t, &tmp) != 0); |
|
2579 |
printf("localtime_r %s negative params \ |
|
2580 |
(time_t=%d is %d-%d-%d %d:%d:%d)\n", |
|
2581 |
(localtime_negative ? "supports" : "doesn't support"), (int)t, |
|
2582 |
TM_YEAR_BASE + tmp.tm_year, tmp.tm_mon + 1, tmp.tm_mday, |
|
2583 |
tmp.tm_hour, tmp.tm_min, tmp.tm_sec); |
|
2584 |
||
2585 |
printf("mktime %s negative results (%d)\n", |
|
2586 |
(t == mktime(&tmp) ? "doesn't support" : "supports"), |
|
2587 |
(int)mktime(&tmp)); |
|
2588 |
}
|
|
2589 |
||
2590 |
tmp.tm_year= 103; tmp.tm_mon= 2; tmp.tm_mday= 30; |
|
2591 |
tmp.tm_hour= 2; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= -1; |
|
2592 |
t= mktime(&tmp); |
|
2593 |
printf("mktime returns %s for spring time gap (%d)\n", |
|
2594 |
(t != (time_t)-1 ? "something" : "error"), (int)t); |
|
2595 |
||
2596 |
tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
|
2597 |
tmp.tm_hour= 0; tmp.tm_min= 0; tmp.tm_sec= 0; tmp.tm_isdst= 0; |
|
2598 |
t= mktime(&tmp); |
|
2599 |
printf("mktime returns %s for non existing date (%d)\n", |
|
2600 |
(t != (time_t)-1 ? "something" : "error"), (int)t); |
|
2601 |
||
2602 |
tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
|
2603 |
tmp.tm_hour= 25; tmp.tm_min=0; tmp.tm_sec=0; tmp.tm_isdst=1; |
|
2604 |
t= mktime(&tmp); |
|
2605 |
printf("mktime %s unnormalized input (%d)\n", |
|
2606 |
(t != (time_t)-1 ? "handles" : "doesn't handle"), (int)t); |
|
2607 |
||
2608 |
tmp.tm_year= 103; tmp.tm_mon= 9; tmp.tm_mday= 26; |
|
2609 |
tmp.tm_hour= 0; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= 1; |
|
2610 |
mktime(&tmp); |
|
2611 |
tmp.tm_hour= 2; tmp.tm_isdst= -1; |
|
2612 |
t= mktime(&tmp); |
|
2613 |
tmp.tm_hour= 4; tmp.tm_isdst= 0; |
|
2614 |
mktime(&tmp); |
|
2615 |
tmp.tm_hour= 2; tmp.tm_isdst= -1; |
|
2616 |
t1= mktime(&tmp); |
|
2617 |
printf("mktime is %s (%d %d)\n", |
|
2618 |
(t == t1 ? "determenistic" : "is non-determenistic"), |
|
2619 |
(int)t, (int)t1); |
|
2620 |
||
2621 |
/* Let us load time zone description */
|
|
2622 |
str_end= strmake(fullname, TZDIR, FN_REFLEN); |
|
2623 |
strmake(str_end, "/MET", FN_REFLEN - (str_end - fullname)); |
|
2624 |
||
2625 |
if (tz_load(fullname, &tz_info, &tz_storage)) |
|
2626 |
{
|
|
2627 |
printf("Unable to load time zone info from '%s'\n", fullname); |
|
2628 |
free_root(&tz_storage, MYF(0)); |
|
2629 |
return 1; |
|
2630 |
}
|
|
2631 |
||
2632 |
printf("Testing our implementation\n"); |
|
2633 |
||
2634 |
if (TYPE_SIGNED(time_t) && localtime_negative) |
|
2635 |
{
|
|
2636 |
for (t= -40000; t < 20000; t++) |
|
2637 |
{
|
|
2638 |
localtime_r(&t, &tmp); |
|
2639 |
gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
|
2640 |
if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
|
2641 |
{
|
|
2642 |
printf("Problem with negative time_t = %d\n", (int)t); |
|
2643 |
free_root(&tz_storage, MYF(0)); |
|
2644 |
return 1; |
|
2645 |
}
|
|
2646 |
}
|
|
2647 |
printf("gmt_sec_to_TIME = localtime for time_t in [-40000,20000) range\n"); |
|
2648 |
}
|
|
2649 |
||
2650 |
for (t= 1000000000; t < 1100000000; t+= 13) |
|
2651 |
{
|
|
2652 |
localtime_r(&t,&tmp); |
|
2653 |
gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
|
2654 |
||
2655 |
if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
|
2656 |
{
|
|
2657 |
printf("Problem with time_t = %d\n", (int)t); |
|
2658 |
free_root(&tz_storage, MYF(0)); |
|
2659 |
return 1; |
|
2660 |
}
|
|
2661 |
}
|
|
2662 |
printf("gmt_sec_to_TIME = localtime for time_t in [1000000000,1100000000) range\n"); |
|
2663 |
||
2664 |
init_time(); |
|
2665 |
||
2666 |
/*
|
|
2667 |
Be careful here! my_system_gmt_sec doesn't fully handle unnormalized
|
|
2668 |
dates.
