1
by brian
clean slate |
1 |
/*******************************************************
|
2 |
Select
|
|
3 |
||
4 |
(c) 1997 Innobase Oy
|
|
5 |
||
6 |
Created 12/19/1997 Heikki Tuuri
|
|
7 |
*******************************************************/
|
|
8 |
||
9 |
#include "row0sel.h" |
|
10 |
||
11 |
#ifdef UNIV_NONINL
|
|
12 |
#include "row0sel.ic" |
|
13 |
#endif
|
|
14 |
||
15 |
#include "dict0dict.h" |
|
16 |
#include "dict0boot.h" |
|
17 |
#include "trx0undo.h" |
|
18 |
#include "trx0trx.h" |
|
19 |
#include "btr0btr.h" |
|
20 |
#include "btr0cur.h" |
|
21 |
#include "btr0sea.h" |
|
22 |
#include "mach0data.h" |
|
23 |
#include "que0que.h" |
|
24 |
#include "row0upd.h" |
|
25 |
#include "row0row.h" |
|
26 |
#include "row0vers.h" |
|
27 |
#include "rem0cmp.h" |
|
28 |
#include "lock0lock.h" |
|
29 |
#include "eval0eval.h" |
|
30 |
#include "pars0sym.h" |
|
31 |
#include "pars0pars.h" |
|
32 |
#include "row0mysql.h" |
|
33 |
#include "read0read.h" |
|
34 |
#include "buf0lru.h" |
|
35 |
||
36 |
/* Maximum number of rows to prefetch; MySQL interface has another parameter */
|
|
37 |
#define SEL_MAX_N_PREFETCH 16
|
|
38 |
||
39 |
/* Number of rows fetched, after which to start prefetching; MySQL interface
|
|
40 |
has another parameter */
|
|
41 |
#define SEL_PREFETCH_LIMIT 1
|
|
42 |
||
43 |
/* When a select has accessed about this many pages, it returns control back
|
|
44 |
to que_run_threads: this is to allow canceling runaway queries */
|
|
45 |
||
46 |
#define SEL_COST_LIMIT 100
|
|
47 |
||
48 |
/* Flags for search shortcut */
|
|
49 |
#define SEL_FOUND 0
|
|
50 |
#define SEL_EXHAUSTED 1
|
|
51 |
#define SEL_RETRY 2
|
|
52 |
||
53 |
/************************************************************************
|
|
54 |
Returns TRUE if the user-defined column values in a secondary index record
|
|
55 |
are alphabetically the same as the corresponding columns in the clustered
|
|
56 |
index record.
|
|
57 |
NOTE: the comparison is NOT done as a binary comparison, but character
|
|
58 |
fields are compared with collation! */
|
|
59 |
static
|
|
60 |
ibool
|
|
61 |
row_sel_sec_rec_is_for_clust_rec( |
|
62 |
/*=============================*/
|
|
63 |
/* out: TRUE if the secondary
|
|
64 |
record is equal to the corresponding
|
|
65 |
fields in the clustered record,
|
|
66 |
when compared with collation */
|
|
67 |
rec_t* sec_rec, /* in: secondary index record */ |
|
68 |
dict_index_t* sec_index, /* in: secondary index */ |
|
69 |
rec_t* clust_rec, /* in: clustered index record */ |
|
70 |
dict_index_t* clust_index) /* in: clustered index */ |
|
71 |
{
|
|
72 |
byte* sec_field; |
|
73 |
ulint sec_len; |
|
74 |
byte* clust_field; |
|
75 |
ulint clust_len; |
|
76 |
ulint n; |
|
77 |
ulint i; |
|
78 |
mem_heap_t* heap = NULL; |
|
79 |
ulint clust_offsets_[REC_OFFS_NORMAL_SIZE]; |
|
80 |
ulint sec_offsets_[REC_OFFS_SMALL_SIZE]; |
|
81 |
ulint* clust_offs = clust_offsets_; |
|
82 |
ulint* sec_offs = sec_offsets_; |
|
83 |
ibool is_equal = TRUE; |
|
84 |
||
85 |
*clust_offsets_ = (sizeof clust_offsets_) / sizeof *clust_offsets_; |
|
86 |
*sec_offsets_ = (sizeof sec_offsets_) / sizeof *sec_offsets_; |
|
87 |
||
88 |
clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs, |
|
89 |
ULINT_UNDEFINED, &heap); |
|
90 |
sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs, |
|
91 |
ULINT_UNDEFINED, &heap); |
|
92 |
||
93 |
n = dict_index_get_n_ordering_defined_by_user(sec_index); |
|
94 |
||
95 |
for (i = 0; i < n; i++) { |
|
96 |
const dict_field_t* ifield; |
|
97 |
const dict_col_t* col; |
|
98 |
||
99 |
ifield = dict_index_get_nth_field(sec_index, i); |
|
100 |
col = dict_field_get_col(ifield); |
|
101 |
||
102 |
clust_field = rec_get_nth_field( |
|
103 |
clust_rec, clust_offs, |
|
104 |
dict_col_get_clust_pos(col, clust_index), &clust_len); |
|
105 |
sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len); |
|
106 |
||
107 |
if (ifield->prefix_len > 0 && clust_len != UNIV_SQL_NULL) { |
|
108 |
||
109 |
clust_len = dtype_get_at_most_n_mbchars( |
|
110 |
col->prtype, col->mbminlen, col->mbmaxlen, |
|
111 |
ifield->prefix_len, |
|
112 |
clust_len, (char*) clust_field); |
|
113 |
}
|
|
114 |
||
115 |
if (0 != cmp_data_data(col->mtype, col->prtype, |
|
116 |
clust_field, clust_len, |
|
117 |
sec_field, sec_len)) { |
|
118 |
is_equal = FALSE; |
|
119 |
goto func_exit; |
|
120 |
}
|
|
121 |
}
|
|
122 |
||
123 |
func_exit: |
|
124 |
if (UNIV_LIKELY_NULL(heap)) { |
|
125 |
mem_heap_free(heap); |
|
126 |
}
|
|
127 |
return(is_equal); |
|
128 |
}
|
|
129 |
||
130 |
/*************************************************************************
|
|
131 |
Creates a select node struct. */
|
|
132 |
||
133 |
sel_node_t* |
|
134 |
sel_node_create( |
|
135 |
/*============*/
|
|
136 |
/* out, own: select node struct */
|
|
137 |
mem_heap_t* heap) /* in: memory heap where created */ |
|
138 |
{
|
|
139 |
sel_node_t* node; |
|
140 |
||
141 |
node = mem_heap_alloc(heap, sizeof(sel_node_t)); |
|
142 |
node->common.type = QUE_NODE_SELECT; |
|
143 |
node->state = SEL_NODE_OPEN; |
|
144 |
||
145 |
node->select_will_do_update = FALSE; |
|
146 |
node->latch_mode = BTR_SEARCH_LEAF; |
|
147 |
||
148 |
node->plans = NULL; |
|
149 |
||
150 |
return(node); |
|
151 |
}
|
|
152 |
||
153 |
/*************************************************************************
|
|
154 |
Frees the memory private to a select node when a query graph is freed,
|
|
155 |
does not free the heap where the node was originally created. */
|
|
156 |
||
157 |
void
|
|
158 |
sel_node_free_private( |
|
159 |
/*==================*/
|
|
160 |
sel_node_t* node) /* in: select node struct */ |
|
161 |
{
|
|
162 |
ulint i; |
|
163 |
plan_t* plan; |
|
164 |
||
165 |
if (node->plans != NULL) { |
|
166 |
for (i = 0; i < node->n_tables; i++) { |
|
167 |
plan = sel_node_get_nth_plan(node, i); |
|
168 |
||
169 |
btr_pcur_close(&(plan->pcur)); |
|
170 |
btr_pcur_close(&(plan->clust_pcur)); |
|
171 |
||
172 |
if (plan->old_vers_heap) { |
|
173 |
mem_heap_free(plan->old_vers_heap); |
|
174 |
}
|
|
175 |
}
|
|
176 |
}
|
|
177 |
}
|
|
178 |
||
179 |
/*************************************************************************
|
|
180 |
Evaluates the values in a select list. If there are aggregate functions,
|
|
181 |
their argument value is added to the aggregate total. */
|
|
182 |
UNIV_INLINE
|
|
183 |
void
|
|
184 |
sel_eval_select_list( |
|
185 |
/*=================*/
|
|
186 |
sel_node_t* node) /* in: select node */ |
|
187 |
{
|
|
188 |
que_node_t* exp; |
|
189 |
||
190 |
exp = node->select_list; |
|
191 |
||
192 |
while (exp) { |
|
193 |
eval_exp(exp); |
|
194 |
||
195 |
exp = que_node_get_next(exp); |
|
196 |
}
|
|
197 |
}
|
|
198 |
||
199 |
/*************************************************************************
|
|
200 |
Assigns the values in the select list to the possible into-variables in
|
|
201 |
SELECT ... INTO ... */
|
|
202 |
UNIV_INLINE
|
|
203 |
void
|
|
204 |
sel_assign_into_var_values( |
|
205 |
/*=======================*/
|
|
206 |
sym_node_t* var, /* in: first variable in a list of variables */ |
|
207 |
sel_node_t* node) /* in: select node */ |
|
208 |
{
|
|
209 |
que_node_t* exp; |
|
210 |
||
211 |
if (var == NULL) { |
|
212 |
||
213 |
return; |
|
214 |
}
|
|
215 |
||
216 |
exp = node->select_list; |
|
217 |
||
218 |
while (var) { |
|
219 |
ut_ad(exp); |
|
220 |
||
221 |
eval_node_copy_val(var->alias, exp); |
|
222 |
||
223 |
exp = que_node_get_next(exp); |
|
224 |
var = que_node_get_next(var); |
|
225 |
}
|
|
226 |
}
|
|
227 |
||
228 |
/*************************************************************************
|
|
229 |
Resets the aggregate value totals in the select list of an aggregate type
|
|
230 |
query. */
|
|
231 |
UNIV_INLINE
|
|
232 |
void
|
|
233 |
sel_reset_aggregate_vals( |
|
234 |
/*=====================*/
|
|
235 |
sel_node_t* node) /* in: select node */ |
|
236 |
{
|
|
237 |
func_node_t* func_node; |
|
238 |
||
239 |
ut_ad(node->is_aggregate); |
|
240 |
||
241 |
func_node = node->select_list; |
|
242 |
||
243 |
while (func_node) { |
|
244 |
eval_node_set_int_val(func_node, 0); |
|
245 |
||
246 |
func_node = que_node_get_next(func_node); |
|
247 |
}
|
|
248 |
||
249 |
node->aggregate_already_fetched = FALSE; |
|
250 |
}
|
|
251 |
||
252 |
/*************************************************************************
|
|
253 |
Copies the input variable values when an explicit cursor is opened. */
|
|
254 |
UNIV_INLINE
|
|
255 |
void
|
|
256 |
row_sel_copy_input_variable_vals( |
|
257 |
/*=============================*/
|
|
258 |
sel_node_t* node) /* in: select node */ |
|
259 |
{
|
|
260 |
sym_node_t* var; |
|
261 |
||
262 |
var = UT_LIST_GET_FIRST(node->copy_variables); |
|
263 |
||
264 |
while (var) { |
|
265 |
eval_node_copy_val(var, var->alias); |
|
266 |
||
267 |
var->indirection = NULL; |
|
268 |
||
269 |
var = UT_LIST_GET_NEXT(col_var_list, var); |
|
270 |
}
|
|
271 |
}
|
|
272 |
||
273 |
/*************************************************************************
|
|
274 |
Fetches the column values from a record. */
|
|
275 |
static
|
|
276 |
void
|
|
277 |
row_sel_fetch_columns( |
|
278 |
/*==================*/
|
|
279 |
dict_index_t* index, /* in: record index */ |
|
280 |
rec_t* rec, /* in: record in a clustered or non-clustered |
|
281 |
index */
|
|
282 |
const ulint* offsets,/* in: rec_get_offsets(rec, index) */ |
|
283 |
sym_node_t* column) /* in: first column in a column list, or |
|
284 |
NULL */
|
|
285 |
{
|
|
286 |
dfield_t* val; |
|
287 |
ulint index_type; |
|
288 |
ulint field_no; |
|
289 |
byte* data; |
|
290 |
ulint len; |
|
291 |
||
292 |
ut_ad(rec_offs_validate(rec, index, offsets)); |
|
293 |
||
294 |
if (index->type & DICT_CLUSTERED) { |
|
295 |
index_type = SYM_CLUST_FIELD_NO; |
|
296 |
} else { |
|
297 |
index_type = SYM_SEC_FIELD_NO; |
|
298 |
}
|
|
299 |
||
300 |
while (column) { |
|
301 |
mem_heap_t* heap = NULL; |
|
302 |
ibool needs_copy; |
|
303 |
||
304 |
field_no = column->field_nos[index_type]; |
|
305 |
||
306 |
if (field_no != ULINT_UNDEFINED) { |
|
307 |
||
308 |
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, |
|
309 |
field_no))) { |
|
310 |
||
311 |
/* Copy an externally stored field to the
|
|
312 |
temporary heap */
|
|
313 |
||
314 |
heap = mem_heap_create(1); |
|
315 |
||
316 |
data = btr_rec_copy_externally_stored_field( |
|
317 |
rec, offsets, field_no, &len, heap); |
|
318 |
||
319 |
ut_a(len != UNIV_SQL_NULL); |
|
320 |
||
321 |
needs_copy = TRUE; |
|
322 |
} else { |
|
323 |
data = rec_get_nth_field(rec, offsets, |
|
324 |
field_no, &len); |
|
325 |
||
326 |
needs_copy = column->copy_val; |
|
327 |
}
|
|
328 |
||
329 |
if (needs_copy) { |
|
330 |
eval_node_copy_and_alloc_val(column, data, |
|
331 |
len); |
|
332 |
} else { |
|
333 |
val = que_node_get_val(column); |
|
334 |
dfield_set_data(val, data, len); |
|
335 |
}
|
|
336 |
||
337 |
if (UNIV_LIKELY_NULL(heap)) { |
|
338 |
mem_heap_free(heap); |
|
339 |
}
|
|
340 |
}
|
|
341 |
||
342 |
column = UT_LIST_GET_NEXT(col_var_list, column); |
|
343 |
}
|
|
344 |
}
|
|
345 |
||
346 |
/*************************************************************************
|
|
347 |
Allocates a prefetch buffer for a column when prefetch is first time done. */
|
|
348 |
static
|
|
349 |
void
|
|
350 |
sel_col_prefetch_buf_alloc( |
|
351 |
/*=======================*/
|
|
352 |
sym_node_t* column) /* in: symbol table node for a column */ |
|
353 |
{
|
|
354 |
sel_buf_t* sel_buf; |
|
355 |
ulint i; |
|
356 |
||
357 |
ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL); |
|
358 |
||
359 |
column->prefetch_buf = mem_alloc(SEL_MAX_N_PREFETCH |
|
360 |
* sizeof(sel_buf_t)); |
|
361 |
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
|
362 |
sel_buf = column->prefetch_buf + i; |
|
363 |
||
364 |
sel_buf->data = NULL; |
|
365 |
||
366 |
sel_buf->val_buf_size = 0; |
|
367 |
}
|
|
368 |
}
|
|
369 |
||
370 |
/*************************************************************************
|
|
371 |
Frees a prefetch buffer for a column, including the dynamically allocated
|
|
372 |
memory for data stored there. */
|
|
373 |
||
374 |
void
|
|
375 |
sel_col_prefetch_buf_free( |
|
376 |
/*======================*/
|
|
377 |
sel_buf_t* prefetch_buf) /* in, own: prefetch buffer */ |
|
378 |
{
|
|
379 |
sel_buf_t* sel_buf; |
|
380 |
ulint i; |
|
381 |
||
382 |
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
|
383 |
sel_buf = prefetch_buf + i; |
|
384 |
||
385 |
if (sel_buf->val_buf_size > 0) { |
|
386 |
||
387 |
mem_free(sel_buf->data); |
|
388 |
}
|
|
389 |
}
|
|
390 |
}
|
|
391 |
||
392 |
/*************************************************************************
|
|
393 |
Pops the column values for a prefetched, cached row from the column prefetch
|
|
394 |
buffers and places them to the val fields in the column nodes. */
|
|
395 |
static
|
|
396 |
void
|
|
397 |
sel_pop_prefetched_row( |
|
398 |
/*===================*/
|
|
399 |
plan_t* plan) /* in: plan node for a table */ |
|
400 |
{
|
|
401 |
sym_node_t* column; |
|
402 |
sel_buf_t* sel_buf; |
|
403 |
dfield_t* val; |
|
404 |
byte* data; |
|
405 |
ulint len; |
|
406 |
ulint val_buf_size; |
|
407 |
||
408 |
ut_ad(plan->n_rows_prefetched > 0); |
|
409 |
||
410 |
column = UT_LIST_GET_FIRST(plan->columns); |
|
411 |
||
412 |
while (column) { |
|
413 |
val = que_node_get_val(column); |
|
414 |
||
415 |
if (!column->copy_val) { |
|
416 |
/* We did not really push any value for the
|
|
417 |
column */
|
|
418 |
||
419 |
ut_ad(!column->prefetch_buf); |
|
420 |
ut_ad(que_node_get_val_buf_size(column) == 0); |
|
421 |
#ifdef UNIV_DEBUG
|
|
422 |
dfield_set_data(val, NULL, 0); |
|
423 |
#endif
|
|
424 |
goto next_col; |
|
425 |
}
|
|
426 |
||
427 |
ut_ad(column->prefetch_buf); |
|
428 |
||
429 |
sel_buf = column->prefetch_buf + plan->first_prefetched; |
|
430 |
||
431 |
data = sel_buf->data; |
|
432 |
len = sel_buf->len; |
|
433 |
val_buf_size = sel_buf->val_buf_size; |
|
434 |
||
435 |
/* We must keep track of the allocated memory for
|
|
436 |
column values to be able to free it later: therefore
|
|
437 |
we swap the values for sel_buf and val */
|
|
438 |
||
439 |
sel_buf->data = dfield_get_data(val); |
|
440 |
sel_buf->len = dfield_get_len(val); |
|
441 |
sel_buf->val_buf_size = que_node_get_val_buf_size(column); |
|
442 |
||
443 |
dfield_set_data(val, data, len); |
|
444 |
que_node_set_val_buf_size(column, val_buf_size); |
|
445 |
next_col: |
|
446 |
column = UT_LIST_GET_NEXT(col_var_list, column); |
|
447 |
}
|
|
448 |
||
449 |
plan->n_rows_prefetched--; |
|
450 |
||
451 |
plan->first_prefetched++; |
|
452 |
}
|
|
453 |
||
454 |
/*************************************************************************
|
|
455 |
Pushes the column values for a prefetched, cached row to the column prefetch
|
|
456 |
buffers from the val fields in the column nodes. */
|
|
457 |
UNIV_INLINE
|
|
458 |
void
|
|
459 |
sel_push_prefetched_row( |
|
460 |
/*====================*/
|
|
461 |
plan_t* plan) /* in: plan node for a table */ |
|
462 |
{
|
|
463 |
sym_node_t* column; |
|
464 |
sel_buf_t* sel_buf; |
|
465 |
dfield_t* val; |
|
466 |
byte* data; |
|
467 |
ulint len; |
|
468 |
ulint pos; |
|
469 |
ulint val_buf_size; |
|
470 |
||
471 |
if (plan->n_rows_prefetched == 0) { |
|
472 |
pos = 0; |
|
473 |
plan->first_prefetched = 0; |
|
474 |
} else { |
|
475 |
pos = plan->n_rows_prefetched; |
|
476 |
||
477 |
/* We have the convention that pushing new rows starts only
|
|
478 |
after the prefetch stack has been emptied: */
|
|
479 |
||
480 |
ut_ad(plan->first_prefetched == 0); |
|
481 |
}
|
|
482 |
||
483 |
plan->n_rows_prefetched++; |
|
484 |
||
485 |
ut_ad(pos < SEL_MAX_N_PREFETCH); |
|
486 |
||
487 |
column = UT_LIST_GET_FIRST(plan->columns); |
|
488 |
||
489 |
while (column) { |
|
490 |
if (!column->copy_val) { |
|
491 |
/* There is no sense to push pointers to database
|
|
492 |
page fields when we do not keep latch on the page! */
|
|
493 |
||
494 |
goto next_col; |
|
495 |
}
|
|
496 |
||
497 |
if (!column->prefetch_buf) { |
|
498 |
/* Allocate a new prefetch buffer */
|
|
499 |
||
500 |
sel_col_prefetch_buf_alloc(column); |
|
501 |
}
|
|
502 |
||
503 |
sel_buf = column->prefetch_buf + pos; |
|
504 |
||
505 |
val = que_node_get_val(column); |
|
506 |
||
507 |
data = dfield_get_data(val); |
|
508 |
len = dfield_get_len(val); |
|
509 |
val_buf_size = que_node_get_val_buf_size(column); |
|
510 |
||
511 |
/* We must keep track of the allocated memory for
|
|
512 |
column values to be able to free it later: therefore
|
|
513 |
we swap the values for sel_buf and val */
|
|
514 |
||
515 |
dfield_set_data(val, sel_buf->data, sel_buf->len); |
|
516 |
que_node_set_val_buf_size(column, sel_buf->val_buf_size); |
|
517 |
||
518 |
sel_buf->data = data; |
|
519 |
sel_buf->len = len; |
|
520 |
sel_buf->val_buf_size = val_buf_size; |
|
521 |
next_col: |
|
522 |
column = UT_LIST_GET_NEXT(col_var_list, column); |
|
523 |
}
|
|
524 |
}
|
|
525 |
||
526 |
/*************************************************************************
|
|
527 |
Builds a previous version of a clustered index record for a consistent read */
|
|
528 |
static
|
|
529 |
ulint
|
|
530 |
row_sel_build_prev_vers( |
|
531 |
/*====================*/
|
|
532 |
/* out: DB_SUCCESS or error code */
|
|
533 |
read_view_t* read_view, /* in: read view */ |
|
534 |
dict_index_t* index, /* in: plan node for table */ |
|
535 |
rec_t* rec, /* in: record in a clustered index */ |
|
536 |
ulint** offsets, /* in/out: offsets returned by |
|
537 |
rec_get_offsets(rec, plan->index) */
|
|
538 |
mem_heap_t** offset_heap, /* in/out: memory heap from which |
|
539 |
the offsets are allocated */
|
|
540 |
mem_heap_t** old_vers_heap, /* out: old version heap to use */ |
|
541 |
rec_t** old_vers, /* out: old version, or NULL if the |
|
542 |
record does not exist in the view:
|
|
543 |
i.e., it was freshly inserted
|
|
544 |
afterwards */
|
|
545 |
mtr_t* mtr) /* in: mtr */ |
|
546 |
{
|
|
547 |
ulint err; |
|
548 |
||
549 |
if (*old_vers_heap) { |
|
550 |
mem_heap_empty(*old_vers_heap); |
|
551 |
} else { |
|
552 |
*old_vers_heap = mem_heap_create(512); |
|
553 |
}
|
|
554 |
||
555 |
err = row_vers_build_for_consistent_read( |
|
556 |
rec, mtr, index, offsets, read_view, offset_heap, |
|
557 |
*old_vers_heap, old_vers); |
|
558 |
return(err); |
|
559 |
}
|
|
560 |
||
561 |
/*************************************************************************
|
|
562 |
Builds the last committed version of a clustered index record for a
|
|
563 |
semi-consistent read. */
|
|
564 |
static
|
|
565 |
ulint
|
|
566 |
row_sel_build_committed_vers_for_mysql( |
|
567 |
/*===================================*/
|
|
568 |
/* out: DB_SUCCESS or error code */
|
|
569 |
dict_index_t* clust_index, /* in: clustered index */ |
|
570 |
row_prebuilt_t* prebuilt, /* in: prebuilt struct */ |
|
571 |
rec_t* rec, /* in: record in a clustered index */ |
|
572 |
ulint** offsets, /* in/out: offsets returned by |
|
573 |
rec_get_offsets(rec, clust_index) */
|
|
574 |
mem_heap_t** offset_heap, /* in/out: memory heap from which |
|
575 |
the offsets are allocated */
|
|
576 |
rec_t** old_vers, /* out: old version, or NULL if the |
|
577 |
record does not exist in the view:
|
|
578 |
i.e., it was freshly inserted
|
|
579 |
afterwards */
|
|
580 |
mtr_t* mtr) /* in: mtr */ |
|
581 |
{
|
|
582 |
ulint err; |
|
583 |
||
584 |
if (prebuilt->old_vers_heap) { |
|
585 |
mem_heap_empty(prebuilt->old_vers_heap); |
|
586 |
} else { |
|
587 |
prebuilt->old_vers_heap = mem_heap_create(200); |
|
588 |
}
|
|
589 |
||
590 |
err = row_vers_build_for_semi_consistent_read( |
|
591 |
rec, mtr, clust_index, offsets, offset_heap, |
|
592 |
prebuilt->old_vers_heap, old_vers); |
|
593 |
return(err); |
|
594 |
}
|
|
595 |
||
596 |
/*************************************************************************
|
|
597 |
Tests the conditions which determine when the index segment we are searching
|
|
598 |
through has been exhausted. */
|
|
599 |
UNIV_INLINE
|
|
600 |
ibool
|
|
601 |
row_sel_test_end_conds( |
|
602 |
/*===================*/
|
|
603 |
/* out: TRUE if row passed the tests */
|
|
604 |
plan_t* plan) /* in: plan for the table; the column values must |
|
605 |
already have been retrieved and the right sides of
|
|
606 |
comparisons evaluated */
|
|
607 |
{
|
|
608 |
func_node_t* cond; |
|
609 |
||
610 |
/* All conditions in end_conds are comparisons of a column to an
|
|
611 |
expression */
|
|
612 |
||
613 |
cond = UT_LIST_GET_FIRST(plan->end_conds); |
|
614 |
||
615 |
while (cond) { |
|
616 |
/* Evaluate the left side of the comparison, i.e., get the
|
|
617 |
column value if there is an indirection */
|
|
618 |
||
619 |
eval_sym(cond->args); |
|
620 |
||
621 |
/* Do the comparison */
|
|
622 |
||
623 |
if (!eval_cmp(cond)) { |
|
624 |
||
625 |
return(FALSE); |
|
626 |
}
|
|
627 |
||
628 |
cond = UT_LIST_GET_NEXT(cond_list, cond); |
|
629 |
}
|
|
630 |
||
631 |
return(TRUE); |
|
632 |
}
|
|
633 |
||
634 |
/*************************************************************************
|
|
635 |
Tests the other conditions. */
|
|
636 |
UNIV_INLINE
|
|
637 |
ibool
|
|
638 |
row_sel_test_other_conds( |
|
639 |
/*=====================*/
|
|
640 |
/* out: TRUE if row passed the tests */
|
|
641 |
plan_t* plan) /* in: plan for the table; the column values must |
|
642 |
already have been retrieved */
|
|
643 |
{
|
|
644 |
func_node_t* cond; |
|
645 |
||
646 |
cond = UT_LIST_GET_FIRST(plan->other_conds); |
|
647 |
||
648 |
while (cond) { |
|
649 |
eval_exp(cond); |
|
650 |
||
651 |
if (!eval_node_get_ibool_val(cond)) { |
|
652 |
||
653 |
return(FALSE); |
|
654 |
}
|
|
655 |
||
656 |
cond = UT_LIST_GET_NEXT(cond_list, cond); |
|
657 |
}
|
|
658 |
||
659 |
return(TRUE); |
|
660 |
}
|
|
661 |
||
662 |
/*************************************************************************
|
|
663 |
Retrieves the clustered index record corresponding to a record in a
|
|
664 |
non-clustered index. Does the necessary locking. */
|
|
665 |
static
|
|
666 |
ulint
|
|
667 |
row_sel_get_clust_rec( |
|
668 |
/*==================*/
|
|
669 |
/* out: DB_SUCCESS or error code */
|
|
670 |
sel_node_t* node, /* in: select_node */ |
|
671 |
plan_t* plan, /* in: plan node for table */ |
|
672 |
rec_t* rec, /* in: record in a non-clustered index */ |
|
673 |
que_thr_t* thr, /* in: query thread */ |
|
674 |
rec_t** out_rec,/* out: clustered record or an old version of |
|
675 |
it, NULL if the old version did not exist
|
|
676 |
in the read view, i.e., it was a fresh
|
|
677 |
inserted version */
|
|
678 |
mtr_t* mtr) /* in: mtr used to get access to the |
|
679 |
non-clustered record; the same mtr is used to
|
|
680 |
access the clustered index */
|
|
681 |
{
|
|
682 |
dict_index_t* index; |
|
683 |
rec_t* clust_rec; |
|
684 |
rec_t* old_vers; |
|
685 |
ulint err; |
|
686 |
mem_heap_t* heap = NULL; |
|
687 |
ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
|
688 |
ulint* offsets = offsets_; |
|
689 |
*offsets_ = (sizeof offsets_) / sizeof *offsets_; |
|
690 |
||
691 |
*out_rec = NULL; |
|
692 |
||
693 |
offsets = rec_get_offsets(rec, |
|
694 |
btr_pcur_get_btr_cur(&plan->pcur)->index, |
|
695 |
offsets, ULINT_UNDEFINED, &heap); |
|
696 |
||
697 |
row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets); |
|
698 |
||
699 |
index = dict_table_get_first_index(plan->table); |
|
700 |
||
701 |
btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE, |
|
702 |
node->latch_mode, &(plan->clust_pcur), |
|
703 |
0, mtr); |
|
704 |
||
705 |
clust_rec = btr_pcur_get_rec(&(plan->clust_pcur)); |
|
706 |
||
707 |
/* Note: only if the search ends up on a non-infimum record is the
|
|
708 |
low_match value the real match to the search tuple */
|
|
709 |
||
710 |
if (!page_rec_is_user_rec(clust_rec) |
|
711 |
|| btr_pcur_get_low_match(&(plan->clust_pcur)) |
|
712 |
< dict_index_get_n_unique(index)) { |
|
713 |
||
714 |
ut_a(rec_get_deleted_flag(rec, |
|
715 |
dict_table_is_comp(plan->table))); |
|
716 |
ut_a(node->read_view); |
|
717 |
||
718 |
/* In a rare case it is possible that no clust rec is found
|
|
719 |
for a delete-marked secondary index record: if in row0umod.c
|
|
720 |
in row_undo_mod_remove_clust_low() we have already removed
|
|
721 |
the clust rec, while purge is still cleaning and removing
|
|
722 |
secondary index records associated with earlier versions of
|
|
723 |
the clustered index record. In that case we know that the
|
|
724 |
clustered index record did not exist in the read view of
|
|
725 |
trx. */
|
|
726 |
||
727 |
goto func_exit; |
|
728 |
}
|
|
729 |
||
730 |
offsets = rec_get_offsets(clust_rec, index, offsets, |
|
731 |
ULINT_UNDEFINED, &heap); |
|
732 |
||
733 |
if (!node->read_view) { |
|
734 |
/* Try to place a lock on the index record */
|
|
735 |
||
736 |
/* If innodb_locks_unsafe_for_binlog option is used
|
|
737 |
or this session is using READ COMMITTED isolation level
|
|
738 |
we lock only the record, i.e., next-key locking is
|
|
739 |
not used. */
|
|
740 |
ulint lock_type; |
|
741 |
trx_t* trx; |
|
742 |
||
743 |
trx = thr_get_trx(thr); |
|
744 |
||
745 |
if (srv_locks_unsafe_for_binlog |
|
746 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) { |
|
747 |
lock_type = LOCK_REC_NOT_GAP; |
|
748 |
} else { |
|
749 |
lock_type = LOCK_ORDINARY; |
|
750 |
}
|
|
751 |
||
752 |
err = lock_clust_rec_read_check_and_lock( |
|
753 |
0, clust_rec, index, offsets, |
|
754 |
node->row_lock_mode, lock_type, thr); |
|
755 |
||
756 |
if (err != DB_SUCCESS) { |
|
757 |
||
758 |
goto err_exit; |
|
759 |
}
|
|
760 |
} else { |
|
761 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
762 |
a previous version of the record */
|
|
763 |
||
764 |
old_vers = NULL; |
|
765 |
||
766 |
if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets, |
|
767 |
node->read_view)) { |
|
768 |
||
769 |
err = row_sel_build_prev_vers( |
|
770 |
node->read_view, index, clust_rec, |
|
771 |
&offsets, &heap, &plan->old_vers_heap, |
|
772 |
&old_vers, mtr); |
|
773 |
||
774 |
if (err != DB_SUCCESS) { |
|
775 |
||
776 |
goto err_exit; |
|
777 |
}
|
|
778 |
||
779 |
clust_rec = old_vers; |
|
780 |
||
781 |
if (clust_rec == NULL) { |
|
782 |
goto func_exit; |
|
783 |
}
|
|
784 |
}
|
|
785 |
||
786 |
/* If we had to go to an earlier version of row or the
|
|
787 |
secondary index record is delete marked, then it may be that
|
|
788 |
the secondary index record corresponding to clust_rec
|
|
789 |
(or old_vers) is not rec; in that case we must ignore
|
|
790 |
such row because in our snapshot rec would not have existed.
