~drizzle-trunk/drizzle/development

1208.3.3 by brian
Adding missingfile.
1
/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
2
 *  vim:expandtab:shiftwidth=2:tabstop=2:smarttab:
3
 *
4
 *  Copyright (C) 2008 Sun Microsystems
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; version 2 of the License.
9
 *
10
 *  This program is distributed in the hope that it will be useful,
11
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 *  GNU General Public License for more details.
14
 *
15
 *  You should have received a copy of the GNU General Public License
16
 *  along with this program; if not, write to the Free Software
17
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18
 */
19
20
/**
21
  @file Cursor.cc
22
23
  Handler-calling-functions
24
*/
25
26
#include "drizzled/server_includes.h"
27
#include "mysys/hash.h"
28
#include "drizzled/error.h"
29
#include "drizzled/gettext.h"
30
#include "drizzled/probes.h"
31
#include "drizzled/sql_parse.h"
32
#include "drizzled/cost_vect.h"
33
#include "drizzled/session.h"
34
#include "drizzled/sql_base.h"
35
#include "drizzled/replication_services.h"
36
#include "drizzled/lock.h"
37
#include "drizzled/item/int.h"
38
#include "drizzled/item/empty_string.h"
39
#include "drizzled/unireg.h" // for mysql_frm_type
40
#include "drizzled/field/timestamp.h"
41
#include "drizzled/message/table.pb.h"
42
#include "drizzled/plugin/client.h"
43
44
using namespace std;
45
using namespace drizzled;
46
47
KEY_CREATE_INFO default_key_create_info= { HA_KEY_ALG_UNDEF, 0, {NULL,0} };
48
49
/* number of entries in storage_engines[] */
50
uint32_t total_ha= 0;
51
/* number of storage engines (from storage_engines[]) that support 2pc */
52
uint32_t total_ha_2pc= 0;
53
/* size of savepoint storage area (see ha_init) */
54
uint32_t savepoint_alloc_size= 0;
55
56
const char *ha_row_type[] = {
57
  "", "FIXED", "DYNAMIC", "COMPRESSED", "REDUNDANT", "COMPACT", "PAGE", "?","?","?"
58
};
59
60
const char *tx_isolation_names[] =
61
{ "READ-UNCOMMITTED", "READ-COMMITTED", "REPEATABLE-READ", "SERIALIZABLE",
62
  NULL};
63
64
TYPELIB tx_isolation_typelib= {array_elements(tx_isolation_names)-1,"",
65
                               tx_isolation_names, NULL};
66
67
68
/**
69
  Register Cursor error messages for use with my_error().
70
71
  @retval
72
    0           OK
73
  @retval
74
    !=0         Error
75
*/
76
77
int ha_init_errors(void)
78
{
79
#define SETMSG(nr, msg) errmsgs[(nr) - HA_ERR_FIRST]= (msg)
80
  const char    **errmsgs;
81
82
  /* Allocate a pointer array for the error message strings. */
83
  /* Zerofill it to avoid uninitialized gaps. */
84
  if (! (errmsgs= (const char**) malloc(HA_ERR_ERRORS * sizeof(char*))))
85
    return 1;
86
  memset(errmsgs, 0, HA_ERR_ERRORS * sizeof(char *));
87
88
  /* Set the dedicated error messages. */
89
  SETMSG(HA_ERR_KEY_NOT_FOUND,          ER(ER_KEY_NOT_FOUND));
90
  SETMSG(HA_ERR_FOUND_DUPP_KEY,         ER(ER_DUP_KEY));
91