|
|
2669 |
*/
|
|
2670 |
for (time_tmp.year= 1980; time_tmp.year < 2010; time_tmp.year++) |
|
2671 |
{
|
|
2672 |
for (time_tmp.month= 1; time_tmp.month < 13; time_tmp.month++) |
|
2673 |
{
|
|
2674 |
for (time_tmp.day= 1; |
|
2675 |
time_tmp.day < mon_lengths[isleap(time_tmp.year)][time_tmp.month-1]; |
|
2676 |
time_tmp.day++) |
|
2677 |
{
|
|
2678 |
for (time_tmp.hour= 0; time_tmp.hour < 24; time_tmp.hour++) |
|
2679 |
{
|
|
2680 |
for (time_tmp.minute= 0; time_tmp.minute < 60; time_tmp.minute+= 5) |
|
2681 |
{
|
|
2682 |
for (time_tmp.second=0; time_tmp.second<60; time_tmp.second+=25) |
|
2683 |
{
|
|
2684 |
long not_used; |
|
2685 |
my_bool not_used_2; |
|
2686 |
t= (time_t)my_system_gmt_sec(&time_tmp, ¬_used, ¬_used_2); |
|
2687 |
t1= (time_t)TIME_to_gmt_sec(&time_tmp, &tz_info, ¬_used_2); |
|
2688 |
if (t != t1) |
|
2689 |
{
|
|
2690 |
/*
|
|
2691 |
We need special handling during autumn since my_system_gmt_sec
|
|
2692 |
prefers greater time_t values (in MET) for ambiguity.
|
|
2693 |
And BTW that is a bug which should be fixed !!!
|
|
2694 |
*/
|
|
2695 |
tmp.tm_year= time_tmp.year - TM_YEAR_BASE; |
|
2696 |
tmp.tm_mon= time_tmp.month - 1; |
|
2697 |
tmp.tm_mday= time_tmp.day; |
|
2698 |
tmp.tm_hour= time_tmp.hour; |
|
2699 |
tmp.tm_min= time_tmp.minute; |
|
2700 |
tmp.tm_sec= time_tmp.second; |
|
2701 |
tmp.tm_isdst= 1; |
|
2702 |
||
2703 |
t2= mktime(&tmp); |
|
2704 |
||
2705 |
if (t1 == t2) |
|
2706 |
continue; |
|
2707 |
||
2708 |
printf("Problem: %u/%u/%u %u:%u:%u with times t=%d, t1=%d\n", |
|
2709 |
time_tmp.year, time_tmp.month, time_tmp.day, |
|
2710 |
time_tmp.hour, time_tmp.minute, time_tmp.second, |
|
2711 |
(int)t,(int)t1); |
|
2712 |
||
2713 |
free_root(&tz_storage, MYF(0)); |
|
2714 |
return 1; |
|
2715 |
}
|
|
2716 |
}
|
|
2717 |
}
|
|
2718 |
}
|
|
2719 |
}
|
|
2720 |
}
|
|
2721 |
}
|
|
2722 |
||
2723 |
printf("TIME_to_gmt_sec = my_system_gmt_sec for test range\n"); |
|
2724 |
||
2725 |
free_root(&tz_storage, MYF(0)); |
|
2726 |
return 0; |
|
2727 |
}
|
|
2728 |
||
2729 |
#endif /* defined(TESTTIME) */ |