|
|
791 |
Remember that from rec we cannot see directly which transaction
|
|
792 |
id corresponds to it: we have to go to the clustered index
|
|
793 |
record. A query where we want to fetch all rows where
|
|
794 |
the secondary index value is in some interval would return
|
|
795 |
a wrong result if we would not drop rows which we come to
|
|
796 |
visit through secondary index records that would not really
|
|
797 |
exist in our snapshot. */
|
|
798 |
||
799 |
if ((old_vers |
|
800 |
|| rec_get_deleted_flag(rec, dict_table_is_comp( |
|
801 |
plan->table))) |
|
802 |
&& !row_sel_sec_rec_is_for_clust_rec(rec, plan->index, |
|
803 |
clust_rec, index)) { |
|
804 |
goto func_exit; |
|
805 |
}
|
|
806 |
}
|
|
807 |
||
808 |
/* Fetch the columns needed in test conditions */
|
|
809 |
||
810 |
row_sel_fetch_columns(index, clust_rec, offsets, |
|
811 |
UT_LIST_GET_FIRST(plan->columns)); |
|
812 |
*out_rec = clust_rec; |
|
813 |
func_exit: |
|
814 |
err = DB_SUCCESS; |
|
815 |
err_exit: |
|
816 |
if (UNIV_LIKELY_NULL(heap)) { |
|
817 |
mem_heap_free(heap); |
|
818 |
}
|
|
819 |
return(err); |
|
820 |
}
|
|
821 |
||
822 |
/*************************************************************************
|
|
823 |
Sets a lock on a record. */
|
|
824 |
UNIV_INLINE
|
|
825 |
ulint
|
|
826 |
sel_set_rec_lock( |
|
827 |
/*=============*/
|
|
828 |
/* out: DB_SUCCESS or error code */
|
|
829 |
rec_t* rec, /* in: record */ |
|
830 |
dict_index_t* index, /* in: index */ |
|
831 |
const ulint* offsets,/* in: rec_get_offsets(rec, index) */ |
|
832 |
ulint mode, /* in: lock mode */ |
|
833 |
ulint type, /* in: LOCK_ORDINARY, LOCK_GAP, or |
|
834 |
LOC_REC_NOT_GAP */
|
|
835 |
que_thr_t* thr) /* in: query thread */ |
|
836 |
{
|
|
837 |
trx_t* trx; |
|
838 |
ulint err; |
|
839 |
||
840 |
trx = thr_get_trx(thr); |
|
841 |
||
842 |
if (UT_LIST_GET_LEN(trx->trx_locks) > 10000) { |
|
843 |
if (buf_LRU_buf_pool_running_out()) { |
|
844 |
||
845 |
return(DB_LOCK_TABLE_FULL); |
|
846 |
}
|
|
847 |
}
|
|
848 |
||
849 |
if (index->type & DICT_CLUSTERED) { |
|
850 |
err = lock_clust_rec_read_check_and_lock( |
|
851 |
0, rec, index, offsets, mode, type, thr); |
|
852 |
} else { |
|
853 |
err = lock_sec_rec_read_check_and_lock( |
|
854 |
0, rec, index, offsets, mode, type, thr); |
|
855 |
}
|
|
856 |
||
857 |
return(err); |
|
858 |
}
|
|
859 |
||
860 |
/*************************************************************************
|
|
861 |
Opens a pcur to a table index. */
|
|
862 |
static
|
|
863 |
void
|
|
864 |
row_sel_open_pcur( |
|
865 |
/*==============*/
|
|
866 |
sel_node_t* node, /* in: select node */ |
|
867 |
plan_t* plan, /* in: table plan */ |
|
868 |
ibool search_latch_locked, |
|
869 |
/* in: TRUE if the thread currently
|
|
870 |
has the search latch locked in
|
|
871 |
s-mode */
|
|
872 |
mtr_t* mtr) /* in: mtr */ |
|
873 |
{
|
|
874 |
dict_index_t* index; |
|
875 |
func_node_t* cond; |
|
876 |
que_node_t* exp; |
|
877 |
ulint n_fields; |
|
878 |
ulint has_search_latch = 0; /* RW_S_LATCH or 0 */ |
|
879 |
ulint i; |
|
880 |
||
881 |
if (search_latch_locked) { |
|
882 |
has_search_latch = RW_S_LATCH; |
|
883 |
}
|
|
884 |
||
885 |
index = plan->index; |
|
886 |
||
887 |
/* Calculate the value of the search tuple: the exact match columns
|
|
888 |
get their expressions evaluated when we evaluate the right sides of
|
|
889 |
end_conds */
|
|
890 |
||
891 |
cond = UT_LIST_GET_FIRST(plan->end_conds); |
|
892 |
||
893 |
while (cond) { |
|
894 |
eval_exp(que_node_get_next(cond->args)); |
|
895 |
||
896 |
cond = UT_LIST_GET_NEXT(cond_list, cond); |
|
897 |
}
|
|
898 |
||
899 |
if (plan->tuple) { |
|
900 |
n_fields = dtuple_get_n_fields(plan->tuple); |
|
901 |
||
902 |
if (plan->n_exact_match < n_fields) { |
|
903 |
/* There is a non-exact match field which must be
|
|
904 |
evaluated separately */
|
|
905 |
||
906 |
eval_exp(plan->tuple_exps[n_fields - 1]); |
|
907 |
}
|
|
908 |
||
909 |
for (i = 0; i < n_fields; i++) { |
|
910 |
exp = plan->tuple_exps[i]; |
|
911 |
||
912 |
dfield_copy_data(dtuple_get_nth_field(plan->tuple, i), |
|
913 |
que_node_get_val(exp)); |
|
914 |
}
|
|
915 |
||
916 |
/* Open pcur to the index */
|
|
917 |
||
918 |
btr_pcur_open_with_no_init(index, plan->tuple, plan->mode, |
|
919 |
node->latch_mode, &(plan->pcur), |
|
920 |
has_search_latch, mtr); |
|
921 |
} else { |
|
922 |
/* Open the cursor to the start or the end of the index
|
|
923 |
(FALSE: no init) */
|
|
924 |
||
925 |
btr_pcur_open_at_index_side(plan->asc, index, node->latch_mode, |
|
926 |
&(plan->pcur), FALSE, mtr); |
|
927 |
}
|
|
928 |
||
929 |
ut_ad(plan->n_rows_prefetched == 0); |
|
930 |
ut_ad(plan->n_rows_fetched == 0); |
|
931 |
ut_ad(plan->cursor_at_end == FALSE); |
|
932 |
||
933 |
plan->pcur_is_open = TRUE; |
|
934 |
}
|
|
935 |
||
936 |
/*************************************************************************
|
|
937 |
Restores a stored pcur position to a table index. */
|
|
938 |
static
|
|
939 |
ibool
|
|
940 |
row_sel_restore_pcur_pos( |
|
941 |
/*=====================*/
|
|
942 |
/* out: TRUE if the cursor should be moved to
|
|
943 |
the next record after we return from this
|
|
944 |
function (moved to the previous, in the case
|
|
945 |
of a descending cursor) without processing
|
|
946 |
again the current cursor record */
|
|
947 |
sel_node_t* node, /* in: select node */ |
|
948 |
plan_t* plan, /* in: table plan */ |
|
949 |
mtr_t* mtr) /* in: mtr */ |
|
950 |
{
|
|
951 |
ibool equal_position; |
|
952 |
ulint relative_position; |
|
953 |
||
954 |
ut_ad(!plan->cursor_at_end); |
|
955 |
||
956 |
relative_position = btr_pcur_get_rel_pos(&(plan->pcur)); |
|
957 |
||
958 |
equal_position = btr_pcur_restore_position(node->latch_mode, |
|
959 |
&(plan->pcur), mtr); |
|
960 |
||
961 |
/* If the cursor is traveling upwards, and relative_position is
|
|
962 |
||
963 |
(1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock
|
|
964 |
yet on the successor of the page infimum;
|
|
965 |
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
966 |
first record GREATER than the predecessor of a page supremum; we have
|
|
967 |
not yet processed the cursor record: no need to move the cursor to the
|
|
968 |
next record;
|
|
969 |
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
970 |
last record LESS or EQUAL to the old stored user record; (a) if
|
|
971 |
equal_position is FALSE, this means that the cursor is now on a record
|
|
972 |
less than the old user record, and we must move to the next record;
|
|
973 |
(b) if equal_position is TRUE, then if
|
|
974 |
plan->stored_cursor_rec_processed is TRUE, we must move to the next
|
|
975 |
record, else there is no need to move the cursor. */
|
|
976 |
||
977 |
if (plan->asc) { |
|
978 |
if (relative_position == BTR_PCUR_ON) { |
|
979 |
||
980 |
if (equal_position) { |
|
981 |
||
982 |
return(plan->stored_cursor_rec_processed); |
|
983 |
}
|
|
984 |
||
985 |
return(TRUE); |
|
986 |
}
|
|
987 |
||
988 |
ut_ad(relative_position == BTR_PCUR_AFTER |
|
989 |
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
|
990 |
||
991 |
return(FALSE); |
|
992 |
}
|
|
993 |
||
994 |
/* If the cursor is traveling downwards, and relative_position is
|
|
995 |
||
996 |
(1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on
|
|
997 |
the last record LESS than the successor of a page infimum; we have not
|
|
998 |
processed the cursor record: no need to move the cursor;
|
|
999 |
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
1000 |
first record GREATER than the predecessor of a page supremum; we have
|
|
1001 |
processed the cursor record: we should move the cursor to the previous
|
|
1002 |
record;
|
|
1003 |
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
1004 |
last record LESS or EQUAL to the old stored user record; (a) if
|
|
1005 |
equal_position is FALSE, this means that the cursor is now on a record
|
|
1006 |
less than the old user record, and we need not move to the previous
|
|
1007 |
record; (b) if equal_position is TRUE, then if
|
|
1008 |
plan->stored_cursor_rec_processed is TRUE, we must move to the previous
|
|
1009 |
record, else there is no need to move the cursor. */
|
|
1010 |
||
1011 |
if (relative_position == BTR_PCUR_BEFORE |
|
1012 |
|| relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) { |
|
1013 |
||
1014 |
return(FALSE); |
|
1015 |
}
|
|
1016 |
||
1017 |
if (relative_position == BTR_PCUR_ON) { |
|
1018 |
||
1019 |
if (equal_position) { |
|
1020 |
||
1021 |
return(plan->stored_cursor_rec_processed); |
|
1022 |
}
|
|
1023 |
||
1024 |
return(FALSE); |
|
1025 |
}
|
|
1026 |
||
1027 |
ut_ad(relative_position == BTR_PCUR_AFTER |
|
1028 |
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
|
1029 |
||
1030 |
return(TRUE); |
|
1031 |
}
|
|
1032 |
||
1033 |
/*************************************************************************
|
|
1034 |
Resets a plan cursor to a closed state. */
|
|
1035 |
UNIV_INLINE
|
|
1036 |
void
|
|
1037 |
plan_reset_cursor( |
|
1038 |
/*==============*/
|
|
1039 |
plan_t* plan) /* in: plan */ |
|
1040 |
{
|
|
1041 |
plan->pcur_is_open = FALSE; |
|
1042 |
plan->cursor_at_end = FALSE; |
|
1043 |
plan->n_rows_fetched = 0; |
|
1044 |
plan->n_rows_prefetched = 0; |
|
1045 |
}
|
|
1046 |
||
1047 |
/*************************************************************************
|
|
1048 |
Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
1049 |
using the hash index if possible (not always). */
|
|
1050 |
static
|
|
1051 |
ulint
|
|
1052 |
row_sel_try_search_shortcut( |
|
1053 |
/*========================*/
|
|
1054 |
/* out: SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
1055 |
sel_node_t* node, /* in: select node for a consistent read */ |
|
1056 |
plan_t* plan, /* in: plan for a unique search in clustered |
|
1057 |
index */
|
|
1058 |
mtr_t* mtr) /* in: mtr */ |
|
1059 |
{
|
|
1060 |
dict_index_t* index; |
|
1061 |
rec_t* rec; |
|
1062 |
mem_heap_t* heap = NULL; |
|
1063 |
ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
|
1064 |
ulint* offsets = offsets_; |
|
1065 |
ulint ret; |
|
1066 |
*offsets_ = (sizeof offsets_) / sizeof *offsets_; |
|
1067 |
||
1068 |
index = plan->index; |
|
1069 |
||
1070 |
ut_ad(node->read_view); |
|
1071 |
ut_ad(plan->unique_search); |
|
1072 |
ut_ad(!plan->must_get_clust); |
|
1073 |
#ifdef UNIV_SYNC_DEBUG
|
|
1074 |
ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_SHARED)); |
|
1075 |
#endif /* UNIV_SYNC_DEBUG */ |
|
1076 |
||
1077 |
row_sel_open_pcur(node, plan, TRUE, mtr); |
|
1078 |
||
1079 |
rec = btr_pcur_get_rec(&(plan->pcur)); |
|
1080 |
||
1081 |
if (!page_rec_is_user_rec(rec)) { |
|
1082 |
||
1083 |
return(SEL_RETRY); |
|
1084 |
}
|
|
1085 |
||
1086 |
ut_ad(plan->mode == PAGE_CUR_GE); |
|
1087 |
||
1088 |
/* As the cursor is now placed on a user record after a search with
|
|
1089 |
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
1090 |
fields in the user record matched to the search tuple */
|
|
1091 |
||
1092 |
if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) { |
|
1093 |
||
1094 |
return(SEL_EXHAUSTED); |
|
1095 |
}
|
|
1096 |
||
1097 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
1098 |
a previous version of the record */
|
|
1099 |
||
1100 |
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); |
|
1101 |
||
1102 |
if (index->type & DICT_CLUSTERED) { |
|
1103 |
if (!lock_clust_rec_cons_read_sees(rec, index, offsets, |
|
1104 |
node->read_view)) { |
|
1105 |
ret = SEL_RETRY; |
|
1106 |
goto func_exit; |
|
1107 |
}
|
|
1108 |
} else if (!lock_sec_rec_cons_read_sees(rec, index, node->read_view)) { |
|
1109 |
||
1110 |
ret = SEL_RETRY; |
|
1111 |
goto func_exit; |
|
1112 |
}
|
|
1113 |
||
1114 |
/* Test deleted flag. Fetch the columns needed in test conditions. */
|
|
1115 |
||
1116 |
row_sel_fetch_columns(index, rec, offsets, |
|
1117 |
UT_LIST_GET_FIRST(plan->columns)); |
|
1118 |
||
1119 |
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) { |
|
1120 |
||
1121 |
ret = SEL_EXHAUSTED; |
|
1122 |
goto func_exit; |
|
1123 |
}
|
|
1124 |
||
1125 |
/* Test the rest of search conditions */
|
|
1126 |
||
1127 |
if (!row_sel_test_other_conds(plan)) { |
|
1128 |
||
1129 |
ret = SEL_EXHAUSTED; |
|
1130 |
goto func_exit; |
|
1131 |
}
|
|
1132 |
||
1133 |
ut_ad(plan->pcur.latch_mode == node->latch_mode); |
|
1134 |
||
1135 |
plan->n_rows_fetched++; |
|
1136 |
ret = SEL_FOUND; |
|
1137 |
func_exit: |
|
1138 |
if (UNIV_LIKELY_NULL(heap)) { |
|
1139 |
mem_heap_free(heap); |
|
1140 |
}
|
|
1141 |
return(ret); |
|
1142 |
}
|
|
1143 |
||
1144 |
/*************************************************************************
|
|
1145 |
Performs a select step. */
|
|
1146 |
static
|
|
1147 |
ulint
|
|
1148 |
row_sel( |
|
1149 |
/*====*/
|
|
1150 |
/* out: DB_SUCCESS or error code */
|
|
1151 |
sel_node_t* node, /* in: select node */ |
|
1152 |
que_thr_t* thr) /* in: query thread */ |
|
1153 |
{
|
|
1154 |
dict_index_t* index; |
|
1155 |
plan_t* plan; |
|
1156 |
mtr_t mtr; |
|
1157 |
ibool moved; |
|
1158 |
rec_t* rec; |
|
1159 |
rec_t* old_vers; |
|
1160 |
rec_t* clust_rec; |
|
1161 |
ibool search_latch_locked; |
|
1162 |
ibool consistent_read; |
|
1163 |
||
1164 |
/* The following flag becomes TRUE when we are doing a
|
|
1165 |
consistent read from a non-clustered index and we must look
|
|
1166 |
at the clustered index to find out the previous delete mark
|
|
1167 |
state of the non-clustered record: */
|
|
1168 |
||
1169 |
ibool cons_read_requires_clust_rec = FALSE; |
|
1170 |
ulint cost_counter = 0; |
|
1171 |
ibool cursor_just_opened; |
|
1172 |
ibool must_go_to_next; |
|
1173 |
ibool leaf_contains_updates = FALSE; |
|
1174 |
/* TRUE if select_will_do_update is
|
|
1175 |
TRUE and the current clustered index
|
|
1176 |
leaf page has been updated during
|
|
1177 |
the current mtr: mtr must be committed
|
|
1178 |
at the same time as the leaf x-latch
|
|
1179 |
is released */
|
|
1180 |
ibool mtr_has_extra_clust_latch = FALSE; |
|
1181 |
/* TRUE if the search was made using
|
|
1182 |
a non-clustered index, and we had to
|
|
1183 |
access the clustered record: now &mtr
|
|
1184 |
contains a clustered index latch, and
|
|
1185 |
&mtr must be committed before we move
|
|
1186 |
to the next non-clustered record */
|
|
1187 |
ulint found_flag; |
|
1188 |
ulint err; |
|
1189 |
mem_heap_t* heap = NULL; |
|
1190 |
ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
|
1191 |
ulint* offsets = offsets_; |
|
1192 |
*offsets_ = (sizeof offsets_) / sizeof *offsets_; |
|
1193 |
||
1194 |
ut_ad(thr->run_node == node); |
|
1195 |
||
1196 |
search_latch_locked = FALSE; |
|
1197 |
||
1198 |
if (node->read_view) { |
|
1199 |
/* In consistent reads, we try to do with the hash index and
|
|
1200 |
not to use the buffer page get. This is to reduce memory bus
|
|
1201 |
load resulting from semaphore operations. The search latch
|
|
1202 |
will be s-locked when we access an index with a unique search
|
|
1203 |
condition, but not locked when we access an index with a
|
|
1204 |
less selective search condition. */
|
|
1205 |
||
1206 |
consistent_read = TRUE; |
|
1207 |
} else { |
|
1208 |
consistent_read = FALSE; |
|
1209 |
}
|
|
1210 |
||
1211 |
table_loop: |
|
1212 |
/* TABLE LOOP
|
|
1213 |
----------
|
|
1214 |
This is the outer major loop in calculating a join. We come here when
|
|
1215 |
node->fetch_table changes, and after adding a row to aggregate totals
|
|
1216 |
and, of course, when this function is called. */
|
|
1217 |
||
1218 |
ut_ad(leaf_contains_updates == FALSE); |
|
1219 |
ut_ad(mtr_has_extra_clust_latch == FALSE); |
|
1220 |
||
1221 |
plan = sel_node_get_nth_plan(node, node->fetch_table); |
|
1222 |
index = plan->index; |
|
1223 |
||
1224 |
if (plan->n_rows_prefetched > 0) { |
|
1225 |
sel_pop_prefetched_row(plan); |
|
1226 |
||
1227 |
goto next_table_no_mtr; |
|
1228 |
}
|
|
1229 |
||
1230 |
if (plan->cursor_at_end) { |
|
1231 |
/* The cursor has already reached the result set end: no more
|
|
1232 |
rows to process for this table cursor, as also the prefetch
|
|
1233 |
stack was empty */
|
|
1234 |
||
1235 |
ut_ad(plan->pcur_is_open); |
|
1236 |
||
1237 |
goto table_exhausted_no_mtr; |
|
1238 |
}
|
|
1239 |
||
1240 |
/* Open a cursor to index, or restore an open cursor position */
|
|
1241 |
||
1242 |
mtr_start(&mtr); |
|
1243 |
||
1244 |
if (consistent_read && plan->unique_search && !plan->pcur_is_open |
|
1245 |
&& !plan->must_get_clust |
|
1246 |
&& !plan->table->big_rows) { |
|
1247 |
if (!search_latch_locked) { |
|
1248 |
rw_lock_s_lock(&btr_search_latch); |
|
1249 |
||
1250 |
search_latch_locked = TRUE; |
|
1251 |
} else if (btr_search_latch.writer_is_wait_ex) { |
|
1252 |
||
1253 |
/* There is an x-latch request waiting: release the
|
|
1254 |
s-latch for a moment; as an s-latch here is often
|
|
1255 |
kept for some 10 searches before being released,
|
|
1256 |
a waiting x-latch request would block other threads
|
|
1257 |
from acquiring an s-latch for a long time, lowering
|
|
1258 |
performance significantly in multiprocessors. */
|
|
1259 |
||
1260 |
rw_lock_s_unlock(&btr_search_latch); |
|
1261 |
rw_lock_s_lock(&btr_search_latch); |
|
1262 |
}
|
|
1263 |
||
1264 |
found_flag = row_sel_try_search_shortcut(node, plan, &mtr); |
|
1265 |
||
1266 |
if (found_flag == SEL_FOUND) { |
|
1267 |
||
1268 |
goto next_table; |
|
1269 |
||
1270 |
} else if (found_flag == SEL_EXHAUSTED) { |
|
1271 |
||
1272 |
goto table_exhausted; |
|
1273 |
}
|
|
1274 |
||
1275 |
ut_ad(found_flag == SEL_RETRY); |
|
1276 |
||
1277 |
plan_reset_cursor(plan); |
|
1278 |
||
1279 |
mtr_commit(&mtr); |
|
1280 |
mtr_start(&mtr); |
|
1281 |
}
|
|
1282 |
||
1283 |
if (search_latch_locked) { |
|
1284 |
rw_lock_s_unlock(&btr_search_latch); |
|
1285 |
||
1286 |
search_latch_locked = FALSE; |
|
1287 |
}
|
|
1288 |
||
1289 |
if (!plan->pcur_is_open) { |
|
1290 |
/* Evaluate the expressions to build the search tuple and
|
|
1291 |
open the cursor */
|
|
1292 |
||
1293 |
row_sel_open_pcur(node, plan, search_latch_locked, &mtr); |
|
1294 |
||
1295 |
cursor_just_opened = TRUE; |
|
1296 |
||
1297 |
/* A new search was made: increment the cost counter */
|
|
1298 |
cost_counter++; |
|
1299 |
} else { |
|
1300 |
/* Restore pcur position to the index */
|
|
1301 |
||
1302 |
must_go_to_next = row_sel_restore_pcur_pos(node, plan, &mtr); |
|
1303 |
||
1304 |
cursor_just_opened = FALSE; |
|
1305 |
||
1306 |
if (must_go_to_next) { |
|
1307 |
/* We have already processed the cursor record: move
|
|
1308 |
to the next */
|
|
1309 |
||
1310 |
goto next_rec; |
|
1311 |
}
|
|
1312 |
}
|
|
1313 |
||
1314 |
rec_loop: |
|
1315 |
/* RECORD LOOP
|
|
1316 |
-----------
|
|
1317 |
In this loop we use pcur and try to fetch a qualifying row, and
|
|
1318 |
also fill the prefetch buffer for this table if n_rows_fetched has
|
|
1319 |
exceeded a threshold. While we are inside this loop, the following
|
|
1320 |
holds:
|
|
1321 |
(1) &mtr is started,
|
|
1322 |
(2) pcur is positioned and open.