  SETMSG(HA_ERR_RECORD_CHANGED,         "Update wich is recoverable");
92
  SETMSG(HA_ERR_WRONG_INDEX,            "Wrong index given to function");
93
  SETMSG(HA_ERR_CRASHED,                ER(ER_NOT_KEYFILE));
94
  SETMSG(HA_ERR_WRONG_IN_RECORD,        ER(ER_CRASHED_ON_USAGE));
95
  SETMSG(HA_ERR_OUT_OF_MEM,             "Table Cursor out of memory");
96
  SETMSG(HA_ERR_NOT_A_TABLE,            "Incorrect file format '%.64s'");
97
  SETMSG(HA_ERR_WRONG_COMMAND,          "Command not supported");
98
  SETMSG(HA_ERR_OLD_FILE,               ER(ER_OLD_KEYFILE));
99
  SETMSG(HA_ERR_NO_ACTIVE_RECORD,       "No record read in update");
100
  SETMSG(HA_ERR_RECORD_DELETED,         "Intern record deleted");
101
  SETMSG(HA_ERR_RECORD_FILE_FULL,       ER(ER_RECORD_FILE_FULL));
102
  SETMSG(HA_ERR_INDEX_FILE_FULL,        "No more room in index file '%.64s'");
103
  SETMSG(HA_ERR_END_OF_FILE,            "End in next/prev/first/last");
104
  SETMSG(HA_ERR_UNSUPPORTED,            ER(ER_ILLEGAL_HA));
105
  SETMSG(HA_ERR_TO_BIG_ROW,             "Too big row");
106
  SETMSG(HA_WRONG_CREATE_OPTION,        "Wrong create option");
107
  SETMSG(HA_ERR_FOUND_DUPP_UNIQUE,      ER(ER_DUP_UNIQUE));
108
  SETMSG(HA_ERR_UNKNOWN_CHARSET,        "Can't open charset");
109
  SETMSG(HA_ERR_WRONG_MRG_TABLE_DEF,    ER(ER_WRONG_MRG_TABLE));
110
  SETMSG(HA_ERR_CRASHED_ON_REPAIR,      ER(ER_CRASHED_ON_REPAIR));
111
  SETMSG(HA_ERR_CRASHED_ON_USAGE,       ER(ER_CRASHED_ON_USAGE));
112
  SETMSG(HA_ERR_LOCK_WAIT_TIMEOUT,      ER(ER_LOCK_WAIT_TIMEOUT));
113
  SETMSG(HA_ERR_LOCK_TABLE_FULL,        ER(ER_LOCK_TABLE_FULL));
114
  SETMSG(HA_ERR_READ_ONLY_TRANSACTION,  ER(ER_READ_ONLY_TRANSACTION));
115
  SETMSG(HA_ERR_LOCK_DEADLOCK,          ER(ER_LOCK_DEADLOCK));
116
  SETMSG(HA_ERR_CANNOT_ADD_FOREIGN,     ER(ER_CANNOT_ADD_FOREIGN));
117
  SETMSG(HA_ERR_NO_REFERENCED_ROW,      ER(ER_NO_REFERENCED_ROW_2));
118
  SETMSG(HA_ERR_ROW_IS_REFERENCED,      ER(ER_ROW_IS_REFERENCED_2));
119
  SETMSG(HA_ERR_NO_SAVEPOINT,           "No savepoint with that name");
120
  SETMSG(HA_ERR_NON_UNIQUE_BLOCK_SIZE,  "Non unique key block size");
121
  SETMSG(HA_ERR_NO_SUCH_TABLE,          "No such table: '%.64s'");
122
  SETMSG(HA_ERR_TABLE_EXIST,            ER(ER_TABLE_EXISTS_ERROR));
123
  SETMSG(HA_ERR_NO_CONNECTION,          "Could not connect to storage engine");
124
  SETMSG(HA_ERR_TABLE_DEF_CHANGED,      ER(ER_TABLE_DEF_CHANGED));
125
  SETMSG(HA_ERR_FOREIGN_DUPLICATE_KEY,  "FK constraint would lead to duplicate key");
126
  SETMSG(HA_ERR_TABLE_NEEDS_UPGRADE,    ER(ER_TABLE_NEEDS_UPGRADE));
127
  SETMSG(HA_ERR_TABLE_READONLY,         ER(ER_OPEN_AS_READONLY));
128
  SETMSG(HA_ERR_AUTOINC_READ_FAILED,    ER(ER_AUTOINC_READ_FAILED));
129
  SETMSG(HA_ERR_AUTOINC_ERANGE,         ER(ER_WARN_DATA_OUT_OF_RANGE));
130
131
  /* Register the error messages for use with my_error(). */
132
  return my_error_register(errmsgs, HA_ERR_FIRST, HA_ERR_LAST);
133
}
134
135
136
/**
137
  Unregister Cursor error messages.