|
|
1323 |
||
1324 |
NOTE that if cursor_just_opened is TRUE here, it means that we came
|
|
1325 |
to this point right after row_sel_open_pcur. */
|
|
1326 |
||
1327 |
ut_ad(mtr_has_extra_clust_latch == FALSE); |
|
1328 |
||
1329 |
rec = btr_pcur_get_rec(&(plan->pcur)); |
|
1330 |
||
1331 |
/* PHASE 1: Set a lock if specified */
|
|
1332 |
||
1333 |
if (!node->asc && cursor_just_opened |
|
1334 |
&& !page_rec_is_supremum(rec)) { |
|
1335 |
||
1336 |
/* When we open a cursor for a descending search, we must set
|
|
1337 |
a next-key lock on the successor record: otherwise it would
|
|
1338 |
be possible to insert new records next to the cursor position,
|
|
1339 |
and it might be that these new records should appear in the
|
|
1340 |
search result set, resulting in the phantom problem. */
|
|
1341 |
||
1342 |
if (!consistent_read) { |
|
1343 |
||
1344 |
/* If innodb_locks_unsafe_for_binlog option is used
|
|
1345 |
or this session is using READ COMMITTED isolation
|
|
1346 |
level, we lock only the record, i.e., next-key
|
|
1347 |
locking is not used. */
|
|
1348 |
||
1349 |
rec_t* next_rec = page_rec_get_next(rec); |
|
1350 |
ulint lock_type; |
|
1351 |
trx_t* trx; |
|
1352 |
||
1353 |
trx = thr_get_trx(thr); |
|
1354 |
||
1355 |
offsets = rec_get_offsets(next_rec, index, offsets, |
|
1356 |
ULINT_UNDEFINED, &heap); |
|
1357 |
||
1358 |
if (srv_locks_unsafe_for_binlog |
|
1359 |
|| trx->isolation_level |
|
1360 |
== TRX_ISO_READ_COMMITTED) { |
|
1361 |
||
1362 |
if (page_rec_is_supremum(next_rec)) { |
|
1363 |
||
1364 |
goto skip_lock; |
|
1365 |
}
|
|
1366 |
||
1367 |
lock_type = LOCK_REC_NOT_GAP; |
|
1368 |
} else { |
|
1369 |
lock_type = LOCK_ORDINARY; |
|
1370 |
}
|
|
1371 |
||
1372 |
err = sel_set_rec_lock(next_rec, index, offsets, |
|
1373 |
node->row_lock_mode, |
|
1374 |
lock_type, thr); |
|
1375 |
||
1376 |
if (err != DB_SUCCESS) { |
|
1377 |
/* Note that in this case we will store in pcur
|
|
1378 |
the PREDECESSOR of the record we are waiting
|
|
1379 |
the lock for */
|
|
1380 |
||
1381 |
goto lock_wait_or_error; |
|
1382 |
}
|
|
1383 |
}
|
|
1384 |
}
|
|
1385 |
||
1386 |
skip_lock: |
|
1387 |
if (page_rec_is_infimum(rec)) { |
|
1388 |
||
1389 |
/* The infimum record on a page cannot be in the result set,
|
|
1390 |
and neither can a record lock be placed on it: we skip such
|
|
1391 |
a record. We also increment the cost counter as we may have
|
|
1392 |
processed yet another page of index. */
|
|
1393 |
||
1394 |
cost_counter++; |
|
1395 |
||
1396 |
goto next_rec; |
|
1397 |
}
|
|
1398 |
||
1399 |
if (!consistent_read) { |
|
1400 |
/* Try to place a lock on the index record */
|
|
1401 |
||
1402 |
/* If innodb_locks_unsafe_for_binlog option is used
|
|
1403 |
or this session is using READ COMMITTED isolation level,
|
|
1404 |
we lock only the record, i.e., next-key locking is
|
|
1405 |
not used. */
|
|
1406 |
||
1407 |
ulint lock_type; |
|
1408 |
trx_t* trx; |
|
1409 |
||
1410 |
offsets = rec_get_offsets(rec, index, offsets, |
|
1411 |
ULINT_UNDEFINED, &heap); |
|
1412 |
||
1413 |
trx = thr_get_trx(thr); |
|
1414 |
||
1415 |
if (srv_locks_unsafe_for_binlog |
|
1416 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) { |
|
1417 |
||
1418 |
if (page_rec_is_supremum(rec)) { |
|
1419 |
||
1420 |
goto next_rec; |
|
1421 |
}
|
|
1422 |
||
1423 |
lock_type = LOCK_REC_NOT_GAP; |
|
1424 |
} else { |
|
1425 |
lock_type = LOCK_ORDINARY; |
|
1426 |
}
|
|
1427 |
||
1428 |
err = sel_set_rec_lock(rec, index, offsets, |
|
1429 |
node->row_lock_mode, lock_type, thr); |
|
1430 |
||
1431 |
if (err != DB_SUCCESS) { |
|
1432 |
||
1433 |
goto lock_wait_or_error; |
|
1434 |
}
|
|
1435 |
}
|
|
1436 |
||
1437 |
if (page_rec_is_supremum(rec)) { |
|
1438 |
||
1439 |
/* A page supremum record cannot be in the result set: skip
|
|
1440 |
it now when we have placed a possible lock on it */
|
|
1441 |
||
1442 |
goto next_rec; |
|
1443 |
}
|
|
1444 |
||
1445 |
ut_ad(page_rec_is_user_rec(rec)); |
|
1446 |
||
1447 |
if (cost_counter > SEL_COST_LIMIT) { |
|
1448 |
||
1449 |
/* Now that we have placed the necessary locks, we can stop
|
|
1450 |
for a while and store the cursor position; NOTE that if we
|
|
1451 |
would store the cursor position BEFORE placing a record lock,
|
|
1452 |
it might happen that the cursor would jump over some records
|
|
1453 |
that another transaction could meanwhile insert adjacent to
|
|
1454 |
the cursor: this would result in the phantom problem. */
|
|
1455 |
||
1456 |
goto stop_for_a_while; |
|
1457 |
}
|
|
1458 |
||
1459 |
/* PHASE 2: Check a mixed index mix id if needed */
|
|
1460 |
||
1461 |
if (plan->unique_search && cursor_just_opened) { |
|
1462 |
||
1463 |
ut_ad(plan->mode == PAGE_CUR_GE); |
|
1464 |
||
1465 |
/* As the cursor is now placed on a user record after a search
|
|
1466 |
with the mode PAGE_CUR_GE, the up_match field in the cursor
|
|
1467 |
tells how many fields in the user record matched to the search
|
|
1468 |
tuple */
|
|
1469 |
||
1470 |
if (btr_pcur_get_up_match(&(plan->pcur)) |
|
1471 |
< plan->n_exact_match) { |
|
1472 |
goto table_exhausted; |
|
1473 |
}
|
|
1474 |
||
1475 |
/* Ok, no need to test end_conds or mix id */
|
|
1476 |
||
1477 |
}
|
|
1478 |
||
1479 |
/* We are ready to look at a possible new index entry in the result
|
|
1480 |
set: the cursor is now placed on a user record */
|
|
1481 |
||
1482 |
/* PHASE 3: Get previous version in a consistent read */
|
|
1483 |
||
1484 |
cons_read_requires_clust_rec = FALSE; |
|
1485 |
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); |
|
1486 |
||
1487 |
if (consistent_read) { |
|
1488 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
1489 |
a previous version of the record */
|
|
1490 |
||
1491 |
if (index->type & DICT_CLUSTERED) { |
|
1492 |
||
1493 |
if (!lock_clust_rec_cons_read_sees(rec, index, offsets, |
|
1494 |
node->read_view)) { |
|
1495 |
||
1496 |
err = row_sel_build_prev_vers( |
|
1497 |
node->read_view, index, rec, |
|
1498 |
&offsets, &heap, &plan->old_vers_heap, |
|
1499 |
&old_vers, &mtr); |
|
1500 |
||
1501 |
if (err != DB_SUCCESS) { |
|
1502 |
||
1503 |
goto lock_wait_or_error; |
|
1504 |
}
|
|
1505 |
||
1506 |
if (old_vers == NULL) { |
|
1507 |
offsets = rec_get_offsets( |
|
1508 |
rec, index, offsets, |
|
1509 |
ULINT_UNDEFINED, &heap); |
|
1510 |
row_sel_fetch_columns( |
|
1511 |
index, rec, offsets, |
|
1512 |
UT_LIST_GET_FIRST( |
|
1513 |
plan->columns)); |
|
1514 |
||
1515 |
if (!row_sel_test_end_conds(plan)) { |
|
1516 |
||
1517 |
goto table_exhausted; |
|
1518 |
}
|
|
1519 |
||
1520 |
goto next_rec; |
|
1521 |
}
|
|
1522 |
||
1523 |
rec = old_vers; |
|
1524 |
}
|
|
1525 |
} else if (!lock_sec_rec_cons_read_sees(rec, index, |
|
1526 |
node->read_view)) { |
|
1527 |
cons_read_requires_clust_rec = TRUE; |
|
1528 |
}
|
|
1529 |
}
|
|
1530 |
||
1531 |
/* PHASE 4: Test search end conditions and deleted flag */
|
|
1532 |
||
1533 |
/* Fetch the columns needed in test conditions */
|
|
1534 |
||
1535 |
row_sel_fetch_columns(index, rec, offsets, |
|
1536 |
UT_LIST_GET_FIRST(plan->columns)); |
|
1537 |
||
1538 |
/* Test the selection end conditions: these can only contain columns
|
|
1539 |
which already are found in the index, even though the index might be
|
|
1540 |
non-clustered */
|
|
1541 |
||
1542 |
if (plan->unique_search && cursor_just_opened) { |
|
1543 |
||
1544 |
/* No test necessary: the test was already made above */
|
|
1545 |
||
1546 |
} else if (!row_sel_test_end_conds(plan)) { |
|
1547 |
||
1548 |
goto table_exhausted; |
|
1549 |
}
|
|
1550 |
||
1551 |
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)) |
|
1552 |
&& !cons_read_requires_clust_rec) { |
|
1553 |
||
1554 |
/* The record is delete marked: we can skip it if this is
|
|
1555 |
not a consistent read which might see an earlier version
|
|
1556 |
of a non-clustered index record */
|
|
1557 |
||
1558 |
if (plan->unique_search) { |
|
1559 |
||
1560 |
goto table_exhausted; |
|
1561 |
}
|
|
1562 |
||
1563 |
goto next_rec; |
|
1564 |
}
|
|
1565 |
||
1566 |
/* PHASE 5: Get the clustered index record, if needed and if we did
|
|
1567 |
not do the search using the clustered index */
|
|
1568 |
||
1569 |
if (plan->must_get_clust || cons_read_requires_clust_rec) { |
|
1570 |
||
1571 |
/* It was a non-clustered index and we must fetch also the
|
|
1572 |
clustered index record */
|
|
1573 |
||
1574 |
err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec, |
|
1575 |
&mtr); |
|
1576 |
mtr_has_extra_clust_latch = TRUE; |
|
1577 |
||
1578 |
if (err != DB_SUCCESS) { |
|
1579 |
||
1580 |
goto lock_wait_or_error; |
|
1581 |
}
|
|
1582 |
||
1583 |
/* Retrieving the clustered record required a search:
|
|
1584 |
increment the cost counter */
|
|
1585 |
||
1586 |
cost_counter++; |
|
1587 |
||
1588 |
if (clust_rec == NULL) { |
|
1589 |
/* The record did not exist in the read view */
|
|
1590 |
ut_ad(consistent_read); |
|
1591 |
||
1592 |
goto next_rec; |
|
1593 |
}
|
|
1594 |
||
1595 |
if (rec_get_deleted_flag(clust_rec, |
|
1596 |
dict_table_is_comp(plan->table))) { |
|
1597 |
||
1598 |
/* The record is delete marked: we can skip it */
|
|
1599 |
||
1600 |
goto next_rec; |
|
1601 |
}
|
|
1602 |
||
1603 |
if (node->can_get_updated) { |
|
1604 |
||
1605 |
btr_pcur_store_position(&(plan->clust_pcur), &mtr); |
|
1606 |
}
|
|
1607 |
}
|
|
1608 |
||
1609 |
/* PHASE 6: Test the rest of search conditions */
|
|
1610 |
||
1611 |
if (!row_sel_test_other_conds(plan)) { |
|
1612 |
||
1613 |
if (plan->unique_search) { |
|
1614 |
||
1615 |
goto table_exhausted; |
|
1616 |
}
|
|
1617 |
||
1618 |
goto next_rec; |
|
1619 |
}
|
|
1620 |
||
1621 |
/* PHASE 7: We found a new qualifying row for the current table; push
|
|
1622 |
the row if prefetch is on, or move to the next table in the join */
|
|
1623 |
||
1624 |
plan->n_rows_fetched++; |
|
1625 |
||
1626 |
ut_ad(plan->pcur.latch_mode == node->latch_mode); |
|
1627 |
||
1628 |
if (node->select_will_do_update) { |
|
1629 |
/* This is a searched update and we can do the update in-place,
|
|
1630 |
saving CPU time */
|
|
1631 |
||
1632 |
row_upd_in_place_in_select(node, thr, &mtr); |
|
1633 |
||
1634 |
leaf_contains_updates = TRUE; |
|
1635 |
||
1636 |
/* When the database is in the online backup mode, the number
|
|
1637 |
of log records for a single mtr should be small: increment the
|
|
1638 |
cost counter to ensure it */
|
|
1639 |
||
1640 |
cost_counter += 1 + (SEL_COST_LIMIT / 8); |
|
1641 |
||
1642 |
if (plan->unique_search) { |
|
1643 |
||
1644 |
goto table_exhausted; |
|
1645 |
}
|
|
1646 |
||
1647 |
goto next_rec; |
|
1648 |
}
|
|
1649 |
||
1650 |
if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT) |
|
1651 |
|| plan->unique_search || plan->no_prefetch |
|
1652 |
|| plan->table->big_rows) { |
|
1653 |
||
1654 |
/* No prefetch in operation: go to the next table */
|
|
1655 |
||
1656 |
goto next_table; |
|
1657 |
}
|
|
1658 |
||
1659 |
sel_push_prefetched_row(plan); |
|
1660 |
||
1661 |
if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) { |
|
1662 |
||
1663 |
/* The prefetch buffer is now full */
|
|
1664 |
||
1665 |
sel_pop_prefetched_row(plan); |
|
1666 |
||
1667 |
goto next_table; |
|
1668 |
}
|
|
1669 |
||
1670 |
next_rec: |
|
1671 |
ut_ad(!search_latch_locked); |
|
1672 |
||
1673 |
if (mtr_has_extra_clust_latch) { |
|
1674 |
||
1675 |
/* We must commit &mtr if we are moving to the next
|
|
1676 |
non-clustered index record, because we could break the
|
|
1677 |
latching order if we would access a different clustered
|
|
1678 |
index page right away without releasing the previous. */
|
|
1679 |
||
1680 |
goto commit_mtr_for_a_while; |
|
1681 |
}
|
|
1682 |
||
1683 |
if (leaf_contains_updates |
|
1684 |
&& btr_pcur_is_after_last_on_page(&(plan->pcur), &mtr)) { |
|
1685 |
||
1686 |
/* We must commit &mtr if we are moving to a different page,
|
|
1687 |
because we have done updates to the x-latched leaf page, and
|
|
1688 |
the latch would be released in btr_pcur_move_to_next, without
|
|
1689 |
&mtr getting committed there */
|
|
1690 |
||
1691 |
ut_ad(node->asc); |
|
1692 |
||
1693 |
goto commit_mtr_for_a_while; |
|
1694 |
}
|
|
1695 |
||
1696 |
if (node->asc) { |
|
1697 |
moved = btr_pcur_move_to_next(&(plan->pcur), &mtr); |
|
1698 |
} else { |
|
1699 |
moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr); |
|
1700 |
}
|
|
1701 |
||
1702 |
if (!moved) { |
|
1703 |
||
1704 |
goto table_exhausted; |
|
1705 |
}
|
|
1706 |
||
1707 |
cursor_just_opened = FALSE; |
|
1708 |
||
1709 |
/* END OF RECORD LOOP
|
|
1710 |
------------------ */
|
|
1711 |
goto rec_loop; |
|
1712 |
||
1713 |
next_table: |
|
1714 |
/* We found a record which satisfies the conditions: we can move to
|
|
1715 |
the next table or return a row in the result set */
|
|
1716 |
||
1717 |
ut_ad(btr_pcur_is_on_user_rec(&(plan->pcur), &mtr)); |
|
1718 |
||
1719 |
if (plan->unique_search && !node->can_get_updated) { |
|
1720 |
||
1721 |
plan->cursor_at_end = TRUE; |
|
1722 |
} else { |
|
1723 |
ut_ad(!search_latch_locked); |
|
1724 |
||
1725 |
plan->stored_cursor_rec_processed = TRUE; |
|
1726 |
||
1727 |
btr_pcur_store_position(&(plan->pcur), &mtr); |
|
1728 |
}
|
|
1729 |
||
1730 |
mtr_commit(&mtr); |
|
1731 |
||
1732 |
leaf_contains_updates = FALSE; |
|
1733 |
mtr_has_extra_clust_latch = FALSE; |
|
1734 |
||
1735 |
next_table_no_mtr: |
|
1736 |
/* If we use 'goto' to this label, it means that the row was popped
|
|
1737 |
from the prefetched rows stack, and &mtr is already committed */
|
|
1738 |
||
1739 |
if (node->fetch_table + 1 == node->n_tables) { |
|
1740 |
||
1741 |
sel_eval_select_list(node); |
|
1742 |
||
1743 |
if (node->is_aggregate) { |
|
1744 |
||
1745 |
goto table_loop; |
|
1746 |
}
|
|
1747 |
||
1748 |
sel_assign_into_var_values(node->into_list, node); |
|
1749 |
||
1750 |
thr->run_node = que_node_get_parent(node); |
|
1751 |
||
1752 |
if (search_latch_locked) { |
|
1753 |
rw_lock_s_unlock(&btr_search_latch); |
|
1754 |
}
|
|
1755 |
||
1756 |
err = DB_SUCCESS; |
|
1757 |
goto func_exit; |
|
1758 |
}
|
|
1759 |
||
1760 |
node->fetch_table++; |
|
1761 |
||
1762 |
/* When we move to the next table, we first reset the plan cursor:
|
|
1763 |
we do not care about resetting it when we backtrack from a table */
|
|
1764 |
||
1765 |
plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table)); |
|
1766 |
||
1767 |
goto table_loop; |
|
1768 |
||
1769 |
table_exhausted: |
|
1770 |
/* The table cursor pcur reached the result set end: backtrack to the
|
|
1771 |
previous table in the join if we do not have cached prefetched rows */
|
|
1772 |
||
1773 |
plan->cursor_at_end = TRUE; |
|
1774 |
||
1775 |
mtr_commit(&mtr); |
|
1776 |
||
1777 |
leaf_contains_updates = FALSE; |
|
1778 |
mtr_has_extra_clust_latch = FALSE; |
|
1779 |
||
1780 |
if (plan->n_rows_prefetched > 0) { |
|
1781 |
/* The table became exhausted during a prefetch */
|
|
1782 |
||
1783 |
sel_pop_prefetched_row(plan); |
|
1784 |
||
1785 |
goto next_table_no_mtr; |
|
1786 |
}
|
|
1787 |
||
1788 |
table_exhausted_no_mtr: |
|
1789 |
if (node->fetch_table == 0) { |
|
1790 |
err = DB_SUCCESS; |
|
1791 |
||
1792 |
if (node->is_aggregate && !node->aggregate_already_fetched) { |
|
1793 |
||
1794 |
node->aggregate_already_fetched = TRUE; |
|
1795 |
||
1796 |
sel_assign_into_var_values(node->into_list, node); |
|
1797 |
||
1798 |
thr->run_node = que_node_get_parent(node); |
|
1799 |
||
1800 |
if (search_latch_locked) { |
|
1801 |
rw_lock_s_unlock(&btr_search_latch); |
|
1802 |
}
|
|
1803 |
||
1804 |
goto func_exit; |
|
1805 |
}
|
|
1806 |
||
1807 |
node->state = SEL_NODE_NO_MORE_ROWS; |
|
1808 |
||
1809 |
thr->run_node = que_node_get_parent(node); |
|
1810 |
||
1811 |
if (search_latch_locked) { |
|
1812 |
rw_lock_s_unlock(&btr_search_latch); |
|
1813 |
}
|
|
1814 |
||
1815 |
goto func_exit; |
|
1816 |
}
|
|
1817 |
||
1818 |
node->fetch_table--; |
|
1819 |
||
1820 |
goto table_loop; |
|
1821 |
||
1822 |
stop_for_a_while: |
|
1823 |
/* Return control for a while to que_run_threads, so that runaway
|
|
1824 |
queries can be canceled. NOTE that when we come here, we must, in a
|
|
1825 |
locking read, have placed the necessary (possibly waiting request)
|
|
1826 |
record lock on the cursor record or its successor: when we reposition
|
|
1827 |
the cursor, this record lock guarantees that nobody can meanwhile have
|
|
1828 |
inserted new records which should have appeared in the result set,
|
|
1829 |
which would result in the phantom problem. */
|
|
1830 |
||
1831 |
ut_ad(!search_latch_locked); |
|
1832 |
||
1833 |
plan->stored_cursor_rec_processed = FALSE; |
|
1834 |
btr_pcur_store_position(&(plan->pcur), &mtr); |
|
1835 |
||
1836 |
mtr_commit(&mtr); |
|
1837 |
||
1838 |
#ifdef UNIV_SYNC_DEBUG
|
|
1839 |
ut_ad(sync_thread_levels_empty_gen(TRUE)); |
|
1840 |
#endif /* UNIV_SYNC_DEBUG */ |
|
1841 |
err = DB_SUCCESS; |
|
1842 |
goto func_exit; |
|
1843 |
||
1844 |
commit_mtr_for_a_while: |
|
1845 |
/* Stores the cursor position and commits &mtr; this is used if
|
|
1846 |
&mtr may contain latches which would break the latching order if
|
|
1847 |
&mtr would not be committed and the latches released. */
|
|
1848 |
||
1849 |
plan->stored_cursor_rec_processed = TRUE; |
|
1850 |
||
1851 |
ut_ad(!search_latch_locked); |
|
1852 |
btr_pcur_store_position(&(plan->pcur), &mtr); |
|
1853 |
||
1854 |
mtr_commit(&mtr); |
|
1855 |
||
1856 |
leaf_contains_updates = FALSE; |
|
1857 |
mtr_has_extra_clust_latch = FALSE; |
|
1858 |
||
1859 |
#ifdef UNIV_SYNC_DEBUG
|
|
1860 |
ut_ad(sync_thread_levels_empty_gen(TRUE)); |
|
1861 |
#endif /* UNIV_SYNC_DEBUG */ |
|
1862 |
||
1863 |
goto table_loop; |
|
1864 |
||
1865 |
lock_wait_or_error: |
|
1866 |
/* See the note at stop_for_a_while: the same holds for this case */
|
|
1867 |
||
1868 |
ut_ad(!btr_pcur_is_before_first_on_page(&(plan->pcur), &mtr) |
|
1869 |
|| !node->asc); |
|
1870 |
ut_ad(!search_latch_locked); |
|
1871 |
||
1872 |
plan->stored_cursor_rec_processed = FALSE; |
|
1873 |
btr_pcur_store_position(&(plan->pcur), &mtr); |
|
1874 |
||
1875 |
mtr_commit(&mtr); |
|
1876 |
||
1877 |
#ifdef UNIV_SYNC_DEBUG
|
|
1878 |
ut_ad(sync_thread_levels_empty_gen(TRUE)); |
|
1879 |
#endif /* UNIV_SYNC_DEBUG */ |
|
1880 |
||
1881 |
func_exit: |
|
1882 |
if (UNIV_LIKELY_NULL(heap)) { |
|
1883 |
mem_heap_free(heap); |
|
1884 |
}
|
|
1885 |
return(err); |
|
1886 |
}
|
|
1887 |
||
1888 |
/**************************************************************************
|
|
1889 |
Performs a select step. This is a high-level function used in SQL execution
|
|
1890 |
graphs. */
|
|
1891 |
||
1892 |
que_thr_t* |
|
1893 |
row_sel_step( |
|
1894 |
/*=========*/
|
|
1895 |
/* out: query thread to run next or NULL */
|
|
1896 |
que_thr_t* thr) /* in: query thread */ |
|
1897 |
{
|
|
1898 |
ulint i_lock_mode; |
|
1899 |
sym_node_t* table_node; |
|
1900 |
sel_node_t* node; |
|
1901 |
ulint err; |
|
1902 |
||
1903 |
ut_ad(thr); |
|
1904 |
||
1905 |
node = thr->run_node; |
|
1906 |
||
1907 |
ut_ad(que_node_get_type(node) == QUE_NODE_SELECT); |
|
1908 |
||
1909 |
/* If this is a new time this node is executed (or when execution
|
|
1910 |
resumes after wait for a table intention lock), set intention locks
|
|
1911 |
on the tables, or assign a read view */
|
|
1912 |
||
1913 |
if (node->into_list && (thr->prev_node == que_node_get_parent(node))) { |
|
1914 |
||
1915 |
node->state = SEL_NODE_OPEN; |
|
1916 |
}
|
|
1917 |
||
1918 |
if (node->state == SEL_NODE_OPEN) { |
|
1919 |
||
1920 |
/* It may be that the current session has not yet started
|
|
1921 |
its transaction, or it has been committed: */
|
|
1922 |
||
1923 |
trx_start_if_not_started(thr_get_trx(thr)); |
|
1924 |
||
1925 |
plan_reset_cursor(sel_node_get_nth_plan(node, 0)); |
|
1926 |
||
1927 |
if (node->consistent_read) { |
|
1928 |
/* Assign a read view for the query */
|
|
1929 |
node->read_view = trx_assign_read_view( |
|
1930 |
thr_get_trx(thr)); |
|
1931 |
} else { |
|
1932 |
if (node->set_x_locks) { |
|
1933 |
i_lock_mode = LOCK_IX; |
|
1934 |
} else { |
|
1935 |
i_lock_mode = LOCK_IS; |
|
1936 |
}
|
|
1937 |
||
1938 |
table_node = node->table_list; |
|
1939 |
||
1940 |
while (table_node) { |
|
1941 |
err = lock_table(0, table_node->table, |
|
1942 |
i_lock_mode, thr); |
|
1943 |
if (err != DB_SUCCESS) { |
|
1944 |
thr_get_trx(thr)->error_state = err; |
|
1945 |
||
1946 |
return(NULL); |
|
1947 |
}
|
|
1948 |
||
1949 |
table_node = que_node_get_next(table_node); |
|
1950 |
}
|
|
1951 |
}
|
|
1952 |
||
1953 |
/* If this is an explicit cursor, copy stored procedure
|
|
1954 |
variable values, so that the values cannot change between
|
|
1955 |
fetches (currently, we copy them also for non-explicit
|
|
1956 |
cursors) */
|
|
1957 |
||
1958 |
if (node->explicit_cursor |
|
1959 |
&& UT_LIST_GET_FIRST(node->copy_variables)) { |
|
1960 |
||
1961 |
row_sel_copy_input_variable_vals(node); |
|
1962 |
}
|
|
1963 |
||
1964 |
node->state = SEL_NODE_FETCH; |
|
1965 |
node->fetch_table = 0; |
|
1966 |
||
1967 |
if (node->is_aggregate) { |
|
1968 |
/* Reset the aggregate total values */
|
|
1969 |
sel_reset_aggregate_vals(node); |
|
1970 |
}
|
|
1971 |
}
|
|
1972 |
||
1973 |
err = row_sel(node, thr); |
|
1974 |
||
1975 |
/* NOTE! if queries are parallelized, the following assignment may
|
|
1976 |
have problems; the assignment should be made only if thr is the
|
|
1977 |
only top-level thr in the graph: */
|
|
1978 |
||
1979 |
thr->graph->last_sel_node = node; |
|
1980 |
||
1981 |
if (err != DB_SUCCESS) { |
|
1982 |
thr_get_trx(thr)->error_state = err; |
|
1983 |
||
1984 |
return(NULL); |
|
1985 |
}
|
|
1986 |
||
1987 |
return(thr); |
|
1988 |
}
|
|
1989 |
||
1990 |
/**************************************************************************
|
|
1991 |
Performs a fetch for a cursor. */
|
|
1992 |
||
1993 |
que_thr_t* |
|
1994 |
fetch_step( |
|
1995 |
/*=======*/
|
|
1996 |
/* out: query thread to run next or NULL */
|
|
1997 |
que_thr_t* thr) /* in: query thread */ |
|
1998 |
{
|
|
1999 |
sel_node_t* sel_node; |
|
2000 |
fetch_node_t* node; |
|
2001 |
||
2002 |
ut_ad(thr); |
|
2003 |
||
2004 |
node = thr->run_node; |
|
2005 |
sel_node = node->cursor_def; |
|
2006 |
||
2007 |
ut_ad(que_node_get_type(node) == QUE_NODE_FETCH); |
|
2008 |
||
2009 |
if (thr->prev_node != que_node_get_parent(node)) { |
|
2010 |
||
2011 |
if (sel_node->state != SEL_NODE_NO_MORE_ROWS) { |
|
2012 |
||
2013 |
if (node->into_list) { |
|
2014 |
sel_assign_into_var_values(node->into_list, |
|
2015 |
sel_node); |
|
2016 |
} else { |
|
2017 |
void* ret = (*node->func->func)( |
|
2018 |
sel_node, node->func->arg); |
|
2019 |
||
2020 |
if (!ret) { |
|
2021 |
sel_node->state |
|
2022 |
= SEL_NODE_NO_MORE_ROWS; |
|
2023 |
}
|
|
2024 |
}
|
|
2025 |
}
|
|
2026 |
||
2027 |
thr->run_node = que_node_get_parent(node); |
|
2028 |
||
2029 |
return(thr); |
|
2030 |
}
|
|
2031 |
||
2032 |
/* Make the fetch node the parent of the cursor definition for
|
|
2033 |
the time of the fetch, so that execution knows to return to this
|
|
2034 |
fetch node after a row has been selected or we know that there is
|
|
2035 |
no row left */
|
|
2036 |
||
2037 |
sel_node->common.parent = node; |
|
2038 |
||
2039 |
if (sel_node->state == SEL_NODE_CLOSED) { |
|
2040 |
fprintf(stderr, |
|
2041 |
"InnoDB: Error: fetch called on a closed cursor\n"); |
|
2042 |
||
2043 |
thr_get_trx(thr)->error_state = DB_ERROR; |
|
2044 |
||
2045 |
return(NULL); |
|
2046 |
}
|
|
2047 |
||
2048 |
thr->run_node = sel_node; |
|
2049 |
||
2050 |
return(thr); |
|
2051 |
}
|
|
2052 |
||
2053 |
/********************************************************************
|
|
2054 |
Sample callback function for fetch that prints each row.*/
|
|
2055 |
||
2056 |
void* |
|
2057 |
row_fetch_print( |
|
2058 |
/*============*/
|
|
2059 |
/* out: always returns non-NULL */
|
|
2060 |
void* row, /* in: sel_node_t* */ |
|
2061 |
void* user_arg) /* in: not used */ |
|
2062 |
{
|
|
2063 |
sel_node_t* node = row; |
|
2064 |
que_node_t* exp; |
|
2065 |
ulint i = 0; |
|
2066 |
||
2067 |
UT_NOT_USED(user_arg); |
|
2068 |
||
2069 |
fprintf(stderr, "row_fetch_print: row %p\n", row); |
|
2070 |
||
2071 |
exp = node->select_list; |
|
2072 |
||
2073 |
while (exp) { |
|
2074 |
dfield_t* dfield = que_node_get_val(exp); |
|
2075 |
dtype_t* type = dfield_get_type(dfield); |
|
2076 |
||
2077 |
fprintf(stderr, " column %lu:\n", (ulong)i); |
|
2078 |
||
2079 |
dtype_print(type); |
|
2080 |
fprintf(stderr, "\n"); |
|
2081 |
||
2082 |
if (dfield_get_len(dfield) != UNIV_SQL_NULL) { |
|
2083 |
ut_print_buf(stderr, dfield_get_data(dfield), |
|
2084 |
dfield_get_len(dfield)); |
|
2085 |
} else { |
|
2086 |
fprintf(stderr, " <NULL>;"); |
|
2087 |
}
|
|
2088 |
||
2089 |
fprintf(stderr, "\n"); |
|
2090 |
||
2091 |
exp = que_node_get_next(exp); |
|
2092 |
i++; |
|
2093 |
}
|
|
2094 |
||
2095 |
return((void*)42); |
|
2096 |
}
|
|
2097 |
||
2098 |
/********************************************************************
|
|
2099 |
Callback function for fetch that stores an unsigned 4 byte integer to the
|
|
2100 |
location pointed. The column's type must be DATA_INT, DATA_UNSIGNED, length
|
|
2101 |
= 4. */
|
|
2102 |
||
2103 |
void* |
|
2104 |
row_fetch_store_uint4( |
|
2105 |
/*==================*/
|
|
2106 |
/* out: always returns NULL */
|
|
2107 |
void* row, /* in: sel_node_t* */ |
|
2108 |
void* user_arg) /* in: data pointer */ |
|
2109 |
{
|
|
2110 |
sel_node_t* node = row; |
|
2111 |
ib_uint32_t* val = user_arg; |
|
2112 |
ulint tmp; |
|
2113 |
||
2114 |
dfield_t* dfield = que_node_get_val(node->select_list); |
|
2115 |
dtype_t* type = dfield_get_type(dfield); |
|
2116 |
ulint len = dfield_get_len(dfield); |
|
2117 |
||
2118 |
ut_a(dtype_get_mtype(type) == DATA_INT); |
|
2119 |
ut_a(dtype_get_prtype(type) & DATA_UNSIGNED); |
|
2120 |
ut_a(len == 4); |
|
2121 |
||
2122 |
tmp = mach_read_from_4(dfield_get_data(dfield)); |
|
2123 |
*val = (ib_uint32_t) tmp; |
|
2124 |
||
2125 |
return(NULL); |
|
2126 |
}
|
|
2127 |
||
2128 |
/***************************************************************
|
|
2129 |
Prints a row in a select result. */
|
|
2130 |
||
2131 |
que_thr_t* |
|
2132 |
row_printf_step( |
|
2133 |
/*============*/
|
|
2134 |
/* out: query thread to run next or NULL */
|
|
2135 |
que_thr_t* thr) /* in: query thread */ |
|
2136 |
{
|
|
2137 |
row_printf_node_t* node; |
|
2138 |
sel_node_t* sel_node; |
|
2139 |
que_node_t* arg; |
|
2140 |
||
2141 |
ut_ad(thr); |
|
2142 |
||
2143 |
node = thr->run_node; |
|
2144 |
||
2145 |
sel_node = node->sel_node; |
|
2146 |
||
2147 |
ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF); |
|
2148 |
||
2149 |
if (thr->prev_node == que_node_get_parent(node)) { |
|
2150 |
||
2151 |
/* Reset the cursor */
|
|
2152 |
sel_node->state = SEL_NODE_OPEN; |
|
2153 |
||
2154 |
/* Fetch next row to print */
|
|
2155 |
||
2156 |
thr->run_node = sel_node; |
|
2157 |
||
2158 |
return(thr); |
|
2159 |
}
|
|
2160 |
||
2161 |
if (sel_node->state != SEL_NODE_FETCH) { |
|
2162 |
||
2163 |
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); |
|
2164 |
||
2165 |
/* No more rows to print */
|
|
2166 |
||
2167 |
thr->run_node = que_node_get_parent(node); |
|
2168 |
||
2169 |
return(thr); |
|
2170 |
}
|
|
2171 |
||
2172 |
arg = sel_node->select_list; |
|
2173 |
||
2174 |
while (arg) { |
|
2175 |
dfield_print_also_hex(que_node_get_val(arg)); |
|
2176 |
||
2177 |
fputs(" ::: ", stderr); |
|
2178 |
||
2179 |
arg = que_node_get_next(arg); |
|
2180 |
}
|
|
2181 |
||
2182 |
putc('\n', stderr); |
|
2183 |
||
2184 |
/* Fetch next row to print */
|
|
2185 |
||
2186 |
thr->run_node = sel_node; |
|
2187 |
||
2188 |
return(thr); |
|
2189 |
}
|
|
2190 |
||
2191 |
/********************************************************************
|
|
2192 |
Converts a key value stored in MySQL format to an Innobase dtuple. The last
|
|
2193 |
field of the key value may be just a prefix of a fixed length field: hence
|
|
2194 |
the parameter key_len. But currently we do not allow search keys where the
|
|
2195 |
last field is only a prefix of the full key field len and print a warning if
|
|
2196 |
such appears. A counterpart of this function is
|
|
2197 |
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
2198 |
||
2199 |
void
|
|
2200 |
row_sel_convert_mysql_key_to_innobase( |
|
2201 |
/*==================================*/
|
|
2202 |
dtuple_t* tuple, /* in: tuple where to build; |
|
2203 |
NOTE: we assume that the type info
|
|
2204 |
in the tuple is already according
|
|
2205 |
to index! */
|
|
2206 |
byte* buf, /* in: buffer to use in field |
|
2207 |
conversions */
|
|
2208 |
ulint buf_len, /* in: buffer length */ |
|
2209 |
dict_index_t* index, /* in: index of the key value */ |
|
2210 |
byte* key_ptr, /* in: MySQL key value */ |
|
2211 |
ulint key_len, /* in: MySQL key value length */ |
|
2212 |
trx_t* trx) /* in: transaction */ |
|
2213 |
{
|
|
2214 |
byte* original_buf = buf; |
|
2215 |
byte* original_key_ptr = key_ptr; |
|
2216 |
dict_field_t* field; |
|
2217 |
dfield_t* dfield; |
|
2218 |
ulint data_offset; |
|
2219 |
ulint data_len; |
|
2220 |
ulint data_field_len; |
|
2221 |
ibool is_null; |
|
2222 |
byte* key_end; |
|
2223 |
ulint n_fields = 0; |
|
2224 |
ulint type; |
|
2225 |
||
2226 |
/* For documentation of the key value storage format in MySQL, see
|
|
2227 |
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
2228 |
||
2229 |
key_end = key_ptr + key_len; |
|
2230 |
||
2231 |
/* Permit us to access any field in the tuple (ULINT_MAX): */
|
|
2232 |
||
2233 |
dtuple_set_n_fields(tuple, ULINT_MAX); |
|
2234 |
||
2235 |
dfield = dtuple_get_nth_field(tuple, 0); |
|
2236 |
field = dict_index_get_nth_field(index, 0); |
|
2237 |
||
2238 |
if (dfield_get_type(dfield)->mtype == DATA_SYS) { |
|
2239 |
/* A special case: we are looking for a position in the
|
|
2240 |
generated clustered index which InnoDB automatically added
|
|
2241 |
to a table with no primary key: the first and the only
|
|
2242 |
ordering column is ROW_ID which InnoDB stored to the key_ptr
|
|
2243 |
buffer. */
|
|
2244 |
||
2245 |
ut_a(key_len == DATA_ROW_ID_LEN); |
|
2246 |
||
2247 |
dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN); |
|
2248 |
||
2249 |
dtuple_set_n_fields(tuple, 1); |
|
2250 |
||
2251 |
return; |
|
2252 |
}
|
|
2253 |
||
2254 |
while (key_ptr < key_end) { |
|
2255 |
||
2256 |
ut_a(field->col->mtype == dfield_get_type(dfield)->mtype); |
|
2257 |
||
2258 |
data_offset = 0; |
|
2259 |
is_null = FALSE; |
|
2260 |
||
2261 |
if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) { |
|
2262 |
/* The first byte in the field tells if this is
|
|
2263 |
an SQL NULL value */
|
|
2264 |
||
2265 |
data_offset = 1; |
|
2266 |
||
2267 |
if (*key_ptr != 0) { |
|
2268 |
dfield_set_data(dfield, NULL, UNIV_SQL_NULL); |
|
2269 |
||
2270 |
is_null = TRUE; |
|
2271 |
}
|
|
2272 |
}
|
|
2273 |
||
2274 |
type = dfield_get_type(dfield)->mtype; |
|
2275 |
||
2276 |
/* Calculate data length and data field total length */
|
|
2277 |
||
2278 |
if (type == DATA_BLOB) { |
|
2279 |
/* The key field is a column prefix of a BLOB or
|
|
2280 |
TEXT */
|
|
2281 |
||
2282 |
ut_a(field->prefix_len > 0); |
|
2283 |
||
2284 |
/* MySQL stores the actual data length to the first 2
|
|
2285 |
bytes after the optional SQL NULL marker byte. The
|
|
2286 |
storage format is little-endian, that is, the most
|
|
2287 |
significant byte at a higher address. In UTF-8, MySQL
|
|
2288 |
seems to reserve field->prefix_len bytes for
|
|
2289 |
storing this field in the key value buffer, even
|
|
2290 |
though the actual value only takes data_len bytes
|
|
2291 |
from the start. */
|
|
2292 |
||
2293 |
data_len = key_ptr[data_offset] |
|
2294 |
+ 256 * key_ptr[data_offset + 1]; |
|
2295 |
data_field_len = data_offset + 2 + field->prefix_len; |
|
2296 |
||
2297 |
data_offset += 2; |
|
2298 |
||
2299 |
/* Now that we know the length, we store the column
|
|
2300 |
value like it would be a fixed char field */
|
|
2301 |
||
2302 |
} else if (field->prefix_len > 0) { |
|
2303 |
/* Looks like MySQL pads unused end bytes in the
|
|
2304 |
prefix with space. Therefore, also in UTF-8, it is ok
|
|
2305 |
to compare with a prefix containing full prefix_len
|
|
2306 |
bytes, and no need to take at most prefix_len / 3
|
|
2307 |
UTF-8 characters from the start.
|
|
2308 |
If the prefix is used as the upper end of a LIKE
|
|
2309 |
'abc%' query, then MySQL pads the end with chars
|
|
2310 |
0xff. TODO: in that case does it any harm to compare
|
|
2311 |
with the full prefix_len bytes. How do characters
|
|
2312 |
0xff in UTF-8 behave? */
|
|
2313 |
||
2314 |
data_len = field->prefix_len; |
|
2315 |
data_field_len = data_offset + data_len; |
|
2316 |
} else { |
|
2317 |
data_len = dfield_get_type(dfield)->len; |
|
2318 |
data_field_len = data_offset + data_len; |
|
2319 |
}
|
|
2320 |
||
2321 |
if (dtype_get_mysql_type(dfield_get_type(dfield)) |
|
2322 |
== DATA_MYSQL_TRUE_VARCHAR |
|
2323 |
&& dfield_get_type(dfield)->mtype != DATA_INT) { |
|
2324 |
/* In a MySQL key value format, a true VARCHAR is
|
|
2325 |
always preceded by 2 bytes of a length field.
|
|
2326 |
dfield_get_type(dfield)->len returns the maximum
|
|
2327 |
'payload' len in bytes. That does not include the
|
|
2328 |
2 bytes that tell the actual data length.
|
|
2329 |
||
2330 |
We added the check != DATA_INT to make sure we do
|
|
2331 |
not treat MySQL ENUM or SET as a true VARCHAR! */
|
|
2332 |
||
2333 |
data_len += 2; |
|
2334 |
data_field_len += 2; |
|
2335 |
}
|
|
2336 |
||
2337 |
/* Storing may use at most data_len bytes of buf */
|
|
2338 |
||
2339 |
if (!is_null) { |
|
2340 |
row_mysql_store_col_in_innobase_format( |
|
2341 |
dfield, buf, |
|
2342 |
FALSE, /* MySQL key value format col */ |
|
2343 |
key_ptr + data_offset, data_len, |
|
2344 |
dict_table_is_comp(index->table)); |
|
2345 |
buf += data_len; |
|
2346 |
}
|
|
2347 |
||
2348 |
key_ptr += data_field_len; |
|
2349 |
||
2350 |
if (key_ptr > key_end) { |
|
2351 |
/* The last field in key was not a complete key field
|
|
2352 |
but a prefix of it.
|
|
2353 |
||
2354 |
Print a warning about this! HA_READ_PREFIX_LAST does
|
|
2355 |
not currently work in InnoDB with partial-field key
|
|
2356 |
value prefixes. Since MySQL currently uses a padding
|
|
2357 |
trick to calculate LIKE 'abc%' type queries there
|
|
2358 |
should never be partial-field prefixes in searches. */
|
|
2359 |
||
2360 |
ut_print_timestamp(stderr); |
|
2361 |
||
2362 |
fputs(" InnoDB: Warning: using a partial-field" |
|
2363 |
" key prefix in search.\n" |
|
2364 |
"InnoDB: ", stderr); |
|
2365 |
dict_index_name_print(stderr, trx, index); |
|
2366 |
fprintf(stderr, ". Last data field length %lu bytes,\n" |
|
2367 |
"InnoDB: key ptr now exceeds"
|
|
2368 |
" key end by %lu bytes.\n" |
|
2369 |
"InnoDB: Key value in the MySQL format:\n", |
|
2370 |
(ulong) data_field_len, |
|
2371 |
(ulong) (key_ptr - key_end)); |
|
2372 |
fflush(stderr); |
|
2373 |
ut_print_buf(stderr, original_key_ptr, key_len); |
|
2374 |
fprintf(stderr, "\n"); |
|
2375 |
||
2376 |
if (!is_null) { |
|
2377 |
dfield->len -= (ulint)(key_ptr - key_end); |
|
2378 |
}
|
|
2379 |
}
|
|
2380 |
||
2381 |
n_fields++; |
|
2382 |
field++; |
|
2383 |
dfield++; |
|
2384 |
}
|
|
2385 |
||
2386 |
ut_a(buf <= original_buf + buf_len); |
|
2387 |
||
2388 |
/* We set the length of tuple to n_fields: we assume that the memory
|
|
2389 |
area allocated for it is big enough (usually bigger than n_fields). */
|
|
2390 |
||
2391 |
dtuple_set_n_fields(tuple, n_fields); |
|
2392 |
}
|
|
2393 |
||
2394 |
/******************************************************************
|
|
2395 |
Stores the row id to the prebuilt struct. */
|
|
2396 |
static
|
|
2397 |
void
|
|
2398 |
row_sel_store_row_id_to_prebuilt( |
|
2399 |
/*=============================*/
|
|
2400 |
row_prebuilt_t* prebuilt, /* in: prebuilt */ |
|
2401 |
rec_t* index_rec, /* in: record */ |
|
2402 |
dict_index_t* index, /* in: index of the record */ |
|
2403 |
const ulint* offsets) /* in: rec_get_offsets |
|
2404 |
(index_rec, index) */
|
|
2405 |
{
|
|
2406 |
byte* data; |
|
2407 |
ulint len; |
|
2408 |
||
2409 |
ut_ad(rec_offs_validate(index_rec, index, offsets)); |
|
2410 |
||
2411 |
data = rec_get_nth_field( |
|
2412 |
index_rec, offsets, |
|
2413 |
dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len); |
|
2414 |
||
2415 |
if (len != DATA_ROW_ID_LEN) { |
|
2416 |
fprintf(stderr, |
|
2417 |
"InnoDB: Error: Row id field is"
|
|
2418 |
" wrong length %lu in ", (ulong) len); |
|
2419 |
dict_index_name_print(stderr, prebuilt->trx, index); |
|
2420 |
fprintf(stderr, "\n" |
|
2421 |
"InnoDB: Field number %lu, record:\n", |
|
2422 |
(ulong) dict_index_get_sys_col_pos(index, |
|
2423 |
DATA_ROW_ID)); |
|
2424 |
rec_print_new(stderr, index_rec, offsets); |
|
2425 |
putc('\n', stderr); |
|
2426 |
ut_error; |
|
2427 |
}
|
|
2428 |
||
2429 |
ut_memcpy(prebuilt->row_id, data, len); |
|
2430 |
}
|
|
2431 |
||
2432 |
/******************************************************************
|
|
2433 |
Stores a non-SQL-NULL field in the MySQL format. The counterpart of this
|
|
2434 |
function is row_mysql_store_col_in_innobase_format() in row0mysql.c. */
|
|
2435 |
static
|
|
2436 |
void
|
|
2437 |
row_sel_field_store_in_mysql_format( |
|
2438 |
/*================================*/
|
|
2439 |
byte* dest, /* in/out: buffer where to store; NOTE that BLOBs |
|
2440 |
are not in themselves stored here: the caller must
|
|
2441 |
allocate and copy the BLOB into buffer before, and pass
|
|
2442 |
the pointer to the BLOB in 'data' */
|
|
2443 |
const mysql_row_templ_t* templ, /* in: MySQL column template. |
|
2444 |
Its following fields are referenced:
|
|
2445 |
type, is_unsigned, mysql_col_len, mbminlen, mbmaxlen */
|
|
2446 |
byte* data, /* in: data to store */ |
|
2447 |
ulint len) /* in: length of the data */ |
|
2448 |
{
|
|
2449 |
byte* ptr; |
|
2450 |
byte* field_end; |
|
2451 |
byte* pad_ptr; |
|
2452 |
||
2453 |
ut_ad(len != UNIV_SQL_NULL); |
|
2454 |
||
2455 |
if (templ->type == DATA_INT) { |
|
2456 |
/* Convert integer data from Innobase to a little-endian
|
|
2457 |
format, sign bit restored to normal */
|
|
2458 |
||
2459 |
ptr = dest + len; |
|
2460 |
||
2461 |
for (;;) { |
|
2462 |
ptr--; |
|
2463 |
*ptr = *data; |
|
2464 |
if (ptr == dest) { |
|
2465 |
break; |
|
2466 |
}
|
|
2467 |
data++; |
|
2468 |
}
|
|
2469 |
||
2470 |
if (!templ->is_unsigned) { |
|
2471 |
dest[len - 1] = (byte) (dest[len - 1] ^ 128); |
|
2472 |
}
|
|
2473 |
||
2474 |
ut_ad(templ->mysql_col_len == len); |
|
2475 |
} else if (templ->type == DATA_VARCHAR |
|
2476 |
|| templ->type == DATA_VARMYSQL |
|
2477 |
|| templ->type == DATA_BINARY) { |
|
2478 |
||
2479 |
field_end = dest + templ->mysql_col_len; |
|
2480 |
||
2481 |
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) { |
|
2482 |
/* This is a >= 5.0.3 type true VARCHAR. Store the
|
|
2483 |
length of the data to the first byte or the first
|
|
2484 |
two bytes of dest. */
|
|
2485 |
||
2486 |
dest = row_mysql_store_true_var_len( |
|
2487 |
dest, len, templ->mysql_length_bytes); |
|
2488 |
}
|
|
2489 |
||
2490 |
/* Copy the actual data */
|
|
2491 |
ut_memcpy(dest, data, len); |
|
2492 |
||
2493 |
/* Pad with trailing spaces. We pad with spaces also the
|
|
2494 |
unused end of a >= 5.0.3 true VARCHAR column, just in case
|
|
2495 |
MySQL expects its contents to be deterministic. */
|
|
2496 |
||
2497 |
pad_ptr = dest + len; |
|
2498 |
||
2499 |
ut_ad(templ->mbminlen <= templ->mbmaxlen); |
|
2500 |
||
2501 |
/* We handle UCS2 charset strings differently. */
|
|
2502 |
if (templ->mbminlen == 2) { |
|
2503 |
/* A space char is two bytes, 0x0020 in UCS2 */
|
|
2504 |
||
2505 |
if (len & 1) { |
|
2506 |
/* A 0x20 has been stripped from the column.