138
139
  @retval
140
    0           OK
141
  @retval
142
    !=0         Error
143
*/
144
static int ha_finish_errors(void)
145
{
146
  const char    **errmsgs;
147
148
  /* Allocate a pointer array for the error message strings. */
149
  if (! (errmsgs= my_error_unregister(HA_ERR_FIRST, HA_ERR_LAST)))
150
    return 1;
151
  free((unsigned char*) errmsgs);
152
  return 0;
153
}
154
155
int ha_init()
156
{
157
  int error= 0;
158
159
  assert(total_ha < MAX_HA);
160
  /*
161
    Check if there is a transaction-capable storage engine besides the
162
    binary log (which is considered a transaction-capable storage engine in
163
    counting total_ha)
164
  */
165
  savepoint_alloc_size+= sizeof(SAVEPOINT);
166
  return error;
167
}
168
169
int ha_end()
170
{
171
  int error= 0;
172
173
  /*
174
    This should be eventualy based  on the graceful shutdown flag.
175
    So if flag is equal to HA_PANIC_CLOSE, the deallocate
176
    the errors.
177
  */
178
  if (ha_finish_errors())
179
    error= 1;
180
181
  return error;
182
}
183
184
185
186
/* ========================================================================
187
 ======================= TRANSACTIONS ===================================*/
188
189
/**
190
  Transaction handling in the server
191
  ==================================
192
193
  In each client connection, MySQL maintains two transactional
194
  states:
195
  - a statement transaction,
196
  - a standard, also called normal transaction.
197
198
  Historical note
199
  ---------------
200
  "Statement transaction" is a non-standard term that comes
201
  from the times when MySQL supported BerkeleyDB storage engine.
202
203
  First of all, it should be said that in BerkeleyDB auto-commit
204
  mode auto-commits operations that are atomic to the storage
205
  engine itself, such as a write of a record, and are too
206
  high-granular to be atomic from the application perspective
207
  (MySQL). One SQL statement could involve many BerkeleyDB
208
  auto-committed operations and thus BerkeleyDB auto-commit was of
209
  little use to MySQL.
210
211
  Secondly, instead of SQL standard savepoints, BerkeleyDB
212
  provided the concept of "nested transactions". In a nutshell,
213
  transactions could be arbitrarily nested, but when the parent
214
  transaction was committed or aborted, all its child (nested)
215
  transactions were handled committed or aborted as well.
216
  Commit of a nested transaction, in turn, made its changes
217
  visible, but not durable: it destroyed the nested transaction,
218
  all its changes would become available to the parent and
219
  currently active nested transactions of this parent.
220
221
  So the mechanism of nested transactions was employed to
222
  provide "all or nothing" guarantee of SQL statements
223
  required by the standard.
224
  A nested transaction would be created at start of each SQL
225
  statement, and destroyed (committed or aborted) at statement
226
  end. Such nested transaction was internally referred to as
227
  a "statement transaction" and gave birth to the term.
228
229
  <Historical note ends>
230
231
  Since then a statement transaction is started for each statement
232
  that accesses transactional tables or uses the binary log.  If
233
  the statement succeeds, the statement transaction is committed.
234
  If the statement fails, the transaction is rolled back. Commits
235
  of statement transactions are not durable -- each such
236
  transaction is nested in the normal transaction, and if the
237
  normal transaction is rolled back, the effects of all enclosed
238
  statement transactions are undone as well.  Technically,
239
  a statement transaction can be viewed as a savepoint which is
240
  maintained automatically in order to make effects of one
241
  statement atomic.
242
243
  The normal transaction is started by the user and is ended
244
  usually upon a user request as well. The normal transaction
245
  encloses transactions of all statements issued between
246
  its beginning and its end.
247
  In autocommit mode, the normal transaction is equivalent
248
  to the statement transaction.
249
250
  Since MySQL supports PSEA (pluggable storage engine
251
  architecture), more than one transactional engine can be
252
  active at a time. Hence transactions, from the server
253
  point of view, are always distributed. In particular,
254
  transactional state is maintained independently for each
255
  engine. In order to commit a transaction the two phase
256
  commit protocol is employed.
257
258
  Not all statements are executed in context of a transaction.
259
  Administrative and status information statements do not modify
260
  engine data, and thus do not start a statement transaction and
261
  also have no effect on the normal transaction. Examples of such
262
  statements are SHOW STATUS and RESET SLAVE.
263
264
  Similarly DDL statements are not transactional,
265
  and therefore a transaction is [almost] never started for a DDL
266
  statement. The difference between a DDL statement and a purely
267
  administrative statement though is that a DDL statement always
268
  commits the current transaction before proceeding, if there is
269
  any.
270
271
  At last, SQL statements that work with non-transactional
272
  engines also have no effect on the transaction state of the
273
  connection. Even though they are written to the binary log,
274
  and the binary log is, overall, transactional, the writes
275
  are done in "write-through" mode, directly to the binlog
276
  file, followed with a OS cache sync, in other words,
277
  bypassing the binlog undo log (translog).
278
  They do not commit the current normal transaction.
279
  A failure of a statement that uses non-transactional tables
280
  would cause a rollback of the statement transaction, but
281
  in case there no non-transactional tables are used,
282
  no statement transaction is started.
283
284
  Data layout
285
  -----------
286
287
  The server stores its transaction-related data in
288
  session->transaction. This structure has two members of type
289
  Session_TRANS. These members correspond to the statement and
290
  normal transactions respectively:
291
292
  - session->transaction.stmt contains a list of engines
293
  that are participating in the given statement
294
  - session->transaction.all contains a list of engines that
295
  have participated in any of the statement transactions started
296
  within the context of the normal transaction.
297
  Each element of the list contains a pointer to the storage
298
  engine, engine-specific transactional data, and engine-specific
299
  transaction flags.
300
301
  In autocommit mode session->transaction.all is empty.
302
  Instead, data of session->transaction.stmt is
303
  used to commit/rollback the normal transaction.
304
305
  The list of registered engines has a few important properties:
306
  - no engine is registered in the list twice
307
  - engines are present in the list a reverse temporal order --
308
  new participants are always added to the beginning of the list.
309
310
  Transaction life cycle
311
  ----------------------
312
313
  When a new connection is established, session->transaction
314
  members are initialized to an empty state.
315
  If a statement uses any tables, all affected engines
316
  are registered in the statement engine list. In
317
  non-autocommit mode, the same engines are registered in
318
  the normal transaction list.
319
  At the end of the statement, the server issues a commit
320
  or a roll back for all engines in the statement list.
321
  At this point transaction flags of an engine, if any, are
322
  propagated from the statement list to the list of the normal
323
  transaction.
324
  When commit/rollback is finished, the statement list is
325
  cleared. It will be filled in again by the next statement,
326
  and emptied again at the next statement's end.
327
328
  The normal transaction is committed in a similar way
329
  (by going over all engines in session->transaction.all list)
330
  but at different times:
331
  - upon COMMIT SQL statement is issued by the user
332
  - implicitly, by the server, at the beginning of a DDL statement
333
  or SET AUTOCOMMIT={0|1} statement.
334
335
  The normal transaction can be rolled back as well:
336
  - if the user has requested so, by issuing ROLLBACK SQL
337
  statement
338
  - if one of the storage engines requested a rollback
339
  by setting session->transaction_rollback_request. This may
340
  happen in case, e.g., when the transaction in the engine was
341
  chosen a victim of the internal deadlock resolution algorithm
342
  and rolled back internally. When such a situation happens, there
343
  is little the server can do and the only option is to rollback
344
  transactions in all other participating engines.  In this case
345
  the rollback is accompanied by an error sent to the user.
346
347
  As follows from the use cases above, the normal transaction
348
  is never committed when there is an outstanding statement
349
  transaction. In most cases there is no conflict, since
350
  commits of the normal transaction are issued by a stand-alone
351
  administrative or DDL statement, thus no outstanding statement
352
  transaction of the previous statement exists. Besides,
353
  all statements that manipulate with the normal transaction
354
  are prohibited in stored functions and triggers, therefore
355
  no conflicting situation can occur in a sub-statement either.