|
|
2507 |
Pad it back. */
|
|
2508 |
||
2509 |
if (pad_ptr < field_end) { |
|
2510 |
*pad_ptr = 0x20; |
|
2511 |
pad_ptr++; |
|
2512 |
}
|
|
2513 |
}
|
|
2514 |
||
2515 |
/* Pad the rest of the string with 0x0020 */
|
|
2516 |
||
2517 |
while (pad_ptr < field_end) { |
|
2518 |
*pad_ptr = 0x00; |
|
2519 |
pad_ptr++; |
|
2520 |
*pad_ptr = 0x20; |
|
2521 |
pad_ptr++; |
|
2522 |
}
|
|
2523 |
} else { |
|
2524 |
ut_ad(templ->mbminlen == 1); |
|
2525 |
/* space=0x20 */
|
|
2526 |
||
2527 |
memset(pad_ptr, 0x20, field_end - pad_ptr); |
|
2528 |
}
|
|
2529 |
} else if (templ->type == DATA_BLOB) { |
|
2530 |
/* Store a pointer to the BLOB buffer to dest: the BLOB was
|
|
2531 |
already copied to the buffer in row_sel_store_mysql_rec */
|
|
2532 |
||
2533 |
row_mysql_store_blob_ref(dest, templ->mysql_col_len, data, |
|
2534 |
len); |
|
2535 |
} else if (templ->type == DATA_MYSQL) { |
|
2536 |
memcpy(dest, data, len); |
|
2537 |
||
2538 |
ut_ad(templ->mysql_col_len >= len); |
|
2539 |
ut_ad(templ->mbmaxlen >= templ->mbminlen); |
|
2540 |
||
2541 |
ut_ad(templ->mbmaxlen > templ->mbminlen |
|
2542 |
|| templ->mysql_col_len == len); |
|
2543 |
/* The following assertion would fail for old tables
|
|
2544 |
containing UTF-8 ENUM columns due to Bug #9526. */
|
|
2545 |
ut_ad(!templ->mbmaxlen |
|
2546 |
|| !(templ->mysql_col_len % templ->mbmaxlen)); |
|
2547 |
ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len); |
|
2548 |
||
2549 |
if (templ->mbminlen != templ->mbmaxlen) { |
|
2550 |
/* Pad with spaces. This undoes the stripping
|
|
2551 |
done in row0mysql.ic, function
|
|
2552 |
row_mysql_store_col_in_innobase_format(). */
|
|
2553 |
||
2554 |
memset(dest + len, 0x20, templ->mysql_col_len - len); |
|
2555 |
}
|
|
2556 |
} else { |
|
2557 |
ut_ad(templ->type == DATA_CHAR |
|
2558 |
|| templ->type == DATA_FIXBINARY |
|
2559 |
/*|| templ->type == DATA_SYS_CHILD
|
|
2560 |
|| templ->type == DATA_SYS*/
|
|
2561 |
|| templ->type == DATA_FLOAT |
|
2562 |
|| templ->type == DATA_DOUBLE |
|
2563 |
|| templ->type == DATA_DECIMAL); |
|
2564 |
ut_ad(templ->mysql_col_len == len); |
|
2565 |
||
2566 |
memcpy(dest, data, len); |
|
2567 |
}
|
|
2568 |
}
|
|
2569 |
||
2570 |
/******************************************************************
|
|
2571 |
Convert a row in the Innobase format to a row in the MySQL format.
|
|
2572 |
Note that the template in prebuilt may advise us to copy only a few
|
|
2573 |
columns to mysql_rec, other columns are left blank. All columns may not
|
|
2574 |
be needed in the query. */
|
|
2575 |
static
|
|
2576 |
ibool
|
|
2577 |
row_sel_store_mysql_rec( |
|
2578 |
/*====================*/
|
|
2579 |
/* out: TRUE if success, FALSE if
|
|
2580 |
could not allocate memory for a BLOB
|
|
2581 |
(though we may also assert in that
|
|
2582 |
case) */
|
|
2583 |
byte* mysql_rec, /* out: row in the MySQL format */ |
|
2584 |
row_prebuilt_t* prebuilt, /* in: prebuilt struct */ |
|
2585 |
rec_t* rec, /* in: Innobase record in the index |
|
2586 |
which was described in prebuilt's
|
|
2587 |
template */
|
|
2588 |
const ulint* offsets, /* in: array returned by |
|
2589 |
rec_get_offsets() */
|
|
2590 |
ulint start_field_no, |
|
2591 |
ulint end_field_no) |
|
2592 |
{
|
|
2593 |
mysql_row_templ_t* templ; |
|
2594 |
mem_heap_t* extern_field_heap = NULL; |
|
2595 |
mem_heap_t* heap; |
|
2596 |
byte* data; |
|
2597 |
ulint len; |
|
2598 |
ulint i; |
|
2599 |
||
2600 |
ut_ad(prebuilt->mysql_template); |
|
2601 |
ut_ad(rec_offs_validate(rec, NULL, offsets)); |
|
2602 |
||
2603 |
if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { |
|
2604 |
mem_heap_free(prebuilt->blob_heap); |
|
2605 |
prebuilt->blob_heap = NULL; |
|
2606 |
}
|
|
2607 |
||
2608 |
for (i = start_field_no; i < end_field_no /* prebuilt->n_template */ ; i++) { |
|
2609 |
||
2610 |
templ = prebuilt->mysql_template + i; |
|
2611 |
||
2612 |
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, |
|
2613 |
templ->rec_field_no))) { |
|
2614 |
||
2615 |
/* Copy an externally stored field to the temporary
|
|
2616 |
heap */
|
|
2617 |
||
2618 |
ut_a(!prebuilt->trx->has_search_latch); |
|
2619 |
||
2620 |
if (UNIV_UNLIKELY(templ->type == DATA_BLOB)) { |
|
2621 |
if (prebuilt->blob_heap == NULL) { |
|
2622 |
prebuilt->blob_heap = mem_heap_create( |
|
2623 |
UNIV_PAGE_SIZE); |
|
2624 |
}
|
|
2625 |
||
2626 |
heap = prebuilt->blob_heap; |
|
2627 |
} else { |
|
2628 |
extern_field_heap
|
|
2629 |
= mem_heap_create(UNIV_PAGE_SIZE); |
|
2630 |
||
2631 |
heap = extern_field_heap; |
|
2632 |
}
|
|
2633 |
||
2634 |
/* NOTE: if we are retrieving a big BLOB, we may
|
|
2635 |
already run out of memory in the next call, which
|
|
2636 |
causes an assert */
|
|
2637 |
||
2638 |
data = btr_rec_copy_externally_stored_field( |
|
2639 |
rec, offsets, templ->rec_field_no, |
|
2640 |
&len, heap); |
|
2641 |
||
2642 |
ut_a(len != UNIV_SQL_NULL); |
|
2643 |
} else { |
|
2644 |
/* Field is stored in the row. */
|
|
2645 |
||
2646 |
data = rec_get_nth_field(rec, offsets, |
|
2647 |
templ->rec_field_no, &len); |
|
2648 |
||
2649 |
if (UNIV_UNLIKELY(templ->type == DATA_BLOB) |
|
2650 |
&& len != UNIV_SQL_NULL) { |
|
2651 |
||
2652 |
/* It is a BLOB field locally stored in the
|
|
2653 |
InnoDB record: we MUST copy its contents to
|
|
2654 |
prebuilt->blob_heap here because later code
|
|
2655 |
assumes all BLOB values have been copied to a
|
|
2656 |
safe place. */
|
|
2657 |
||
2658 |
if (prebuilt->blob_heap == NULL) { |
|
2659 |
prebuilt->blob_heap = mem_heap_create( |
|
2660 |
UNIV_PAGE_SIZE); |
|
2661 |
}
|
|
2662 |
||
2663 |
data = memcpy(mem_heap_alloc( |
|
2664 |
prebuilt->blob_heap, len), |
|
2665 |
data, len); |
|
2666 |
}
|
|
2667 |
}
|
|
2668 |
||
2669 |
if (len != UNIV_SQL_NULL) { |
|
2670 |
row_sel_field_store_in_mysql_format( |
|
2671 |
mysql_rec + templ->mysql_col_offset, |
|
2672 |
templ, data, len); |
|
2673 |
||
2674 |
/* Cleanup */
|
|
2675 |
if (extern_field_heap) { |
|
2676 |
mem_heap_free(extern_field_heap); |
|
2677 |
extern_field_heap = NULL; |
|
2678 |
}
|
|
2679 |
||
2680 |
if (templ->mysql_null_bit_mask) { |
|
2681 |
/* It is a nullable column with a non-NULL
|
|
2682 |
value */
|
|
2683 |
mysql_rec[templ->mysql_null_byte_offset] |
|
2684 |
&= ~(byte) templ->mysql_null_bit_mask; |
|
2685 |
}
|
|
2686 |
} else { |
|
2687 |
/* MySQL seems to assume the field for an SQL NULL
|
|
2688 |
value is set to zero or space. Not taking this into
|
|
2689 |
account caused seg faults with NULL BLOB fields, and
|
|
2690 |
bug number 154 in the MySQL bug database: GROUP BY
|
|
2691 |
and DISTINCT could treat NULL values inequal. */
|
|
2692 |
int pad_char; |
|
2693 |
||
2694 |
mysql_rec[templ->mysql_null_byte_offset] |
|
2695 |
|= (byte) templ->mysql_null_bit_mask; |
|
2696 |
switch (templ->type) { |
|
2697 |
case DATA_VARCHAR: |
|
2698 |
case DATA_BINARY: |
|
2699 |
case DATA_VARMYSQL: |
|
2700 |
if (templ->mysql_type |
|
2701 |
== DATA_MYSQL_TRUE_VARCHAR) { |
|
2702 |
/* This is a >= 5.0.3 type
|
|
2703 |
true VARCHAR. Zero the field. */
|
|
2704 |
pad_char = 0x00; |
|
2705 |
break; |
|
2706 |
}
|
|
2707 |
/* Fall through */
|
|
2708 |
case DATA_CHAR: |
|
2709 |
case DATA_FIXBINARY: |
|
2710 |
case DATA_MYSQL: |
|
2711 |
/* MySQL pads all string types (except
|
|
2712 |
BLOB, TEXT and true VARCHAR) with space. */
|
|
2713 |
if (UNIV_UNLIKELY(templ->mbminlen == 2)) { |
|
2714 |
/* Treat UCS2 as a special case. */
|
|
2715 |
data = mysql_rec |
|
2716 |
+ templ->mysql_col_offset; |
|
2717 |
len = templ->mysql_col_len; |
|
2718 |
/* There are two UCS2 bytes per char,
|
|
2719 |
so the length has to be even. */
|
|
2720 |
ut_a(!(len & 1)); |
|
2721 |
/* Pad with 0x0020. */
|
|
2722 |
while (len) { |
|
2723 |
*data++ = 0x00; |
|
2724 |
*data++ = 0x20; |
|
2725 |
len -= 2; |
|
2726 |
}
|
|
2727 |
continue; |
|
2728 |
}
|
|
2729 |
pad_char = 0x20; |
|
2730 |
break; |
|
2731 |
default: |
|
2732 |
pad_char = 0x00; |
|
2733 |
break; |
|
2734 |
}
|
|
2735 |
||
2736 |
ut_ad(!pad_char || templ->mbminlen == 1); |
|
2737 |
memset(mysql_rec + templ->mysql_col_offset, |
|
2738 |
pad_char, templ->mysql_col_len); |
|
2739 |
}
|
|
2740 |
}
|
|
2741 |
||
2742 |
return(TRUE); |
|
2743 |
}
|
|
2744 |
||
2745 |
/*************************************************************************
|
|
2746 |
Builds a previous version of a clustered index record for a consistent read */
|
|
2747 |
static
|
|
2748 |
ulint
|
|
2749 |
row_sel_build_prev_vers_for_mysql( |
|
2750 |
/*==============================*/
|
|
2751 |
/* out: DB_SUCCESS or error code */
|
|
2752 |
read_view_t* read_view, /* in: read view */ |
|
2753 |
dict_index_t* clust_index, /* in: clustered index */ |
|
2754 |
row_prebuilt_t* prebuilt, /* in: prebuilt struct */ |
|
2755 |
rec_t* rec, /* in: record in a clustered index */ |
|
2756 |
ulint** offsets, /* in/out: offsets returned by |
|
2757 |
rec_get_offsets(rec, clust_index) */
|
|
2758 |
mem_heap_t** offset_heap, /* in/out: memory heap from which |
|
2759 |
the offsets are allocated */
|
|
2760 |
rec_t** old_vers, /* out: old version, or NULL if the |
|
2761 |
record does not exist in the view:
|
|
2762 |
i.e., it was freshly inserted
|
|
2763 |
afterwards */
|
|
2764 |
mtr_t* mtr) /* in: mtr */ |
|
2765 |
{
|
|
2766 |
ulint err; |
|
2767 |
||
2768 |
if (prebuilt->old_vers_heap) { |
|
2769 |
mem_heap_empty(prebuilt->old_vers_heap); |
|
2770 |
} else { |
|
2771 |
prebuilt->old_vers_heap = mem_heap_create(200); |
|
2772 |
}
|
|
2773 |
||
2774 |
err = row_vers_build_for_consistent_read( |
|
2775 |
rec, mtr, clust_index, offsets, read_view, offset_heap, |
|
2776 |
prebuilt->old_vers_heap, old_vers); |
|
2777 |
return(err); |
|
2778 |
}
|
|
2779 |
||
2780 |
/*************************************************************************
|
|
2781 |
Retrieves the clustered index record corresponding to a record in a
|
|
2782 |
non-clustered index. Does the necessary locking. Used in the MySQL
|
|
2783 |
interface. */
|
|
2784 |
static
|
|
2785 |
ulint
|
|
2786 |
row_sel_get_clust_rec_for_mysql( |
|
2787 |
/*============================*/
|
|
2788 |
/* out: DB_SUCCESS or error code */
|
|
2789 |
row_prebuilt_t* prebuilt,/* in: prebuilt struct in the handle */ |
|
2790 |
dict_index_t* sec_index,/* in: secondary index where rec resides */ |
|
2791 |
rec_t* rec, /* in: record in a non-clustered index; if |
|
2792 |
this is a locking read, then rec is not
|
|
2793 |
allowed to be delete-marked, and that would
|
|
2794 |
not make sense either */
|
|
2795 |
que_thr_t* thr, /* in: query thread */ |
|
2796 |
rec_t** out_rec,/* out: clustered record or an old version of |
|
2797 |
it, NULL if the old version did not exist
|
|
2798 |
in the read view, i.e., it was a fresh
|
|
2799 |
inserted version */
|
|
2800 |
ulint** offsets,/* out: offsets returned by |
|
2801 |
rec_get_offsets(out_rec, clust_index) */
|
|
2802 |
mem_heap_t** offset_heap,/* in/out: memory heap from which |
|
2803 |
the offsets are allocated */
|
|
2804 |
mtr_t* mtr) /* in: mtr used to get access to the |
|
2805 |
non-clustered record; the same mtr is used to
|
|
2806 |
access the clustered index */
|
|
2807 |
{
|
|
2808 |
dict_index_t* clust_index; |
|
2809 |
rec_t* clust_rec; |
|
2810 |
rec_t* old_vers; |
|
2811 |
ulint err; |
|
2812 |
trx_t* trx; |
|
2813 |
||
2814 |
*out_rec = NULL; |
|
2815 |
trx = thr_get_trx(thr); |
|
2816 |
||
2817 |
row_build_row_ref_in_tuple(prebuilt->clust_ref, sec_index, rec, trx); |
|
2818 |
||
2819 |
clust_index = dict_table_get_first_index(sec_index->table); |
|
2820 |
||
2821 |
btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref, |
|
2822 |
PAGE_CUR_LE, BTR_SEARCH_LEAF, |
|
2823 |
prebuilt->clust_pcur, 0, mtr); |
|
2824 |
||
2825 |
clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur); |
|
2826 |
||
2827 |
prebuilt->clust_pcur->trx_if_known = trx; |
|
2828 |
||
2829 |
/* Note: only if the search ends up on a non-infimum record is the
|
|
2830 |
low_match value the real match to the search tuple */
|
|
2831 |
||
2832 |
if (!page_rec_is_user_rec(clust_rec) |
|
2833 |
|| btr_pcur_get_low_match(prebuilt->clust_pcur) |
|
2834 |
< dict_index_get_n_unique(clust_index)) { |
|
2835 |
||
2836 |
/* In a rare case it is possible that no clust rec is found
|
|
2837 |
for a delete-marked secondary index record: if in row0umod.c
|
|
2838 |
in row_undo_mod_remove_clust_low() we have already removed
|
|
2839 |
the clust rec, while purge is still cleaning and removing
|
|
2840 |
secondary index records associated with earlier versions of
|
|
2841 |
the clustered index record. In that case we know that the
|
|
2842 |
clustered index record did not exist in the read view of
|
|
2843 |
trx. */
|
|
2844 |
||
2845 |
if (!rec_get_deleted_flag(rec, |
|
2846 |
dict_table_is_comp(sec_index->table)) |
|
2847 |
|| prebuilt->select_lock_type != LOCK_NONE) { |
|
2848 |
ut_print_timestamp(stderr); |
|
2849 |
fputs(" InnoDB: error clustered record" |
|
2850 |
" for sec rec not found\n" |
|
2851 |
"InnoDB: ", stderr); |
|
2852 |
dict_index_name_print(stderr, trx, sec_index); |
|
2853 |
fputs("\n" |
|
2854 |
"InnoDB: sec index record ", stderr); |
|
2855 |
rec_print(stderr, rec, sec_index); |
|
2856 |
fputs("\n" |
|
2857 |
"InnoDB: clust index record ", stderr); |
|
2858 |
rec_print(stderr, clust_rec, clust_index); |
|
2859 |
putc('\n', stderr); |
|
2860 |
trx_print(stderr, trx, 600); |
|
2861 |
||
2862 |
fputs("\n" |
|
2863 |
"InnoDB: Submit a detailed bug report"
|
|
2864 |
" to http://bugs.mysql.com\n", stderr); |
|
2865 |
}
|
|
2866 |
||
2867 |
clust_rec = NULL; |
|
2868 |
||
2869 |
goto func_exit; |
|
2870 |
}
|
|
2871 |
||
2872 |
*offsets = rec_get_offsets(clust_rec, clust_index, *offsets, |
|
2873 |
ULINT_UNDEFINED, offset_heap); |
|
2874 |
||
2875 |
if (prebuilt->select_lock_type != LOCK_NONE) { |
|
2876 |
/* Try to place a lock on the index record; we are searching
|
|
2877 |
the clust rec with a unique condition, hence
|
|
2878 |
we set a LOCK_REC_NOT_GAP type lock */
|
|
2879 |
||
2880 |
err = lock_clust_rec_read_check_and_lock( |
|
2881 |
0, clust_rec, clust_index, *offsets, |
|
2882 |
prebuilt->select_lock_type, LOCK_REC_NOT_GAP, thr); |
|
2883 |
if (err != DB_SUCCESS) { |
|
2884 |
||
2885 |
goto err_exit; |
|
2886 |
}
|
|
2887 |
} else { |
|
2888 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
2889 |
a previous version of the record */
|
|
2890 |
||
2891 |
old_vers = NULL; |
|
2892 |
||
2893 |
/* If the isolation level allows reading of uncommitted data,
|
|
2894 |
then we never look for an earlier version */
|
|
2895 |
||
2896 |
if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
|
2897 |
&& !lock_clust_rec_cons_read_sees( |
|
2898 |
clust_rec, clust_index, *offsets, |
|
2899 |
trx->read_view)) { |
|
2900 |
||
2901 |
/* The following call returns 'offsets' associated with
|
|
2902 |
'old_vers' */
|
|
2903 |
err = row_sel_build_prev_vers_for_mysql( |
|
2904 |
trx->read_view, clust_index, prebuilt, |
|
2905 |
clust_rec, offsets, offset_heap, &old_vers, |
|
2906 |
mtr); |
|
2907 |
||
2908 |
if (err != DB_SUCCESS) { |
|
2909 |
||
2910 |
goto err_exit; |
|
2911 |
}
|
|
2912 |
||
2913 |
clust_rec = old_vers; |
|
2914 |
}
|
|
2915 |
||
2916 |
/* If we had to go to an earlier version of row or the
|
|
2917 |
secondary index record is delete marked, then it may be that
|
|
2918 |
the secondary index record corresponding to clust_rec
|
|
2919 |
(or old_vers) is not rec; in that case we must ignore
|
|
2920 |
such row because in our snapshot rec would not have existed.
|
|
2921 |
Remember that from rec we cannot see directly which transaction
|
|
2922 |
id corresponds to it: we have to go to the clustered index
|
|
2923 |
record. A query where we want to fetch all rows where
|
|
2924 |
the secondary index value is in some interval would return
|
|
2925 |
a wrong result if we would not drop rows which we come to
|
|
2926 |
visit through secondary index records that would not really
|
|
2927 |
exist in our snapshot. */
|
|
2928 |
||
2929 |
if (clust_rec && (old_vers || rec_get_deleted_flag( |
|
2930 |
rec, |
|
2931 |
dict_table_is_comp( |
|
2932 |
sec_index->table))) |
|
2933 |
&& !row_sel_sec_rec_is_for_clust_rec( |
|
2934 |
rec, sec_index, clust_rec, clust_index)) { |
|
2935 |
clust_rec = NULL; |
|
2936 |
} else { |
|
2937 |
#ifdef UNIV_SEARCH_DEBUG
|
|
2938 |
ut_a(clust_rec == NULL |
|
2939 |
|| row_sel_sec_rec_is_for_clust_rec( |
|
2940 |
rec, sec_index, clust_rec, clust_index)); |
|
2941 |
#endif
|
|
2942 |
}
|
|
2943 |
}
|
|
2944 |
||
2945 |
func_exit: |
|
2946 |
*out_rec = clust_rec; |
|
2947 |
||
2948 |
if (prebuilt->select_lock_type == LOCK_X) { |
|
2949 |
/* We may use the cursor in update: store its position */
|
|
2950 |
||
2951 |
btr_pcur_store_position(prebuilt->clust_pcur, mtr); |
|
2952 |
}
|
|
2953 |
||
2954 |
err = DB_SUCCESS; |
|
2955 |
err_exit: |
|
2956 |
return(err); |
|
2957 |
}
|
|
2958 |
||
2959 |
/************************************************************************
|
|
2960 |
Restores cursor position after it has been stored. We have to take into
|
|
2961 |
account that the record cursor was positioned on may have been deleted.