356
  The remaining rare cases when the server explicitly has
357
  to commit the statement transaction prior to committing the normal
358
  one cover error-handling scenarios (see for example
359
  ?).
360
361
  When committing a statement or a normal transaction, the server
362
  either uses the two-phase commit protocol, or issues a commit
363
  in each engine independently. The two-phase commit protocol
364
  is used only if:
365
  - all participating engines support two-phase commit (provide
366
    plugin::StorageEngine::prepare PSEA API call) and
367
  - transactions in at least two engines modify data (i.e. are
368
  not read-only).
369
370
  Note that the two phase commit is used for
371
  statement transactions, even though they are not durable anyway.
372
  This is done to ensure logical consistency of data in a multiple-
373
  engine transaction.
374
  For example, imagine that some day MySQL supports unique
375
  constraint checks deferred till the end of statement. In such
376
  case a commit in one of the engines may yield ER_DUP_KEY,
377
  and MySQL should be able to gracefully abort statement
378
  transactions of other participants.
379
380
  After the normal transaction has been committed,
381
  session->transaction.all list is cleared.
382
383
  When a connection is closed, the current normal transaction, if
384
  any, is rolled back.
385
386
  Roles and responsibilities
387
  --------------------------
388
389
  The server has no way to know that an engine participates in
390
  the statement and a transaction has been started
391
  in it unless the engine says so. Thus, in order to be
392
  a part of a transaction, the engine must "register" itself.
393
  This is done by invoking trans_register_ha() server call.
394
  Normally the engine registers itself whenever Cursor::external_lock()
395
  is called. trans_register_ha() can be invoked many times: if
396
  an engine is already registered, the call does nothing.
397
  In case autocommit is not set, the engine must register itself
398
  twice -- both in the statement list and in the normal transaction
399
  list.
400
  In which list to register is a parameter of trans_register_ha().
401
402
  Note, that although the registration interface in itself is
403
  fairly clear, the current usage practice often leads to undesired
404
  effects. E.g. since a call to trans_register_ha() in most engines
405
  is embedded into implementation of Cursor::external_lock(), some
406
  DDL statements start a transaction (at least from the server
407
  point of view) even though they are not expected to. E.g.
408
  CREATE TABLE does not start a transaction, since
409
  Cursor::external_lock() is never called during CREATE TABLE. But
410
  CREATE TABLE ... SELECT does, since Cursor::external_lock() is
411
  called for the table that is being selected from. This has no
412
  practical effects currently, but must be kept in mind
413
  nevertheless.
414
415
  Once an engine is registered, the server will do the rest
416
  of the work.
417
418
  During statement execution, whenever any of data-modifying
419
  PSEA API methods is used, e.g. Cursor::write_row() or
420
  Cursor::update_row(), the read-write flag is raised in the
421
  statement transaction for the involved engine.
422
  Currently All PSEA calls are "traced", and the data can not be
423
  changed in a way other than issuing a PSEA call. Important:
424
  unless this invariant is preserved the server will not know that
425
  a transaction in a given engine is read-write and will not
426
  involve the two-phase commit protocol!
427
428
  At the end of a statement, server call
429
  ha_autocommit_or_rollback() is invoked. This call in turn
430
  invokes plugin::StorageEngine::prepare() for every involved engine.
431
  Prepare is followed by a call to plugin::StorageEngine::commit_one_phase()
432
  If a one-phase commit will suffice, plugin::StorageEngine::prepare() is not
433
  invoked and the server only calls plugin::StorageEngine::commit_one_phase().
434
  At statement commit, the statement-related read-write engine
435
  flag is propagated to the corresponding flag in the normal
436
  transaction.  When the commit is complete, the list of registered
437
  engines is cleared.
438
439
  Rollback is handled in a similar fashion.
440
441
  Additional notes on DDL and the normal transaction.