|
|
2962 |
Then we may have to move the cursor one step up or down. */
|
|
2963 |
static
|
|
2964 |
ibool
|
|
2965 |
sel_restore_position_for_mysql( |
|
2966 |
/*===========================*/
|
|
2967 |
/* out: TRUE if we may need to
|
|
2968 |
process the record the cursor is
|
|
2969 |
now positioned on (i.e. we should
|
|
2970 |
not go to the next record yet) */
|
|
2971 |
ibool* same_user_rec, /* out: TRUE if we were able to restore |
|
2972 |
the cursor on a user record with the
|
|
2973 |
same ordering prefix in in the
|
|
2974 |
B-tree index */
|
|
2975 |
ulint latch_mode, /* in: latch mode wished in |
|
2976 |
restoration */
|
|
2977 |
btr_pcur_t* pcur, /* in: cursor whose position |
|
2978 |
has been stored */
|
|
2979 |
ibool moves_up, /* in: TRUE if the cursor moves up |
|
2980 |
in the index */
|
|
2981 |
mtr_t* mtr) /* in: mtr; CAUTION: may commit |
|
2982 |
mtr temporarily! */
|
|
2983 |
{
|
|
2984 |
ibool success; |
|
2985 |
ulint relative_position; |
|
2986 |
||
2987 |
relative_position = pcur->rel_pos; |
|
2988 |
||
2989 |
success = btr_pcur_restore_position(latch_mode, pcur, mtr); |
|
2990 |
||
2991 |
*same_user_rec = success; |
|
2992 |
||
2993 |
if (relative_position == BTR_PCUR_ON) { |
|
2994 |
if (success) { |
|
2995 |
return(FALSE); |
|
2996 |
}
|
|
2997 |
||
2998 |
if (moves_up) { |
|
2999 |
btr_pcur_move_to_next(pcur, mtr); |
|
3000 |
}
|
|
3001 |
||
3002 |
return(TRUE); |
|
3003 |
}
|
|
3004 |
||
3005 |
if (relative_position == BTR_PCUR_AFTER |
|
3006 |
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE) { |
|
3007 |
||
3008 |
if (moves_up) { |
|
3009 |
return(TRUE); |
|
3010 |
}
|
|
3011 |
||
3012 |
if (btr_pcur_is_on_user_rec(pcur, mtr)) { |
|
3013 |
btr_pcur_move_to_prev(pcur, mtr); |
|
3014 |
}
|
|
3015 |
||
3016 |
return(TRUE); |
|
3017 |
}
|
|
3018 |
||
3019 |
ut_ad(relative_position == BTR_PCUR_BEFORE |
|
3020 |
|| relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE); |
|
3021 |
||
3022 |
if (moves_up && btr_pcur_is_on_user_rec(pcur, mtr)) { |
|
3023 |
btr_pcur_move_to_next(pcur, mtr); |
|
3024 |
}
|
|
3025 |
||
3026 |
return(TRUE); |
|
3027 |
}
|
|
3028 |
||
3029 |
/************************************************************************
|
|
3030 |
Pops a cached row for MySQL from the fetch cache. */
|
|
3031 |
UNIV_INLINE
|
|
3032 |
void
|
|
3033 |
row_sel_pop_cached_row_for_mysql( |
|
3034 |
/*=============================*/
|
|
3035 |
byte* buf, /* in/out: buffer where to copy the |
|
3036 |
row */
|
|
3037 |
row_prebuilt_t* prebuilt) /* in: prebuilt struct */ |
|
3038 |
{
|
|
3039 |
ulint i; |
|
3040 |
mysql_row_templ_t* templ; |
|
3041 |
byte* cached_rec; |
|
3042 |
ut_ad(prebuilt->n_fetch_cached > 0); |
|
3043 |
ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len); |
|
3044 |
||
3045 |
if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) { |
|
3046 |
/* Copy cache record field by field, don't touch fields that
|
|
3047 |
are not covered by current key */
|
|
3048 |
cached_rec = prebuilt->fetch_cache[ |
|
3049 |
prebuilt->fetch_cache_first]; |
|
3050 |
||
3051 |
for (i = 0; i < prebuilt->n_template; i++) { |
|
3052 |
templ = prebuilt->mysql_template + i; |
|
3053 |
ut_memcpy(buf + templ->mysql_col_offset, |
|
3054 |
cached_rec + templ->mysql_col_offset, |
|
3055 |
templ->mysql_col_len); |
|
3056 |
/* Copy NULL bit of the current field from cached_rec
|
|
3057 |
to buf */
|
|
3058 |
if (templ->mysql_null_bit_mask) { |
|
3059 |
buf[templ->mysql_null_byte_offset] |
|
3060 |
^= (buf[templ->mysql_null_byte_offset] |
|
3061 |
^ cached_rec[templ->mysql_null_byte_offset]) |
|
3062 |
& (byte)templ->mysql_null_bit_mask; |
|
3063 |
}
|
|
3064 |
}
|
|
3065 |
}
|
|
3066 |
else { |
|
3067 |
ut_memcpy(buf, |
|
3068 |
prebuilt->fetch_cache[prebuilt->fetch_cache_first], |
|
3069 |
prebuilt->mysql_prefix_len); |
|
3070 |
}
|
|
3071 |
prebuilt->n_fetch_cached--; |
|
3072 |
prebuilt->fetch_cache_first++; |
|
3073 |
||
3074 |
if (prebuilt->n_fetch_cached == 0) { |
|
3075 |
prebuilt->fetch_cache_first = 0; |
|
3076 |
}
|
|
3077 |
}
|
|
3078 |
||
3079 |
/************************************************************************
|
|
3080 |
Pushes a row for MySQL to the fetch cache. */
|
|
3081 |
UNIV_INLINE
|
|
3082 |
void
|
|
3083 |
row_sel_push_cache_row_for_mysql( |
|
3084 |
/*=============================*/
|
|
3085 |
row_prebuilt_t* prebuilt, /* in: prebuilt struct */ |
|
3086 |
rec_t* rec, /* in: record to push */ |
|
3087 |
const ulint* offsets, /* in: rec_get_offsets() */ |
|
3088 |
ulint start_field_no, /* psergey: start from this field */ |
|
3089 |
byte* remainder_buf) /* if above !=0 -> where to take prev fields */ |
|
3090 |
{
|
|
3091 |
byte* buf; |
|
3092 |
ulint i; |
|
3093 |
||
3094 |
ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); |
|
3095 |
ut_ad(rec_offs_validate(rec, NULL, offsets)); |
|
3096 |
ut_a(!prebuilt->templ_contains_blob); |
|
3097 |
||
3098 |
if (prebuilt->fetch_cache[0] == NULL) { |
|
3099 |
/* Allocate memory for the fetch cache */
|
|
3100 |
||
3101 |
for (i = 0; i < MYSQL_FETCH_CACHE_SIZE; i++) { |
|
3102 |
||
3103 |
/* A user has reported memory corruption in these
|
|
3104 |
buffers in Linux. Put magic numbers there to help
|
|
3105 |
to track a possible bug. */
|
|
3106 |
||
3107 |
buf = mem_alloc(prebuilt->mysql_row_len + 8); |
|
3108 |
||
3109 |
prebuilt->fetch_cache[i] = buf + 4; |
|
3110 |
||
3111 |
mach_write_to_4(buf, ROW_PREBUILT_FETCH_MAGIC_N); |
|
3112 |
mach_write_to_4(buf + 4 + prebuilt->mysql_row_len, |
|
3113 |
ROW_PREBUILT_FETCH_MAGIC_N); |
|
3114 |
}
|
|
3115 |
}
|
|
3116 |
||
3117 |
ut_ad(prebuilt->fetch_cache_first == 0); |
|
3118 |
||
3119 |
if (UNIV_UNLIKELY(!row_sel_store_mysql_rec( |
|
3120 |
prebuilt->fetch_cache[ |
|
3121 |
prebuilt->n_fetch_cached], |
|
3122 |
prebuilt, rec, offsets, start_field_no, |
|
3123 |
prebuilt->n_template))) { |
|
3124 |
ut_error; |
|
3125 |
}
|
|
3126 |
if (start_field_no) { |
|
3127 |
for (i=0; i < start_field_no; i++) { |
|
3128 |
register ulint offs; |
|
3129 |
mysql_row_templ_t* templ; |
|
3130 |
templ = prebuilt->mysql_template + i; |
|
3131 |
||
3132 |
if (templ->mysql_null_bit_mask) { |
|
3133 |
offs= templ->mysql_null_byte_offset; |
|
3134 |
*(prebuilt->fetch_cache[prebuilt->n_fetch_cached] + offs) ^= |
|
3135 |
(*(remainder_buf + offs) & templ->mysql_null_bit_mask); |
|
3136 |
}
|
|
3137 |
offs= templ->mysql_col_offset; |
|
3138 |
memcpy(prebuilt->fetch_cache[prebuilt->n_fetch_cached] + offs, |
|
3139 |
remainder_buf + offs, |
|
3140 |
templ->mysql_col_len); |
|
3141 |
}
|
|
3142 |
}
|
|
3143 |
||
3144 |
prebuilt->n_fetch_cached++; |
|
3145 |
}
|
|
3146 |
||
3147 |
/*************************************************************************
|
|
3148 |
Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
3149 |
using the hash index if possible (not always). We assume that the search
|
|
3150 |
mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx,
|
|
3151 |
btr search latch has been locked in S-mode. */
|
|
3152 |
static
|
|
3153 |
ulint
|
|
3154 |
row_sel_try_search_shortcut_for_mysql( |
|
3155 |
/*==================================*/
|
|
3156 |
/* out: SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
3157 |
rec_t** out_rec,/* out: record if found */ |
|
3158 |
row_prebuilt_t* prebuilt,/* in: prebuilt struct */ |
|
3159 |
ulint** offsets,/* in/out: for rec_get_offsets(*out_rec) */ |
|
3160 |
mem_heap_t** heap, /* in/out: heap for rec_get_offsets() */ |
|
3161 |
mtr_t* mtr) /* in: started mtr */ |
|
3162 |
{
|
|
3163 |
dict_index_t* index = prebuilt->index; |
|
3164 |
dtuple_t* search_tuple = prebuilt->search_tuple; |
|
3165 |
btr_pcur_t* pcur = prebuilt->pcur; |
|
3166 |
trx_t* trx = prebuilt->trx; |
|
3167 |
rec_t* rec; |
|
3168 |
||
3169 |
ut_ad(index->type & DICT_CLUSTERED); |
|
3170 |
ut_ad(!prebuilt->templ_contains_blob); |
|
3171 |
||
3172 |
btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, |
|
3173 |
BTR_SEARCH_LEAF, pcur, |
|
3174 |
#ifndef UNIV_SEARCH_DEBUG
|
|
3175 |
RW_S_LATCH, |
|
3176 |
#else
|
|
3177 |
0, |
|
3178 |
#endif
|
|
3179 |
mtr); |
|
3180 |
rec = btr_pcur_get_rec(pcur); |
|
3181 |
||
3182 |
if (!page_rec_is_user_rec(rec)) { |
|
3183 |
||
3184 |
return(SEL_RETRY); |
|
3185 |
}
|
|
3186 |
||
3187 |
/* As the cursor is now placed on a user record after a search with
|
|
3188 |
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
3189 |
fields in the user record matched to the search tuple */
|
|
3190 |
||
3191 |
if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) { |
|
3192 |
||
3193 |
return(SEL_EXHAUSTED); |
|
3194 |
}
|
|
3195 |
||
3196 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
3197 |
a previous version of the record */
|
|
3198 |
||
3199 |
*offsets = rec_get_offsets(rec, index, *offsets, |
|
3200 |
ULINT_UNDEFINED, heap); |
|
3201 |
||
3202 |
if (!lock_clust_rec_cons_read_sees(rec, index, |
|
3203 |
*offsets, trx->read_view)) { |
|
3204 |
||
3205 |
return(SEL_RETRY); |
|
3206 |
}
|
|
3207 |
||
3208 |
if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) { |
|
3209 |
||
3210 |
return(SEL_EXHAUSTED); |
|
3211 |
}
|
|
3212 |
||
3213 |
*out_rec = rec; |
|
3214 |
||
3215 |
return(SEL_FOUND); |
|
3216 |
}
|
|
3217 |
||
3218 |
/************************************************************************
|
|
3219 |
Searches for rows in the database. This is used in the interface to
|
|
3220 |
MySQL. This function opens a cursor, and also implements fetch next
|
|
3221 |
and fetch prev. NOTE that if we do a search with a full key value
|
|
3222 |
from a unique index (ROW_SEL_EXACT), then we will not store the cursor
|
|
3223 |
position and fetch next or fetch prev must not be tried to the cursor! */
|
|
3224 |
||
3225 |
ulint
|
|
3226 |
row_search_for_mysql( |
|
3227 |
/*=================*/
|
|
3228 |
/* out: DB_SUCCESS,
|
|
3229 |
DB_RECORD_NOT_FOUND,
|
|
3230 |
DB_END_OF_INDEX, DB_DEADLOCK,
|
|
3231 |
DB_LOCK_TABLE_FULL, DB_CORRUPTION,
|
|
3232 |
or DB_TOO_BIG_RECORD */
|
|
3233 |
byte* buf, /* in/out: buffer for the fetched |
|
3234 |
row in the MySQL format */
|
|
3235 |
ulint mode, /* in: search mode PAGE_CUR_L, ... */ |
|
3236 |
row_prebuilt_t* prebuilt, /* in: prebuilt struct for the |
|
3237 |
table handle; this contains the info
|
|
3238 |
of search_tuple, index; if search
|
|
3239 |
tuple contains 0 fields then we
|
|
3240 |
position the cursor at the start or
|
|
3241 |
the end of the index, depending on
|
|
3242 |
'mode' */
|
|
3243 |
ulint match_mode, /* in: 0 or ROW_SEL_EXACT or |
|
3244 |
ROW_SEL_EXACT_PREFIX */
|
|
3245 |
ulint direction) /* in: 0 or ROW_SEL_NEXT or |
|
3246 |
ROW_SEL_PREV; NOTE: if this is != 0,
|
|
3247 |
then prebuilt must have a pcur
|
|
3248 |
with stored position! In opening of a
|
|
3249 |
cursor 'direction' should be 0. */
|
|
3250 |
{
|
|
3251 |
dict_index_t* index = prebuilt->index; |
|
3252 |
ibool comp = dict_table_is_comp(index->table); |
|
3253 |
dtuple_t* search_tuple = prebuilt->search_tuple; |
|
3254 |
btr_pcur_t* pcur = prebuilt->pcur; |
|
3255 |
trx_t* trx = prebuilt->trx; |
|
3256 |
dict_index_t* clust_index; |
|
3257 |
que_thr_t* thr; |
|
3258 |
rec_t* rec; |
|
3259 |
rec_t* result_rec; |
|
3260 |
rec_t* clust_rec; |
|
3261 |
ulint err = DB_SUCCESS; |
|
3262 |
ibool unique_search = FALSE; |
|
3263 |
ibool unique_search_from_clust_index = FALSE; |
|
3264 |
ibool mtr_has_extra_clust_latch = FALSE; |
|
3265 |
ibool moves_up = FALSE; |
|
3266 |
ibool set_also_gap_locks = TRUE; |
|
3267 |
/* if the query is a plain locking SELECT, and the isolation level
|
|
3268 |
is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */
|
|
3269 |
ibool did_semi_consistent_read = FALSE; |
|
3270 |
/* if the returned record was locked and we did a semi-consistent
|
|
3271 |
read (fetch the newest committed version), then this is set to
|
|
3272 |
TRUE */
|
|
3273 |
#ifdef UNIV_SEARCH_DEBUG
|
|
3274 |
ulint cnt = 0; |
|
3275 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
3276 |
ulint next_offs; |
|
3277 |
ibool same_user_rec; |
|
3278 |
mtr_t mtr; |
|
3279 |
mem_heap_t* heap = NULL; |
|
3280 |
ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
|
3281 |
ulint* offsets = offsets_; |
|
3282 |
ibool some_fields_in_buffer; |
|
3283 |
ibool get_clust_rec= 0; |
|
3284 |
||
3285 |
*offsets_ = (sizeof offsets_) / sizeof *offsets_; |
|
3286 |
||
3287 |
ut_ad(index && pcur && search_tuple); |
|
3288 |
ut_ad(trx->mysql_thread_id == os_thread_get_curr_id()); |
|
3289 |
||
3290 |
if (UNIV_UNLIKELY(prebuilt->table->ibd_file_missing)) { |
|
3291 |
ut_print_timestamp(stderr); |
|
3292 |
fprintf(stderr, " InnoDB: Error:\n" |
|
3293 |
"InnoDB: MySQL is trying to use a table handle"
|
|
3294 |
" but the .ibd file for\n" |
|
3295 |
"InnoDB: table %s does not exist.\n" |
|
3296 |
"InnoDB: Have you deleted the .ibd file"
|
|
3297 |
" from the database directory under\n" |
|
3298 |
"InnoDB: the MySQL datadir, or have you used"
|
|
3299 |
" DISCARD TABLESPACE?\n" |
|
3300 |
"InnoDB: Look from\n" |
|
3301 |
"InnoDB: http://dev.mysql.com/doc/refman/5.1/en/"
|
|
3302 |
"innodb-troubleshooting.html\n" |
|
3303 |
"InnoDB: how you can resolve the problem.\n", |
|
3304 |
prebuilt->table->name); |
|
3305 |
||
3306 |
return(DB_ERROR); |
|
3307 |
}
|
|
3308 |
||
3309 |
if (UNIV_UNLIKELY(prebuilt->magic_n != ROW_PREBUILT_ALLOCATED)) { |
|
3310 |
fprintf(stderr, |
|
3311 |
"InnoDB: Error: trying to free a corrupt\n" |
|
3312 |
"InnoDB: table handle. Magic n %lu, table name ", |
|
3313 |
(ulong) prebuilt->magic_n); |
|
3314 |
ut_print_name(stderr, trx, TRUE, prebuilt->table->name); |
|
3315 |
putc('\n', stderr); |
|
3316 |
||
3317 |
mem_analyze_corruption(prebuilt); |
|
3318 |
||
3319 |
ut_error; |
|
3320 |
}
|
|
3321 |
||
3322 |
#if 0
|
|
3323 |
/* August 19, 2005 by Heikki: temporarily disable this error
|
|
3324 |
print until the cursor lock count is done correctly.
|
|
3325 |
See bugs #12263 and #12456!*/
|
|
3326 |
||
3327 |
if (trx->n_mysql_tables_in_use == 0
|
|
3328 |
&& UNIV_UNLIKELY(prebuilt->select_lock_type == LOCK_NONE)) {
|
|
3329 |
/* Note that if MySQL uses an InnoDB temp table that it
|
|
3330 |
created inside LOCK TABLES, then n_mysql_tables_in_use can
|
|
3331 |
be zero; in that case select_lock_type is set to LOCK_X in
|
|
3332 |
::start_stmt. */
|
|
3333 |
||
3334 |
fputs("InnoDB: Error: MySQL is trying to perform a SELECT\n"
|
|
3335 |
"InnoDB: but it has not locked"
|
|
3336 |
" any tables in ::external_lock()!\n",
|
|
3337 |
stderr);
|
|
3338 |
trx_print(stderr, trx, 600);
|
|
3339 |
fputc('\n', stderr);
|
|
3340 |
}
|
|
3341 |
#endif
|
|
3342 |
||
3343 |
#if 0
|
|
3344 |
fprintf(stderr, "Match mode %lu\n search tuple ",
|
|
3345 |
(ulong) match_mode);
|
|
3346 |
dtuple_print(search_tuple);
|
|
3347 |
fprintf(stderr, "N tables locked %lu\n",
|
|
3348 |
(ulong) trx->mysql_n_tables_locked);
|
|
3349 |
#endif
|
|
3350 |
/*-------------------------------------------------------------*/
|
|
3351 |
/* PHASE 0: Release a possible s-latch we are holding on the
|
|
3352 |
adaptive hash index latch if there is someone waiting behind */
|
|
3353 |
||
3354 |
if (UNIV_UNLIKELY(btr_search_latch.writer != RW_LOCK_NOT_LOCKED) |
|
3355 |
&& trx->has_search_latch) { |
|
3356 |
||
3357 |
/* There is an x-latch request on the adaptive hash index:
|
|
3358 |
release the s-latch to reduce starvation and wait for
|
|
3359 |
BTR_SEA_TIMEOUT rounds before trying to keep it again over
|
|
3360 |
calls from MySQL */
|
|
3361 |
||
3362 |
rw_lock_s_unlock(&btr_search_latch); |
|
3363 |
trx->has_search_latch = FALSE; |
|
3364 |
||
3365 |
trx->search_latch_timeout = BTR_SEA_TIMEOUT; |
|
3366 |
}
|
|
3367 |
||
3368 |
/* Reset the new record lock info if srv_locks_unsafe_for_binlog
|
|
3369 |
is set or session is using a READ COMMITED isolation level. Then
|
|
3370 |
we are able to remove the record locks set here on an individual
|
|
3371 |
row. */
|
|
3372 |
||
3373 |
if ((srv_locks_unsafe_for_binlog |
|
3374 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
3375 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
3376 |
||
3377 |
trx_reset_new_rec_lock_info(trx); |
|
3378 |
}
|
|
3379 |
||
3380 |
/*-------------------------------------------------------------*/
|
|
3381 |
/* PHASE 1: Try to pop the row from the prefetch cache */
|
|
3382 |
||
3383 |
if (UNIV_UNLIKELY(direction == 0)) { |
|
3384 |
trx->op_info = "starting index read"; |
|
3385 |
||
3386 |
prebuilt->n_rows_fetched = 0; |
|
3387 |
prebuilt->n_fetch_cached = 0; |
|
3388 |
prebuilt->fetch_cache_first = 0; |
|
3389 |
||
3390 |
if (prebuilt->sel_graph == NULL) { |
|
3391 |
/* Build a dummy select query graph */
|
|
3392 |
row_prebuild_sel_graph(prebuilt); |
|
3393 |
}
|
|
3394 |
} else { |
|
3395 |
trx->op_info = "fetching rows"; |
|
3396 |
||
3397 |
if (prebuilt->n_rows_fetched == 0) { |
|
3398 |
prebuilt->fetch_direction = direction; |
|
3399 |
}
|
|
3400 |
||
3401 |
if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) { |
|
3402 |
if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) { |
|
3403 |
ut_error; |
|
3404 |
/* TODO: scrollable cursor: restore cursor to
|
|
3405 |
the place of the latest returned row,
|
|
3406 |
or better: prevent caching for a scroll
|
|
3407 |
cursor! */
|
|
3408 |
}
|
|
3409 |
||
3410 |
prebuilt->n_rows_fetched = 0; |
|
3411 |
prebuilt->n_fetch_cached = 0; |
|
3412 |
prebuilt->fetch_cache_first = 0; |
|
3413 |
||
3414 |
} else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) { |
|
3415 |
row_sel_pop_cached_row_for_mysql(buf, prebuilt); |
|
3416 |
||
3417 |
prebuilt->n_rows_fetched++; |
|
3418 |
||
3419 |
srv_n_rows_read++; |
|
3420 |
err = DB_SUCCESS; |
|
3421 |
goto func_exit; |
|
3422 |
}
|
|
3423 |
||
3424 |
if (prebuilt->fetch_cache_first > 0 |
|
3425 |
&& prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) { |
|
3426 |
||
3427 |
/* The previous returned row was popped from the fetch
|
|
3428 |
cache, but the cache was not full at the time of the
|
|
3429 |
popping: no more rows can exist in the result set */
|
|
3430 |
||
3431 |
err = DB_RECORD_NOT_FOUND; |
|
3432 |
goto func_exit; |
|
3433 |
}
|
|
3434 |
||
3435 |
prebuilt->n_rows_fetched++; |
|
3436 |
||
3437 |
if (prebuilt->n_rows_fetched > 1000000000) { |
|
3438 |
/* Prevent wrap-over */
|
|
3439 |
prebuilt->n_rows_fetched = 500000000; |
|
3440 |
}
|
|
3441 |
||
3442 |
mode = pcur->search_mode; |
|
3443 |
}
|
|
3444 |
||
3445 |
/* In a search where at most one record in the index may match, we
|
|
3446 |
can use a LOCK_REC_NOT_GAP type record lock when locking a
|
|
3447 |
non-delete-marked matching record.
|
|
3448 |
||
3449 |
Note that in a unique secondary index there may be different
|
|
3450 |
delete-marked versions of a record where only the primary key
|
|
3451 |
values differ: thus in a secondary index we must use next-key
|
|
3452 |
locks when locking delete-marked records. */
|
|
3453 |
||
3454 |
if (match_mode == ROW_SEL_EXACT |
|
3455 |
&& index->type & DICT_UNIQUE |
|
3456 |
&& dtuple_get_n_fields(search_tuple) |
|
3457 |
== dict_index_get_n_unique(index) |
|
3458 |
&& (index->type & DICT_CLUSTERED |
|
3459 |
|| !dtuple_contains_null(search_tuple))) { |
|
3460 |
||
3461 |
/* Note above that a UNIQUE secondary index can contain many
|
|
3462 |
rows with the same key value if one of the columns is the SQL
|
|
3463 |
null. A clustered index under MySQL can never contain null
|
|
3464 |
columns because we demand that all the columns in primary key
|
|
3465 |
are non-null. */
|
|
3466 |
||
3467 |
unique_search = TRUE; |
|
3468 |
||
3469 |
/* Even if the condition is unique, MySQL seems to try to
|
|
3470 |
retrieve also a second row if a primary key contains more than
|
|
3471 |
1 column. Return immediately if this is not a HANDLER
|
|
3472 |
command. */
|
|
3473 |
||
3474 |
if (UNIV_UNLIKELY(direction != 0 |
|
3475 |
&& !prebuilt->used_in_HANDLER)) { |
|
3476 |
||
3477 |
err = DB_RECORD_NOT_FOUND; |
|
3478 |
goto func_exit; |
|
3479 |
}
|
|
3480 |
}
|
|
3481 |
||
3482 |
mtr_start(&mtr); |
|
3483 |
||
3484 |
/*-------------------------------------------------------------*/
|
|
3485 |
/* PHASE 2: Try fast adaptive hash index search if possible */
|
|
3486 |
||
3487 |
/* Next test if this is the special case where we can use the fast
|
|
3488 |
adaptive hash index to try the search. Since we must release the
|
|
3489 |
search system latch when we retrieve an externally stored field, we
|
|
3490 |
cannot use the adaptive hash index in a search in the case the row
|
|
3491 |
may be long and there may be externally stored fields */
|
|
3492 |
||
3493 |
if (UNIV_UNLIKELY(direction == 0) |
|
3494 |
&& unique_search |
|
3495 |
&& index->type & DICT_CLUSTERED |
|
3496 |
&& !prebuilt->templ_contains_blob |
|
3497 |
&& !prebuilt->used_in_HANDLER |
|
3498 |
&& (prebuilt->mysql_row_len < UNIV_PAGE_SIZE / 8)) { |
|
3499 |
||
3500 |
mode = PAGE_CUR_GE; |
|
3501 |
||
3502 |
unique_search_from_clust_index = TRUE; |
|
3503 |
||
3504 |
if (trx->mysql_n_tables_locked == 0 |
|
3505 |
&& prebuilt->select_lock_type == LOCK_NONE |
|
3506 |
&& trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
|
3507 |
&& trx->read_view) { |
|
3508 |
||
3509 |
/* This is a SELECT query done as a consistent read,
|
|
3510 |
and the read view has already been allocated:
|
|
3511 |
let us try a search shortcut through the hash
|
|
3512 |
index.