442
  ---------------------------------------------------
443
444
  DDLs and operations with non-transactional engines
445
  do not "register" in session->transaction lists, and thus do not
446
  modify the transaction state. Besides, each DDL in
447
  MySQL is prefixed with an implicit normal transaction commit
448
  (a call to Session::endActiveTransaction()), and thus leaves nothing
449
  to modify.
450
  However, as it has been pointed out with CREATE TABLE .. SELECT,
451
  some DDL statements can start a *new* transaction.
452
453
  Behaviour of the server in this case is currently badly
454
  defined.
455
  DDL statements use a form of "semantic" logging
456
  to maintain atomicity: if CREATE TABLE .. SELECT failed,
457
  the newly created table is deleted.
458
  In addition, some DDL statements issue interim transaction
459
  commits: e.g. ALTER Table issues a commit after data is copied
460
  from the original table to the internal temporary table. Other
461
  statements, e.g. CREATE TABLE ... SELECT do not always commit
462
  after itself.
463
  And finally there is a group of DDL statements such as
464
  RENAME/DROP Table that doesn't start a new transaction
465
  and doesn't commit.
466
467
  This diversity makes it hard to say what will happen if
468
  by chance a stored function is invoked during a DDL --
469
  whether any modifications it makes will be committed or not
470
  is not clear. Fortunately, SQL grammar of few DDLs allows
471
  invocation of a stored function.
472
473
  A consistent behaviour is perhaps to always commit the normal
474
  transaction after all DDLs, just like the statement transaction
475
  is always committed at the end of all statements.
476
*/
477
478
/**
479
  Register a storage engine for a transaction.
480
481
  Every storage engine MUST call this function when it starts
482
  a transaction or a statement (that is it must be called both for the
483
  "beginning of transaction" and "beginning of statement").
484
  Only storage engines registered for the transaction/statement
485
  will know when to commit/rollback it.
486
487
  @note
488
    trans_register_ha is idempotent - storage engine may register many
489
    times per transaction.
490
491
*/
492
void trans_register_ha(Session *session, bool all, plugin::StorageEngine *engine)
493
{
494
  Session_TRANS *trans;
495
  Ha_trx_info *ha_info;
496
497
  if (all)
498
  {
499
    trans= &session->transaction.all;
500
    session->server_status|= SERVER_STATUS_IN_TRANS;
501
  }
502
  else
503
    trans= &session->transaction.stmt;
504
505
  ha_info= session->ha_data[engine->getSlot()].ha_info + static_cast<unsigned>(all);
506
507
  if (ha_info->is_started())
508
    return; /* already registered, return */
509
510
  ha_info->register_ha(trans, engine);
511
512
  trans->no_2pc|= not engine->has_2pc();
513
  if (session->transaction.xid_state.xid.is_null())
514
    session->transaction.xid_state.xid.set(session->query_id);
515
}
516
517
/**
518
  Check if we can skip the two-phase commit.
519
520
  A helper function to evaluate if two-phase commit is mandatory.
521
  As a side effect, propagates the read-only/read-write flags
522
  of the statement transaction to its enclosing normal transaction.
523
524
  @retval true   we must run a two-phase commit. Returned
525
                 if we have at least two engines with read-write changes.
526
  @retval false  Don't need two-phase commit. Even if we have two
527
                 transactional engines, we can run two independent
528
                 commits if changes in one of the engines are read-only.
529
*/
530
531
static
532
bool
533
ha_check_and_coalesce_trx_read_only(Session *session, Ha_trx_info *ha_list,
534
                                    bool all)
535
{
536
  /* The number of storage engines that have actual changes. */
537
  unsigned rw_ha_count= 0;
538
  Ha_trx_info *ha_info;
539
540
  for (ha_info= ha_list; ha_info; ha_info= ha_info->next())
541
  {
542
    if (ha_info->is_trx_read_write())
543
      ++rw_ha_count;
544
545
    if (! all)
546
    {
547
      Ha_trx_info *ha_info_all= &session->ha_data[ha_info->engine()->getSlot()].ha_info[1];
548
      assert(ha_info != ha_info_all);
549
      /*
550
        Merge read-only/read-write information about statement
551
        transaction to its enclosing normal transaction. Do this
552
        only if in a real transaction -- that is, if we know
553
        that ha_info_all is registered in session->transaction.all.