|
|
3513 |
NOTE that we must also test that
|
|
3514 |
mysql_n_tables_locked == 0, because this might
|
|
3515 |
also be INSERT INTO ... SELECT ... or
|
|
3516 |
CREATE TABLE ... SELECT ... . Our algorithm is
|
|
3517 |
NOT prepared to inserts interleaved with the SELECT,
|
|
3518 |
and if we try that, we can deadlock on the adaptive
|
|
3519 |
hash index semaphore! */
|
|
3520 |
||
3521 |
#ifndef UNIV_SEARCH_DEBUG
|
|
3522 |
if (!trx->has_search_latch) { |
|
3523 |
rw_lock_s_lock(&btr_search_latch); |
|
3524 |
trx->has_search_latch = TRUE; |
|
3525 |
}
|
|
3526 |
#endif
|
|
3527 |
switch (row_sel_try_search_shortcut_for_mysql( |
|
3528 |
&rec, prebuilt, &offsets, &heap, |
|
3529 |
&mtr)) { |
|
3530 |
case SEL_FOUND: |
|
3531 |
#ifdef UNIV_SEARCH_DEBUG
|
|
3532 |
ut_a(0 == cmp_dtuple_rec(search_tuple, |
|
3533 |
rec, offsets)); |
|
3534 |
#endif
|
|
3535 |
if (!row_sel_store_mysql_rec(buf, prebuilt, |
|
3536 |
rec, offsets, 0, |
|
3537 |
prebuilt->n_template)) { |
|
3538 |
err = DB_TOO_BIG_RECORD; |
|
3539 |
||
3540 |
/* We let the main loop to do the
|
|
3541 |
error handling */
|
|
3542 |
goto shortcut_fails_too_big_rec; |
|
3543 |
}
|
|
3544 |
||
3545 |
mtr_commit(&mtr); |
|
3546 |
||
3547 |
/* ut_print_name(stderr, index->name);
|
|
3548 |
fputs(" shortcut\n", stderr); */
|
|
3549 |
||
3550 |
srv_n_rows_read++; |
|
3551 |
||
3552 |
if (trx->search_latch_timeout > 0 |
|
3553 |
&& trx->has_search_latch) { |
|
3554 |
||
3555 |
trx->search_latch_timeout--; |
|
3556 |
||
3557 |
rw_lock_s_unlock(&btr_search_latch); |
|
3558 |
trx->has_search_latch = FALSE; |
|
3559 |
}
|
|
3560 |
||
3561 |
/* NOTE that we do NOT store the cursor
|
|
3562 |
position */
|
|
3563 |
err = DB_SUCCESS; |
|
3564 |
goto func_exit; |
|
3565 |
||
3566 |
case SEL_EXHAUSTED: |
|
3567 |
mtr_commit(&mtr); |
|
3568 |
||
3569 |
/* ut_print_name(stderr, index->name);
|
|
3570 |
fputs(" record not found 2\n", stderr); */
|
|
3571 |
||
3572 |
if (trx->search_latch_timeout > 0 |
|
3573 |
&& trx->has_search_latch) { |
|
3574 |
||
3575 |
trx->search_latch_timeout--; |
|
3576 |
||
3577 |
rw_lock_s_unlock(&btr_search_latch); |
|
3578 |
trx->has_search_latch = FALSE; |
|
3579 |
}
|
|
3580 |
||
3581 |
/* NOTE that we do NOT store the cursor
|
|
3582 |
position */
|
|
3583 |
||
3584 |
err = DB_RECORD_NOT_FOUND; |
|
3585 |
goto func_exit; |
|
3586 |
}
|
|
3587 |
shortcut_fails_too_big_rec: |
|
3588 |
mtr_commit(&mtr); |
|
3589 |
mtr_start(&mtr); |
|
3590 |
}
|
|
3591 |
}
|
|
3592 |
||
3593 |
/*-------------------------------------------------------------*/
|
|
3594 |
/* PHASE 3: Open or restore index cursor position */
|
|
3595 |
||
3596 |
if (trx->has_search_latch) { |
|
3597 |
rw_lock_s_unlock(&btr_search_latch); |
|
3598 |
trx->has_search_latch = FALSE; |
|
3599 |
}
|
|
3600 |
||
3601 |
trx_start_if_not_started(trx); |
|
3602 |
||
3603 |
if (trx->isolation_level <= TRX_ISO_READ_COMMITTED |
|
3604 |
&& prebuilt->select_lock_type != LOCK_NONE |
|
3605 |
&& trx->mysql_query_str != NULL |
|
3606 |
&& *trx->mysql_query_str != NULL |
|
3607 |
&& trx->mysql_thd != NULL) { |
|
3608 |
||
3609 |
/* Scan the MySQL query string; check if SELECT is the first
|
|
3610 |
word there */
|
|
3611 |
||
3612 |
if (dict_str_starts_with_keyword( |
|
3613 |
trx->mysql_thd, *trx->mysql_query_str, "SELECT")) { |
|
3614 |
/* It is a plain locking SELECT and the isolation
|
|
3615 |
level is low: do not lock gaps */
|
|
3616 |
||
3617 |
set_also_gap_locks = FALSE; |
|
3618 |
}
|
|
3619 |
}
|
|
3620 |
||
3621 |
/* Note that if the search mode was GE or G, then the cursor
|
|
3622 |
naturally moves upward (in fetch next) in alphabetical order,
|
|
3623 |
otherwise downward */
|
|
3624 |
||
3625 |
if (UNIV_UNLIKELY(direction == 0)) { |
|
3626 |
if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G) { |
|
3627 |
moves_up = TRUE; |
|
3628 |
}
|
|
3629 |
} else if (direction == ROW_SEL_NEXT) { |
|
3630 |
moves_up = TRUE; |
|
3631 |
}
|
|
3632 |
||
3633 |
thr = que_fork_get_first_thr(prebuilt->sel_graph); |
|
3634 |
||
3635 |
que_thr_move_to_run_state_for_mysql(thr, trx); |
|
3636 |
||
3637 |
clust_index = dict_table_get_first_index(index->table); |
|
3638 |
||
3639 |
if (UNIV_LIKELY(direction != 0)) { |
|
3640 |
ibool need_to_process = sel_restore_position_for_mysql( |
|
3641 |
&same_user_rec, BTR_SEARCH_LEAF, |
|
3642 |
pcur, moves_up, &mtr); |
|
3643 |
||
3644 |
if (UNIV_UNLIKELY(need_to_process)) { |
|
3645 |
if (UNIV_UNLIKELY(prebuilt->row_read_type |
|
3646 |
== ROW_READ_DID_SEMI_CONSISTENT)) { |
|
3647 |
/* We did a semi-consistent read,
|
|
3648 |
but the record was removed in
|
|
3649 |
the meantime. */
|
|
3650 |
prebuilt->row_read_type |
|
3651 |
= ROW_READ_TRY_SEMI_CONSISTENT; |
|
3652 |
}
|
|
3653 |
} else if (UNIV_LIKELY(prebuilt->row_read_type |
|
3654 |
!= ROW_READ_DID_SEMI_CONSISTENT)) { |
|
3655 |
||
3656 |
/* The cursor was positioned on the record
|
|
3657 |
that we returned previously. If we need
|
|
3658 |
to repeat a semi-consistent read as a
|
|
3659 |
pessimistic locking read, the record
|
|
3660 |
cannot be skipped. */
|
|
3661 |
||
3662 |
goto next_rec; |
|
3663 |
}
|
|
3664 |
||
3665 |
} else if (dtuple_get_n_fields(search_tuple) > 0) { |
|
3666 |
||
3667 |
btr_pcur_open_with_no_init(index, search_tuple, mode, |
|
3668 |
BTR_SEARCH_LEAF, |
|
3669 |
pcur, 0, &mtr); |
|
3670 |
||
3671 |
pcur->trx_if_known = trx; |
|
3672 |
||
3673 |
rec = btr_pcur_get_rec(pcur); |
|
3674 |
||
3675 |
if (!moves_up |
|
3676 |
&& !page_rec_is_supremum(rec) |
|
3677 |
&& set_also_gap_locks |
|
3678 |
&& !(srv_locks_unsafe_for_binlog |
|
3679 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
3680 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
3681 |
||
3682 |
/* Try to place a gap lock on the next index record
|
|
3683 |
to prevent phantoms in ORDER BY ... DESC queries */
|
|
3684 |
||
3685 |
offsets = rec_get_offsets(page_rec_get_next(rec), |
|
3686 |
index, offsets, |
|
3687 |
ULINT_UNDEFINED, &heap); |
|
3688 |
err = sel_set_rec_lock(page_rec_get_next(rec), |
|
3689 |
index, offsets, |
|
3690 |
prebuilt->select_lock_type, |
|
3691 |
LOCK_GAP, thr); |
|
3692 |
||
3693 |
if (err != DB_SUCCESS) { |
|
3694 |
||
3695 |
goto lock_wait_or_error; |
|
3696 |
}
|
|
3697 |
}
|
|
3698 |
} else { |
|
3699 |
if (mode == PAGE_CUR_G) { |
|
3700 |
btr_pcur_open_at_index_side( |
|
3701 |
TRUE, index, BTR_SEARCH_LEAF, pcur, FALSE, |
|
3702 |
&mtr); |
|
3703 |
} else if (mode == PAGE_CUR_L) { |
|
3704 |
btr_pcur_open_at_index_side( |
|
3705 |
FALSE, index, BTR_SEARCH_LEAF, pcur, FALSE, |
|
3706 |
&mtr); |
|
3707 |
}
|
|
3708 |
}
|
|
3709 |
||
3710 |
if (!prebuilt->sql_stat_start) { |
|
3711 |
/* No need to set an intention lock or assign a read view */
|
|
3712 |
||
3713 |
if (trx->read_view == NULL |
|
3714 |
&& prebuilt->select_lock_type == LOCK_NONE) { |
|
3715 |
||
3716 |
fputs("InnoDB: Error: MySQL is trying to" |
|
3717 |
" perform a consistent read\n" |
|
3718 |
"InnoDB: but the read view is not assigned!\n", |
|
3719 |
stderr); |
|
3720 |
trx_print(stderr, trx, 600); |
|
3721 |
fputc('\n', stderr); |
|
3722 |
ut_a(0); |
|
3723 |
}
|
|
3724 |
} else if (prebuilt->select_lock_type == LOCK_NONE) { |
|
3725 |
/* This is a consistent read */
|
|
3726 |
/* Assign a read view for the query */
|
|
3727 |
||
3728 |
trx_assign_read_view(trx); |
|
3729 |
prebuilt->sql_stat_start = FALSE; |
|
3730 |
} else { |
|
3731 |
ulint lock_mode; |
|
3732 |
if (prebuilt->select_lock_type == LOCK_S) { |
|
3733 |
lock_mode = LOCK_IS; |
|
3734 |
} else { |
|
3735 |
lock_mode = LOCK_IX; |
|
3736 |
}
|
|
3737 |
err = lock_table(0, index->table, lock_mode, thr); |
|
3738 |
||
3739 |
if (err != DB_SUCCESS) { |
|
3740 |
||
3741 |
goto lock_wait_or_error; |
|
3742 |
}
|
|
3743 |
prebuilt->sql_stat_start = FALSE; |
|
3744 |
}
|
|
3745 |
||
3746 |
rec_loop: |
|
3747 |
/*-------------------------------------------------------------*/
|
|
3748 |
/* PHASE 4: Look for matching records in a loop */
|
|
3749 |
||
3750 |
rec = btr_pcur_get_rec(pcur); |
|
3751 |
ut_ad(!!page_rec_is_comp(rec) == comp); |
|
3752 |
#ifdef UNIV_SEARCH_DEBUG
|
|
3753 |
/*
|
|
3754 |
fputs("Using ", stderr);
|
|
3755 |
dict_index_name_print(stderr, index);
|
|
3756 |
fprintf(stderr, " cnt %lu ; Page no %lu\n", cnt,
|
|
3757 |
buf_frame_get_page_no(buf_frame_align(rec)));
|
|
3758 |
rec_print(rec);
|
|
3759 |
*/
|
|
3760 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
3761 |
||
3762 |
if (page_rec_is_infimum(rec)) { |
|
3763 |
||
3764 |
/* The infimum record on a page cannot be in the result set,
|
|
3765 |
and neither can a record lock be placed on it: we skip such
|
|
3766 |
a record. */
|
|
3767 |
||
3768 |
goto next_rec; |
|
3769 |
}
|
|
3770 |
||
3771 |
if (page_rec_is_supremum(rec)) { |
|
3772 |
||
3773 |
if (set_also_gap_locks |
|
3774 |
&& !(srv_locks_unsafe_for_binlog |
|
3775 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
3776 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
3777 |
||
3778 |
/* Try to place a lock on the index record */
|
|
3779 |
||
3780 |
/* If innodb_locks_unsafe_for_binlog option is used
|
|
3781 |
or this session is using a READ COMMITTED isolation
|
|
3782 |
level we do not lock gaps. Supremum record is really
|
|
3783 |
a gap and therefore we do not set locks there. */
|
|
3784 |
||
3785 |
offsets = rec_get_offsets(rec, index, offsets, |
|
3786 |
ULINT_UNDEFINED, &heap); |
|
3787 |
err = sel_set_rec_lock(rec, index, offsets, |
|
3788 |
prebuilt->select_lock_type, |
|
3789 |
LOCK_ORDINARY, thr); |
|
3790 |
||
3791 |
if (err != DB_SUCCESS) { |
|
3792 |
||
3793 |
goto lock_wait_or_error; |
|
3794 |
}
|
|
3795 |
}
|
|
3796 |
/* A page supremum record cannot be in the result set: skip
|
|
3797 |
it now that we have placed a possible lock on it */
|
|
3798 |
||
3799 |
goto next_rec; |
|
3800 |
}
|
|
3801 |
||
3802 |
/*-------------------------------------------------------------*/
|
|
3803 |
/* Do sanity checks in case our cursor has bumped into page
|
|
3804 |
corruption */
|
|
3805 |
||
3806 |
if (comp) { |
|
3807 |
next_offs = rec_get_next_offs(rec, TRUE); |
|
3808 |
if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) { |
|
3809 |
||
3810 |
goto wrong_offs; |
|
3811 |
}
|
|
3812 |
} else { |
|
3813 |
next_offs = rec_get_next_offs(rec, FALSE); |
|
3814 |
if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) { |
|
3815 |
||
3816 |
goto wrong_offs; |
|
3817 |
}
|
|
3818 |
}
|
|
3819 |
||
3820 |
if (UNIV_UNLIKELY(next_offs >= UNIV_PAGE_SIZE - PAGE_DIR)) { |
|
3821 |
||
3822 |
wrong_offs: |
|
3823 |
if (srv_force_recovery == 0 || moves_up == FALSE) { |
|
3824 |
ut_print_timestamp(stderr); |
|
3825 |
buf_page_print(buf_frame_align(rec)); |
|
3826 |
fprintf(stderr, |
|
3827 |
"\nInnoDB: rec address %p, first" |
|
3828 |
" buffer frame %p\n" |
|
3829 |
"InnoDB: buffer pool high end %p,"
|
|
3830 |
" buf block fix count %lu\n", |
|
3831 |
(void*) rec, (void*) buf_pool->frame_zero, |
|
3832 |
(void*) buf_pool->high_end, |
|
3833 |
(ulong)buf_block_align(rec)->buf_fix_count); |
|
3834 |
fprintf(stderr, |
|
3835 |
"InnoDB: Index corruption: rec offs %lu"
|
|
3836 |
" next offs %lu, page no %lu,\n" |
|
3837 |
"InnoDB: ", |
|
3838 |
(ulong) page_offset(rec), |
|
3839 |
(ulong) next_offs, |
|
3840 |
(ulong) buf_frame_get_page_no(rec)); |
|
3841 |
dict_index_name_print(stderr, trx, index); |
|
3842 |
fputs(". Run CHECK TABLE. You may need to\n" |
|
3843 |
"InnoDB: restore from a backup, or"
|
|
3844 |
" dump + drop + reimport the table.\n", |
|
3845 |
stderr); |
|
3846 |
||
3847 |
err = DB_CORRUPTION; |
|
3848 |
||
3849 |
goto lock_wait_or_error; |
|
3850 |
} else { |
|
3851 |
/* The user may be dumping a corrupt table. Jump
|
|
3852 |
over the corruption to recover as much as possible. */
|
|
3853 |
||
3854 |
fprintf(stderr, |
|
3855 |
"InnoDB: Index corruption: rec offs %lu"
|
|
3856 |
" next offs %lu, page no %lu,\n" |
|
3857 |
"InnoDB: ", |
|
3858 |
(ulong) page_offset(rec), |
|
3859 |
(ulong) next_offs, |
|
3860 |
(ulong) buf_frame_get_page_no(rec)); |
|
3861 |
dict_index_name_print(stderr, trx, index); |
|
3862 |
fputs(". We try to skip the rest of the page.\n", |
|
3863 |
stderr); |
|
3864 |
||
3865 |
btr_pcur_move_to_last_on_page(pcur, &mtr); |
|
3866 |
||
3867 |
goto next_rec; |
|
3868 |
}
|
|
3869 |
}
|
|
3870 |
/*-------------------------------------------------------------*/
|
|
3871 |
||
3872 |
/* Calculate the 'offsets' associated with 'rec' */
|
|
3873 |
||
3874 |
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); |
|
3875 |
||
3876 |
if (UNIV_UNLIKELY(srv_force_recovery > 0)) { |
|
3877 |
if (!rec_validate(rec, offsets) |
|
3878 |
|| !btr_index_rec_validate(rec, index, FALSE)) { |
|
3879 |
fprintf(stderr, |
|
3880 |
"InnoDB: Index corruption: rec offs %lu"
|
|
3881 |
" next offs %lu, page no %lu,\n" |
|
3882 |
"InnoDB: ", |
|
3883 |
(ulong) page_offset(rec), |
|
3884 |
(ulong) next_offs, |
|
3885 |
(ulong) buf_frame_get_page_no(rec)); |
|
3886 |
dict_index_name_print(stderr, trx, index); |
|
3887 |
fputs(". We try to skip the record.\n", |
|
3888 |
stderr); |
|
3889 |
||
3890 |
goto next_rec; |
|
3891 |
}
|
|
3892 |
}
|
|
3893 |
||
3894 |
/* Note that we cannot trust the up_match value in the cursor at this
|
|
3895 |
place because we can arrive here after moving the cursor! Thus
|
|
3896 |
we have to recompare rec and search_tuple to determine if they
|
|
3897 |
match enough. */
|
|
3898 |
||
3899 |
if (match_mode == ROW_SEL_EXACT) { |
|
3900 |
/* Test if the index record matches completely to search_tuple
|
|
3901 |
in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */
|
|
3902 |
||
3903 |
/* fputs("Comparing rec and search tuple\n", stderr); */
|
|
3904 |
||
3905 |
if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) { |
|
3906 |
||
3907 |
if (set_also_gap_locks |
|
3908 |
&& !(srv_locks_unsafe_for_binlog |
|
3909 |
|| trx->isolation_level |
|
3910 |
== TRX_ISO_READ_COMMITTED) |
|
3911 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
3912 |
||
3913 |
/* Try to place a gap lock on the index
|
|
3914 |
record only if innodb_locks_unsafe_for_binlog
|
|
3915 |
option is not set or this session is not
|
|
3916 |
using a READ COMMITTED isolation level. */
|
|
3917 |
||
3918 |
err = sel_set_rec_lock( |
|
3919 |
rec, index, offsets, |
|
3920 |
prebuilt->select_lock_type, LOCK_GAP, |
|
3921 |
thr); |
|
3922 |
||
3923 |
if (err != DB_SUCCESS) { |
|
3924 |
||
3925 |
goto lock_wait_or_error; |
|
3926 |
}
|
|
3927 |
}
|
|
3928 |
||
3929 |
btr_pcur_store_position(pcur, &mtr); |
|
3930 |
||
3931 |
err = DB_RECORD_NOT_FOUND; |
|
3932 |
/* ut_print_name(stderr, index->name);
|
|
3933 |
fputs(" record not found 3\n", stderr); */
|
|
3934 |
||
3935 |
goto normal_return; |
|
3936 |
}
|
|
3937 |
||
3938 |
} else if (match_mode == ROW_SEL_EXACT_PREFIX) { |
|
3939 |
||
3940 |
if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) { |
|
3941 |
||
3942 |
if (set_also_gap_locks |
|
3943 |
&& !(srv_locks_unsafe_for_binlog |
|
3944 |
|| trx->isolation_level |
|
3945 |
== TRX_ISO_READ_COMMITTED) |
|
3946 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
3947 |
||
3948 |
/* Try to place a gap lock on the index
|
|
3949 |
record only if innodb_locks_unsafe_for_binlog
|
|
3950 |
option is not set or this session is not
|
|
3951 |
using a READ COMMITTED isolation level. */
|
|
3952 |
||
3953 |
err = sel_set_rec_lock( |
|
3954 |
rec, index, offsets, |
|
3955 |
prebuilt->select_lock_type, LOCK_GAP, |
|
3956 |
thr); |
|
3957 |
||
3958 |
if (err != DB_SUCCESS) { |
|
3959 |
||
3960 |
goto lock_wait_or_error; |
|
3961 |
}
|
|
3962 |
}
|
|
3963 |
||
3964 |
btr_pcur_store_position(pcur, &mtr); |
|
3965 |
||
3966 |
err = DB_RECORD_NOT_FOUND; |
|
3967 |
/* ut_print_name(stderr, index->name);
|
|
3968 |
fputs(" record not found 4\n", stderr); */
|
|
3969 |
||
3970 |
goto normal_return; |
|
3971 |
}
|
|
3972 |
}
|
|
3973 |
||
3974 |
/* We are ready to look at a possible new index entry in the result
|
|
3975 |
set: the cursor is now placed on a user record */
|
|
3976 |
||
3977 |
if (prebuilt->select_lock_type != LOCK_NONE) { |
|
3978 |
/* Try to place a lock on the index record; note that delete
|
|
3979 |
marked records are a special case in a unique search. If there
|
|
3980 |
is a non-delete marked record, then it is enough to lock its
|
|
3981 |
existence with LOCK_REC_NOT_GAP. */
|
|
3982 |
||
3983 |
/* If innodb_locks_unsafe_for_binlog option is used
|
|
3984 |
or this session is using a READ COMMITED isolation
|
|
3985 |
level we lock only the record, i.e., next-key locking is
|
|
3986 |
not used. */
|
|
3987 |
||
3988 |
ulint lock_type; |
|
3989 |
||
3990 |
if (!set_also_gap_locks |
|
3991 |
|| srv_locks_unsafe_for_binlog |
|
3992 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED |
|
3993 |
|| (unique_search |
|
3994 |
&& !UNIV_UNLIKELY(rec_get_deleted_flag(rec, comp)))) { |
|
3995 |
||
3996 |
goto no_gap_lock; |
|
3997 |
} else { |
|
3998 |
lock_type = LOCK_ORDINARY; |
|
3999 |
}
|
|
4000 |
||
4001 |
/* If we are doing a 'greater or equal than a primary key
|
|
4002 |
value' search from a clustered index, and we find a record
|
|
4003 |
that has that exact primary key value, then there is no need
|
|
4004 |
to lock the gap before the record, because no insert in the
|
|
4005 |
gap can be in our search range. That is, no phantom row can
|
|
4006 |
appear that way.
|
|
4007 |
||
4008 |
An example: if col1 is the primary key, the search is WHERE
|
|
4009 |
col1 >= 100, and we find a record where col1 = 100, then no
|
|
4010 |
need to lock the gap before that record. */
|
|
4011 |
||
4012 |
if (index == clust_index |
|
4013 |
&& mode == PAGE_CUR_GE |
|
4014 |
&& direction == 0 |
|
4015 |
&& dtuple_get_n_fields_cmp(search_tuple) |
|
4016 |
== dict_index_get_n_unique(index) |
|
4017 |
&& 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) { |
|
4018 |
no_gap_lock: |
|
4019 |
lock_type = LOCK_REC_NOT_GAP; |
|
4020 |
}
|
|
4021 |
||
4022 |
err = sel_set_rec_lock(rec, index, offsets, |
|
4023 |
prebuilt->select_lock_type, |
|
4024 |
lock_type, thr); |
|
4025 |
||
4026 |
switch (err) { |
|
4027 |
rec_t* old_vers; |
|
4028 |
case DB_SUCCESS: |
|
4029 |
break; |
|
4030 |
case DB_LOCK_WAIT: |
|
4031 |
if (UNIV_LIKELY(prebuilt->row_read_type |
|
4032 |
!= ROW_READ_TRY_SEMI_CONSISTENT) |
|
4033 |
|| index != clust_index) { |
|
4034 |
||
4035 |
goto lock_wait_or_error; |
|
4036 |
}
|
|
4037 |
||
4038 |
/* The following call returns 'offsets'
|
|
4039 |
associated with 'old_vers' */
|
|
4040 |
err = row_sel_build_committed_vers_for_mysql( |
|
4041 |
clust_index, prebuilt, rec, |
|
4042 |
&offsets, &heap, &old_vers, &mtr); |
|
4043 |
||
4044 |
if (err != DB_SUCCESS) { |
|
4045 |
||
4046 |
goto lock_wait_or_error; |
|
4047 |
}
|
|
4048 |
||
4049 |
mutex_enter(&kernel_mutex); |
|
4050 |
if (trx->was_chosen_as_deadlock_victim) { |
|
4051 |
mutex_exit(&kernel_mutex); |
|
4052 |
err = DB_DEADLOCK; |
|
4053 |
||
4054 |
goto lock_wait_or_error; |
|
4055 |
}
|
|
4056 |
if (UNIV_LIKELY(trx->wait_lock != NULL)) { |
|
4057 |
lock_cancel_waiting_and_release( |
|
4058 |
trx->wait_lock); |
|
4059 |
trx_reset_new_rec_lock_info(trx); |
|
4060 |
} else { |
|
4061 |
mutex_exit(&kernel_mutex); |
|
4062 |
||
4063 |
/* The lock was granted while we were
|
|
4064 |
searching for the last committed version.
|
|
4065 |
Do a normal locking read. */
|
|
4066 |
||
4067 |
offsets = rec_get_offsets(rec, index, offsets, |
|
4068 |
ULINT_UNDEFINED, |
|
4069 |
&heap); |
|
4070 |
err = DB_SUCCESS; |
|
4071 |
break; |
|
4072 |
}
|
|
4073 |
mutex_exit(&kernel_mutex); |
|
4074 |
||
4075 |
if (old_vers == NULL) { |
|
4076 |
/* The row was not yet committed */
|
|
4077 |
||
4078 |
goto next_rec; |
|
4079 |
}
|
|
4080 |
||
4081 |
did_semi_consistent_read = TRUE; |
|
4082 |
rec = old_vers; |
|
4083 |
break; |
|
4084 |
default: |
|
4085 |
||
4086 |
goto lock_wait_or_error; |
|
4087 |
}
|
|
4088 |
} else { |
|
4089 |
/* This is a non-locking consistent read: if necessary, fetch
|
|
4090 |
a previous version of the record */
|
|
4091 |
||
4092 |
if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED) { |
|
4093 |
||
4094 |
/* Do nothing: we let a non-locking SELECT read the
|
|
4095 |
latest version of the record */
|
|
4096 |
||
4097 |
} else if (index == clust_index) { |
|
4098 |
||
4099 |
/* Fetch a previous version of the row if the current
|
|
4100 |
one is not visible in the snapshot; if we have a very
|
|
4101 |
high force recovery level set, we try to avoid crashes
|
|
4102 |
by skipping this lookup */
|
|
4103 |
||
4104 |
if (UNIV_LIKELY(srv_force_recovery < 5) |
|
4105 |
&& !lock_clust_rec_cons_read_sees( |
|
4106 |
rec, index, offsets, trx->read_view)) { |
|
4107 |
||
4108 |
rec_t* old_vers; |
|
4109 |
/* The following call returns 'offsets'
|
|
4110 |
associated with 'old_vers' */
|
|
4111 |
err = row_sel_build_prev_vers_for_mysql( |
|
4112 |
trx->read_view, clust_index, |
|
4113 |
prebuilt, rec, &offsets, &heap, |
|
4114 |
&old_vers, &mtr); |
|
4115 |
||
4116 |
if (err != DB_SUCCESS) { |
|
4117 |
||
4118 |
goto lock_wait_or_error; |
|
4119 |
}
|
|
4120 |
||
4121 |
if (old_vers == NULL) { |
|
4122 |
/* The row did not exist yet in
|
|
4123 |
the read view */
|
|
4124 |
||
4125 |
goto next_rec; |
|
4126 |
}
|
|
4127 |
||
4128 |
rec = old_vers; |
|
4129 |
}
|
|
4130 |
} else if (!lock_sec_rec_cons_read_sees(rec, index, |
|
4131 |
trx->read_view)) { |
|
4132 |
/* We are looking into a non-clustered index,
|
|
4133 |
and to get the right version of the record we
|
|
4134 |
have to look also into the clustered index: this
|
|
4135 |
is necessary, because we can only get the undo
|
|
4136 |
information via the clustered index record. */
|
|
4137 |
||
4138 |
ut_ad(index != clust_index); |
|
4139 |
get_clust_rec= TRUE; |
|
4140 |
goto idx_cond_check; |
|
4141 |
}
|
|
4142 |
}
|
|
4143 |
||
4144 |
/* NOTE that at this point rec can be an old version of a clustered
|
|
4145 |
index record built for a consistent read. We cannot assume after this
|
|
4146 |
point that rec is on a buffer pool page. Functions like
|
|
4147 |
page_rec_is_comp() cannot be used! */
|
|
4148 |
||
4149 |
if (UNIV_UNLIKELY(rec_get_deleted_flag(rec, comp))) { |
|
4150 |
||
4151 |
/* The record is delete-marked: we can skip it */
|
|
4152 |
||
4153 |
if ((srv_locks_unsafe_for_binlog |
|
4154 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
4155 |
&& prebuilt->select_lock_type != LOCK_NONE |
|
4156 |
&& !did_semi_consistent_read) { |
|
4157 |
||
4158 |
/* No need to keep a lock on a delete-marked record
|
|
4159 |
if we do not want to use next-key locking. */
|
|
4160 |
||
4161 |
row_unlock_for_mysql(prebuilt, TRUE); |
|
4162 |
}
|
|
4163 |
||
4164 |
/* This is an optimization to skip setting the next key lock
|
|
4165 |
on the record that follows this delete-marked record. This
|
|
4166 |
optimization works because of the unique search criteria
|
|
4167 |
which precludes the presence of a range lock between this
|
|
4168 |
delete marked record and the record following it.
|
|
4169 |
||
4170 |
For now this is applicable only to clustered indexes while
|
|
4171 |
doing a unique search. There is scope for further optimization
|
|
4172 |
applicable to unique secondary indexes. Current behaviour is
|
|
4173 |
to widen the scope of a lock on an already delete marked record
|
|
4174 |
if the same record is deleted twice by the same transaction */
|
|
4175 |
if (index == clust_index && unique_search) { |
|
4176 |
err = DB_RECORD_NOT_FOUND; |
|
4177 |
||
4178 |
goto normal_return; |
|
4179 |
}
|
|
4180 |
||
4181 |
goto next_rec; |
|
4182 |
}
|
|
4183 |
||
4184 |
||
4185 |
idx_cond_check: |
|
4186 |
if (prebuilt->idx_cond_func) |
|
4187 |
{
|
|
4188 |
int res; |
|
4189 |
ut_ad(prebuilt->template_type != ROW_MYSQL_DUMMY_TEMPLATE); |
|
4190 |
offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); |
|
4191 |
row_sel_store_mysql_rec(buf, prebuilt, rec, |
|
4192 |
offsets, 0, prebuilt->n_index_fields); |
|
4193 |
res= prebuilt->idx_cond_func(prebuilt->idx_cond_func_arg); |
|
4194 |
if (res == 0) |
|
4195 |
goto next_rec; |
|
4196 |
if (res == 2) |
|
4197 |
{
|
|
4198 |
err = DB_RECORD_NOT_FOUND; |
|
4199 |
goto idx_cond_failed; |
|
4200 |
}
|
|
4201 |
}
|
|
4202 |
||
4203 |
/* Get the clustered index record if needed, if we did not do the
|
|
4204 |
search using the clustered index. */
|
|
4205 |
if (get_clust_rec || (index != clust_index && |
|
4206 |
prebuilt->need_to_access_clustered)) { |
|
4207 |
||
4208 |
/* We use a 'goto' to the preceding label if a consistent
|
|
4209 |
read of a secondary index record requires us to look up old
|
|
4210 |
versions of the associated clustered index record. */
|
|
4211 |
||
4212 |
ut_ad(rec_offs_validate(rec, index, offsets)); |
|
4213 |
||
4214 |
/* It was a non-clustered index and we must fetch also the
|
|
4215 |
clustered index record */
|
|
4216 |
||
4217 |
mtr_has_extra_clust_latch = TRUE; |
|
4218 |
||
4219 |
/* The following call returns 'offsets' associated with
|
|
4220 |
'clust_rec'. Note that 'clust_rec' can be an old version
|
|
4221 |
built for a consistent read. */
|
|
4222 |
||
4223 |
err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec, |
|
4224 |
thr, &clust_rec, |
|
4225 |
&offsets, &heap, &mtr); |
|
4226 |
if (err != DB_SUCCESS) { |
|
4227 |
||
4228 |
goto lock_wait_or_error; |
|
4229 |
}
|
|
4230 |
||
4231 |
if (clust_rec == NULL) { |
|
4232 |
/* The record did not exist in the read view */
|
|
4233 |
ut_ad(prebuilt->select_lock_type == LOCK_NONE); |
|
4234 |
||
4235 |
goto next_rec; |
|
4236 |
}
|
|
4237 |
||
4238 |
if (UNIV_UNLIKELY(rec_get_deleted_flag(clust_rec, comp))) { |
|
4239 |
||
4240 |
/* The record is delete marked: we can skip it */
|
|
4241 |
||
4242 |
if ((srv_locks_unsafe_for_binlog |
|
4243 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
4244 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
4245 |
||
4246 |
/* No need to keep a lock on a delete-marked
|
|
4247 |
record if we do not want to use next-key
|
|
4248 |
locking. */
|
|
4249 |
||
4250 |
row_unlock_for_mysql(prebuilt, TRUE); |
|
4251 |
}
|
|
4252 |
||
4253 |
goto next_rec; |
|
4254 |
}
|
|
4255 |
||
4256 |
if (prebuilt->need_to_access_clustered) { |
|
4257 |
||
4258 |
result_rec = clust_rec; |
|
4259 |
||
4260 |
ut_ad(rec_offs_validate(result_rec, clust_index, |
|
4261 |
offsets)); |
|
4262 |
} else { |
|
4263 |
/* We used 'offsets' for the clust rec, recalculate
|
|
4264 |
them for 'rec' */
|
|
4265 |
offsets = rec_get_offsets(rec, index, offsets, |
|
4266 |
ULINT_UNDEFINED, &heap); |
|
4267 |
result_rec = rec; |
|
4268 |
}
|
|
4269 |
} else { |
|
4270 |
result_rec = rec; |
|
4271 |
}
|
|
4272 |
||
4273 |
/* We found a qualifying record 'result_rec'. At this point,
|
|
4274 |
'offsets' are associated with 'result_rec'. */
|
|
4275 |
||
4276 |
ut_ad(rec_offs_validate(result_rec, |
|
4277 |
result_rec != rec ? clust_index : index, |
|
4278 |
offsets)); |
|
4279 |
||
4280 |
if ((match_mode == ROW_SEL_EXACT |
|
4281 |
|| prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD) |
|
4282 |
&& prebuilt->select_lock_type == LOCK_NONE |
|
4283 |
&& !prebuilt->templ_contains_blob |
|
4284 |
&& !prebuilt->clust_index_was_generated |
|
4285 |
&& !prebuilt->used_in_HANDLER |
|
4286 |
&& prebuilt->template_type |
|
4287 |
!= ROW_MYSQL_DUMMY_TEMPLATE) { |
|
4288 |
||
4289 |
/* Inside an update, for example, we do not cache rows,
|
|
4290 |
since we may use the cursor position to do the actual
|
|
4291 |
update, that is why we require ...lock_type == LOCK_NONE.
|
|
4292 |
Since we keep space in prebuilt only for the BLOBs of
|
|
4293 |
a single row, we cannot cache rows in the case there
|
|
4294 |
are BLOBs in the fields to be fetched. In HANDLER we do
|
|
4295 |
not cache rows because there the cursor is a scrollable
|
|
4296 |
cursor. */
|
|
4297 |
some_fields_in_buffer= (index != clust_index && |
|
4298 |
prebuilt->idx_cond_func); |
|
4299 |
||
4300 |
row_sel_push_cache_row_for_mysql(prebuilt, result_rec, |
|
4301 |
offsets, |
|
4302 |
some_fields_in_buffer? |
|
4303 |
prebuilt->n_index_fields: 0, |
|
4304 |
buf); |
|
4305 |
if (prebuilt->n_fetch_cached == MYSQL_FETCH_CACHE_SIZE) { |
|
4306 |
||
4307 |
goto got_row; |
|
4308 |
}
|
|
4309 |
||
4310 |
goto next_rec; |
|
4311 |
} else { |
|
4312 |
if (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE) { |
|
4313 |
memcpy(buf + 4, result_rec |
|
4314 |
- rec_offs_extra_size(offsets), |
|
4315 |
rec_offs_size(offsets)); |
|
4316 |
mach_write_to_4(buf, |
|
4317 |
rec_offs_extra_size(offsets) + 4); |
|
4318 |
} else { |
|
4319 |
if (!row_sel_store_mysql_rec(buf, prebuilt, |
|
4320 |
result_rec, offsets, |
|
4321 |
prebuilt->idx_cond_func? |
|
4322 |
prebuilt->n_index_fields: 0, |
|
4323 |
prebuilt->n_template)) { |
|
4324 |
err = DB_TOO_BIG_RECORD; |
|
4325 |
||
4326 |
goto lock_wait_or_error; |
|
4327 |
}
|
|
4328 |
}
|
|
4329 |
||
4330 |
if (prebuilt->clust_index_was_generated) { |
|
4331 |
if (result_rec != rec) { |
|
4332 |
offsets = rec_get_offsets( |
|
4333 |
rec, index, offsets, ULINT_UNDEFINED, |
|
4334 |
&heap); |
|
4335 |
}
|
|
4336 |
row_sel_store_row_id_to_prebuilt(prebuilt, rec, |
|
4337 |
index, offsets); |
|
4338 |
}
|
|
4339 |
}
|
|
4340 |
||
4341 |
/* From this point on, 'offsets' are invalid. */
|
|
4342 |
||
4343 |
got_row: |
|
4344 |
/* We have an optimization to save CPU time: if this is a consistent
|
|
4345 |
read on a unique condition on the clustered index, then we do not
|
|
4346 |
store the pcur position, because any fetch next or prev will anyway
|
|
4347 |
return 'end of file'. Exceptions are locking reads and the MySQL
|
|
4348 |
HANDLER command where the user can move the cursor with PREV or NEXT
|
|
4349 |
even after a unique search. */
|
|
4350 |
||
4351 |
err = DB_SUCCESS; |
|
4352 |
||
4353 |
idx_cond_failed: |
|
4354 |
if (!unique_search_from_clust_index |
|
4355 |
|| prebuilt->select_lock_type != LOCK_NONE |
|
4356 |
|| prebuilt->used_in_HANDLER) { |
|
4357 |
||
4358 |
/* Inside an update always store the cursor position */
|
|
4359 |
||
4360 |
btr_pcur_store_position(pcur, &mtr); |
|
4361 |
}
|
|
4362 |
||
4363 |
goto normal_return; |
|
4364 |
||
4365 |
next_rec: |
|
4366 |
/* Reset the old and new "did semi-consistent read" flags. */
|
|
4367 |
get_clust_rec= FALSE; |
|
4368 |
if (UNIV_UNLIKELY(prebuilt->row_read_type |
|
4369 |
== ROW_READ_DID_SEMI_CONSISTENT)) { |
|
4370 |
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
|
4371 |
}
|
|
4372 |
did_semi_consistent_read = FALSE; |
|
4373 |
||
4374 |
if (UNIV_UNLIKELY(srv_locks_unsafe_for_binlog |
|
4375 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
4376 |
&& prebuilt->select_lock_type != LOCK_NONE) { |
|
4377 |
||
4378 |
trx_reset_new_rec_lock_info(trx); |
|
4379 |
}
|
|
4380 |
||
4381 |
/*-------------------------------------------------------------*/
|
|
4382 |
/* PHASE 5: Move the cursor to the next index record */
|
|
4383 |
||
4384 |
if (UNIV_UNLIKELY(mtr_has_extra_clust_latch)) { |
|
4385 |
/* We must commit mtr if we are moving to the next
|
|
4386 |
non-clustered index record, because we could break the
|
|
4387 |
latching order if we would access a different clustered
|
|
4388 |
index page right away without releasing the previous. */
|
|
4389 |
||
4390 |
btr_pcur_store_position(pcur, &mtr); |
|
4391 |
||
4392 |
mtr_commit(&mtr); |
|
4393 |
mtr_has_extra_clust_latch = FALSE; |
|
4394 |
||
4395 |
mtr_start(&mtr); |
|
4396 |
if (sel_restore_position_for_mysql(&same_user_rec, |
|
4397 |
BTR_SEARCH_LEAF, |
|
4398 |
pcur, moves_up, &mtr)) { |
|
4399 |
#ifdef UNIV_SEARCH_DEBUG
|
|
4400 |
cnt++; |
|
4401 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
4402 |
||
4403 |
goto rec_loop; |
|
4404 |
}
|
|
4405 |
}
|
|
4406 |
||
4407 |
if (moves_up) { |
|
4408 |
if (UNIV_UNLIKELY(!btr_pcur_move_to_next(pcur, &mtr))) { |
|
4409 |
not_moved: |
|
4410 |
btr_pcur_store_position(pcur, &mtr); |
|
4411 |
||
4412 |
if (match_mode != 0) { |
|
4413 |
err = DB_RECORD_NOT_FOUND; |
|
4414 |
} else { |
|
4415 |
err = DB_END_OF_INDEX; |
|
4416 |
}
|
|
4417 |
||
4418 |
goto normal_return; |
|
4419 |
}
|
|
4420 |
} else { |
|
4421 |
if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) { |
|
4422 |
goto not_moved; |
|
4423 |
}
|
|
4424 |
}
|
|
4425 |
||
4426 |
#ifdef UNIV_SEARCH_DEBUG
|
|
4427 |
cnt++; |
|
4428 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
4429 |
||
4430 |
goto rec_loop; |
|
4431 |
||
4432 |
lock_wait_or_error: |
|
4433 |
/* Reset the old and new "did semi-consistent read" flags. */
|
|
4434 |
if (UNIV_UNLIKELY(prebuilt->row_read_type |
|
4435 |
== ROW_READ_DID_SEMI_CONSISTENT)) { |
|
4436 |
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
|
4437 |
}
|
|
4438 |
did_semi_consistent_read = FALSE; |
|
4439 |
||
4440 |
/*-------------------------------------------------------------*/
|
|
4441 |
||
4442 |
btr_pcur_store_position(pcur, &mtr); |
|
4443 |
||
4444 |
mtr_commit(&mtr); |
|
4445 |
mtr_has_extra_clust_latch = FALSE; |
|
4446 |
||
4447 |
trx->error_state = err; |
|
4448 |
||
4449 |
/* The following is a patch for MySQL */
|
|
4450 |
||
4451 |
que_thr_stop_for_mysql(thr); |
|
4452 |
||
4453 |
thr->lock_state = QUE_THR_LOCK_ROW; |
|
4454 |
||
4455 |
if (row_mysql_handle_errors(&err, trx, thr, NULL)) { |
|
4456 |
/* It was a lock wait, and it ended */
|
|
4457 |
||
4458 |
thr->lock_state = QUE_THR_LOCK_NOLOCK; |
|
4459 |
mtr_start(&mtr); |
|
4460 |
||
4461 |
sel_restore_position_for_mysql(&same_user_rec, |
|
4462 |
BTR_SEARCH_LEAF, pcur, |
|
4463 |
moves_up, &mtr); |
|
4464 |
||
4465 |
if ((srv_locks_unsafe_for_binlog |
|
4466 |
|| trx->isolation_level == TRX_ISO_READ_COMMITTED) |
|
4467 |
&& !same_user_rec) { |
|
4468 |
||
4469 |
/* Since we were not able to restore the cursor
|
|
4470 |
on the same user record, we cannot use
|
|
4471 |
row_unlock_for_mysql() to unlock any records, and
|
|
4472 |
we must thus reset the new rec lock info. Since
|
|
4473 |
in lock0lock.c we have blocked the inheriting of gap
|
|
4474 |
X-locks, we actually do not have any new record locks
|
|
4475 |
set in this case.
|
|
4476 |
||
4477 |
Note that if we were able to restore on the 'same'
|
|
4478 |
user record, it is still possible that we were actually
|
|
4479 |
waiting on a delete-marked record, and meanwhile
|
|
4480 |
it was removed by purge and inserted again by some
|
|
4481 |
other user. But that is no problem, because in
|
|
4482 |
rec_loop we will again try to set a lock, and
|
|
4483 |
new_rec_lock_info in trx will be right at the end. */
|
|
4484 |
||
4485 |
trx_reset_new_rec_lock_info(trx); |
|
4486 |
}
|
|
4487 |
||
4488 |
mode = pcur->search_mode; |
|
4489 |
||
4490 |
goto rec_loop; |
|
4491 |
}
|
|
4492 |
||
4493 |
thr->lock_state = QUE_THR_LOCK_NOLOCK; |
|
4494 |
||
4495 |
#ifdef UNIV_SEARCH_DEBUG
|
|
4496 |
/* fputs("Using ", stderr);
|
|
4497 |
dict_index_name_print(stderr, index);
|
|
4498 |
fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */
|
|
4499 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
4500 |
goto func_exit; |
|
4501 |
||
4502 |
normal_return: |
|
4503 |
/*-------------------------------------------------------------*/
|
|
4504 |
que_thr_stop_for_mysql_no_error(thr, trx); |
|
4505 |
||
4506 |
mtr_commit(&mtr); |
|
4507 |
||
4508 |
if (prebuilt->n_fetch_cached > 0) { |
|
4509 |
row_sel_pop_cached_row_for_mysql(buf, prebuilt); |
|
4510 |
||
4511 |
err = DB_SUCCESS; |
|
4512 |
}
|
|
4513 |
||
4514 |
#ifdef UNIV_SEARCH_DEBUG
|
|
4515 |
/* fputs("Using ", stderr);
|
|
4516 |
dict_index_name_print(stderr, index);
|
|
4517 |
fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */
|
|
4518 |
#endif /* UNIV_SEARCH_DEBUG */ |
|
4519 |
if (err == DB_SUCCESS) { |
|
4520 |
srv_n_rows_read++; |
|
4521 |
}
|
|
4522 |
||
4523 |
func_exit: |
|
4524 |
trx->op_info = ""; |
|
4525 |
if (UNIV_LIKELY_NULL(heap)) { |
|
4526 |
mem_heap_free(heap); |
|
4527 |
}
|
|
4528 |
||
4529 |
/* Set or reset the "did semi-consistent read" flag on return.
|
|
4530 |
The flag did_semi_consistent_read is set if and only if
|
|
4531 |
the record being returned was fetched with a semi-consistent read. */
|
|
4532 |
ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS |
|
4533 |
|| !did_semi_consistent_read); |
|
4534 |
||
4535 |
if (UNIV_UNLIKELY(prebuilt->row_read_type != ROW_READ_WITH_LOCKS)) { |
|
4536 |
if (UNIV_UNLIKELY(did_semi_consistent_read)) { |
|
4537 |
prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT; |
|
4538 |
} else { |
|
4539 |
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
|
4540 |
}
|
|
4541 |
}
|
|
4542 |
return(err); |
|
4543 |
}
|
|
4544 |
||
4545 |
/***********************************************************************
|
|
4546 |
Checks if MySQL at the moment is allowed for this table to retrieve a
|
|
4547 |
consistent read result, or store it to the query cache. */
|
|
4548 |
||
4549 |
ibool
|
|
4550 |
row_search_check_if_query_cache_permitted( |
|
4551 |
/*======================================*/
|
|
4552 |
/* out: TRUE if storing or retrieving
|
|
4553 |
from the query cache is permitted */
|
|
4554 |
trx_t* trx, /* in: transaction object */ |
|
4555 |
const char* norm_name) /* in: concatenation of database name, |
|
4556 |
'/' char, table name */
|
|
4557 |
{
|
|
4558 |
dict_table_t* table; |
|
4559 |
ibool ret = FALSE; |
|
4560 |
||
4561 |
table = dict_table_get(norm_name, FALSE); |
|
4562 |
||
4563 |
if (table == NULL) { |
|
4564 |
||
4565 |
return(FALSE); |
|
4566 |
}
|
|
4567 |
||
4568 |
mutex_enter(&kernel_mutex); |
|
4569 |
||
4570 |
/* Start the transaction if it is not started yet */
|
|
4571 |
||
4572 |
trx_start_if_not_started_low(trx); |
|
4573 |
||
4574 |
/* If there are locks on the table or some trx has invalidated the
|
|
4575 |
cache up to our trx id, then ret = FALSE.
|
|
4576 |
We do not check what type locks there are on the table, though only
|
|
4577 |
IX type locks actually would require ret = FALSE. */
|
|
4578 |
||
4579 |
if (UT_LIST_GET_LEN(table->locks) == 0 |
|
4580 |
&& ut_dulint_cmp(trx->id, |
|
4581 |
table->query_cache_inv_trx_id) >= 0) { |
|
4582 |
||
4583 |
ret = TRUE; |
|
4584 |
||
4585 |
/* If the isolation level is high, assign a read view for the
|
|
4586 |
transaction if it does not yet have one */
|
|
4587 |
||
4588 |
if (trx->isolation_level >= TRX_ISO_REPEATABLE_READ |
|
4589 |
&& !trx->read_view) { |
|
4590 |
||
4591 |
trx->read_view = read_view_open_now( |
|
4592 |
trx->id, trx->global_read_view_heap); |
|
4593 |
trx->global_read_view = trx->read_view; |
|
4594 |
}
|
|
4595 |
}
|
|
4596 |
||
4597 |
mutex_exit(&kernel_mutex); |
|
4598 |
||
4599 |
return(ret); |
|
4600 |
}
|
|
4601 |
||
4602 |
/***********************************************************************
|
|
4603 |
Read the AUTOINC column from the current row. If the value is less than
|
|
4604 |
0 and the type is not unsigned then we reset the value to 0. */
|
|
4605 |
static
|
|
4606 |
ib_longlong
|
|
4607 |
row_search_autoinc_read_column( |
|
4608 |
/*===========================*/
|
|
4609 |
/* out: value read from the column */
|
|
4610 |
dict_index_t* index, /* in: index to read from */ |
|
4611 |
const rec_t* rec, /* in: current rec */ |
|
4612 |
ulint col_no, /* in: column number */ |
|
4613 |
ibool unsigned_type) /* in: signed or unsigned flag */ |
|
4614 |
{
|
|
4615 |
ulint len; |
|
4616 |
const byte* data; |
|
4617 |
ib_longlong value; |
|
4618 |
mem_heap_t* heap = NULL; |
|
4619 |
/* Our requirement is that dest should be word aligned. */
|
|
4620 |
byte dest[sizeof(value)]; |
|
4621 |
ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
|
4622 |
ulint* offsets = offsets_; |
|
4623 |
||
4624 |
*offsets_ = sizeof offsets_ / sizeof *offsets_; |
|
4625 |
||
4626 |
/* TODO: We have to cast away the const of rec for now. This needs
|
|
4627 |
to be fixed later.*/
|
|
4628 |
offsets = rec_get_offsets( |
|
4629 |
(rec_t*) rec, index, offsets, ULINT_UNDEFINED, &heap); |
|
4630 |
||
4631 |
/* TODO: We have to cast away the const of rec for now. This needs
|
|
4632 |
to be fixed later.*/
|
|
4633 |
data = rec_get_nth_field((rec_t*)rec, offsets, col_no, &len); |
|
4634 |
||
4635 |
ut_a(len != UNIV_SQL_NULL); |
|
4636 |
ut_a(len <= sizeof value); |
|
4637 |
||
4638 |
mach_read_int_type(dest, data, len, unsigned_type); |
|
4639 |
||
4640 |
/* The assumption here is that the AUTOINC value can't be negative
|
|
4641 |
and that dest is word aligned. */
|
|
4642 |
switch (len) { |
|
4643 |
case 8: |
|
4644 |
value = *(ib_longlong*) dest; |
|
4645 |
break; |
|
4646 |
||
4647 |
case 4: |
|
4648 |
value = *(ib_uint32_t*) dest; |
|
4649 |
break; |
|
4650 |
||
4651 |
case 3: |
|
4652 |
value = *(ib_uint32_t*) dest; |
|
4653 |
value &= 0xFFFFFF; |
|
4654 |
break; |
|
4655 |
||
4656 |
case 2: |
|
4657 |
value = *(uint16 *) dest; |
|
4658 |
break; |
|
4659 |
||
4660 |
case 1: |
|
4661 |
value = *dest; |
|
4662 |
break; |
|
4663 |
||
4664 |
default: |
|
4665 |
ut_error; |
|
4666 |
}
|
|
4667 |
||
4668 |
if (UNIV_LIKELY_NULL(heap)) { |
|
4669 |
mem_heap_free(heap); |
|
4670 |
}
|
|
4671 |
||
4672 |
if (!unsigned_type && value < 0) { |
|
4673 |
value = 0; |
|
4674 |
}
|
|
4675 |
||
4676 |
return(value); |
|
4677 |
}
|
|
4678 |
||
4679 |
/***********************************************************************
|
|
4680 |
Get the last row. */
|
|
4681 |
static
|
|
4682 |
const rec_t* |
|
4683 |
row_search_autoinc_get_rec( |
|
4684 |
/*=======================*/
|
|
4685 |
/* out: current rec or NULL */
|
|
4686 |
btr_pcur_t* pcur, /* in: the current cursor */ |
|
4687 |
mtr_t* mtr) /* in: mini transaction */ |
|
4688 |
{
|
|
4689 |
do { |
|
4690 |
const rec_t* rec = btr_pcur_get_rec(pcur); |
|
4691 |
||
4692 |
if (page_rec_is_user_rec(rec)) { |
|
4693 |
return(rec); |
|
4694 |
}
|
|
4695 |
} while (btr_pcur_move_to_prev(pcur, mtr)); |
|
4696 |
||
4697 |
return(NULL); |
|
4698 |
}
|
|
4699 |
||
4700 |
/***********************************************************************
|
|
4701 |
Read the max AUTOINC value from an index. */
|
|
4702 |
||
4703 |
ulint
|
|
4704 |
row_search_max_autoinc( |
|
4705 |
/*===================*/
|
|
4706 |
/* out: DB_SUCCESS if all OK else
|
|
4707 |
error code, DB_RECORD_NOT_FOUND if
|
|
4708 |
column name can't be found in index */
|
|
4709 |
dict_index_t* index, /* in: index to search */ |
|
4710 |
const char* col_name, /* in: name of autoinc column */ |
|
4711 |
ib_longlong* value) /* out: AUTOINC value read */ |
|
4712 |
{
|
|
4713 |
ulint i; |
|
4714 |
ulint n_cols; |
|
4715 |
dict_field_t* dfield = NULL; |
|
4716 |
ulint error = DB_SUCCESS; |
|
4717 |
||
4718 |
n_cols = dict_index_get_n_ordering_defined_by_user(index); |
|
4719 |
||
4720 |
/* Search the index for the AUTOINC column name */
|
|
4721 |
for (i = 0; i < n_cols; ++i) { |
|
4722 |
dfield = dict_index_get_nth_field(index, i); |
|
4723 |
||
4724 |
if (strcmp(col_name, dfield->name) == 0) { |
|
4725 |
break; |
|
4726 |
}
|
|
4727 |
}
|
|
4728 |
||
4729 |
*value = 0; |
|
4730 |
||
4731 |
/* Must find the AUTOINC column name */
|
|
4732 |
if (i < n_cols && dfield) { |
|
4733 |
mtr_t mtr; |
|
4734 |
btr_pcur_t pcur; |
|
4735 |
||
4736 |
mtr_start(&mtr); |
|
4737 |
||
4738 |
/* Open at the high/right end (FALSE), and INIT
|
|
4739 |
cursor (TRUE) */
|
|
4740 |
btr_pcur_open_at_index_side( |
|
4741 |
FALSE, index, BTR_SEARCH_LEAF, &pcur, TRUE, &mtr); |
|
4742 |
||
4743 |
if (page_get_n_recs(btr_pcur_get_page(&pcur)) > 0) { |
|
4744 |
const rec_t* rec; |
|
4745 |
||
4746 |
rec = row_search_autoinc_get_rec(&pcur, &mtr); |
|
4747 |
||
4748 |
if (rec != NULL) { |
|
4749 |
ibool unsigned_type = ( |
|
4750 |
dfield->col->prtype & DATA_UNSIGNED); |
|
4751 |
||
4752 |
*value = row_search_autoinc_read_column( |
|
4753 |
index, rec, i, unsigned_type); |
|
4754 |
}
|
|
4755 |
}
|
|
4756 |
||
4757 |
btr_pcur_close(&pcur); |
|
4758 |
||
4759 |
mtr_commit(&mtr); |
|
4760 |
} else { |
|
4761 |
error = DB_RECORD_NOT_FOUND; |
|
4762 |
}
|
|
4763 |
||
4764 |
return(error); |
|
4765 |
}
|