554
        Since otherwise we only clutter the normal transaction flags.
555
      */
556
      if (ha_info_all->is_started()) /* false if autocommit. */
557
        ha_info_all->coalesce_trx_with(ha_info);
558
    }
559
    else if (rw_ha_count > 1)
560
    {
561
      /*
562
        It is a normal transaction, so we don't need to merge read/write
563
        information up, and the need for two-phase commit has been
564
        already established. Break the loop prematurely.
565
      */
566
      break;
567
    }
568
  }
569
  return rw_ha_count > 1;
570
}
571
572
573
/**
574
  @retval
575
    0   ok
576
  @retval
577
    1   transaction was rolled back
578
  @retval
579
    2   error during commit, data may be inconsistent
580
581
  @todo
582
    Since we don't support nested statement transactions in 5.0,
583
    we can't commit or rollback stmt transactions while we are inside
584
    stored functions or triggers. So we simply do nothing now.
585
    TODO: This should be fixed in later ( >= 5.1) releases.
586
*/
587
int ha_commit_trans(Session *session, bool all)
588
{
589
  int error= 0, cookie= 0;
590
  /*
591
    'all' means that this is either an explicit commit issued by
592
    user, or an implicit commit issued by a DDL.
593
  */
594
  Session_TRANS *trans= all ? &session->transaction.all : &session->transaction.stmt;
595
  bool is_real_trans= all || session->transaction.all.ha_list == 0;
596
  Ha_trx_info *ha_info= trans->ha_list;
597
598
  /*
599
    We must not commit the normal transaction if a statement
600
    transaction is pending. Otherwise statement transaction
601
    flags will not get propagated to its normal transaction's
602
    counterpart.
603
  */
604
  assert(session->transaction.stmt.ha_list == NULL ||
605
              trans == &session->transaction.stmt);
606
607
  if (ha_info)
608
  {
609
    bool must_2pc;
610
611
    if (is_real_trans && wait_if_global_read_lock(session, 0, 0))
612
    {
613
      ha_rollback_trans(session, all);
614
      return 1;
615
    }
616
617
    must_2pc= ha_check_and_coalesce_trx_read_only(session, ha_info, all);
618
619
    if (!trans->no_2pc && must_2pc)
620
    {
621
      for (; ha_info && !error; ha_info= ha_info->next())
622
      {
623
        int err;
624
        plugin::StorageEngine *engine= ha_info->engine();
625
        /*
626
          Do not call two-phase commit if this particular
627
          transaction is read-only. This allows for simpler
628
          implementation in engines that are always read-only.
629
        */
630
        if (! ha_info->is_trx_read_write())
631
          continue;
632
        /*
633
          Sic: we know that prepare() is not NULL since otherwise
634
          trans->no_2pc would have been set.
635
        */
636
        if ((err= engine->prepare(session, all)))
637
        {
638
          my_error(ER_ERROR_DURING_COMMIT, MYF(0), err);
639
          error= 1;
640
        }
641
        status_var_increment(session->status_var.ha_prepare_count);
642
      }
643
      if (error)
644
      {
645
        ha_rollback_trans(session, all);
646
        error= 1;
647
        goto end;
648
      }
649
    }
650
    error=ha_commit_one_phase(session, all) ? (cookie ? 2 : 1) : 0;
651
end:
652
    if (is_real_trans)
653
      start_waiting_global_read_lock(session);
654
  }
655
  return error;
656
}
657
658
/**
659
  @note
660
  This function does not care about global read lock. A caller should.
661
*/
662
int ha_commit_one_phase(Session *session, bool all)
663
{
664
  int error=0;
665
  Session_TRANS *trans=all ? &session->transaction.all : &session->transaction.stmt;
666
  bool is_real_trans=all || session->transaction.all.ha_list == 0;
667
  Ha_trx_info *ha_info= trans->ha_list, *ha_info_next;
668
  if (ha_info)
669
  {
670
    for (; ha_info; ha_info= ha_info_next)
671
    {
672
      int err;
673
      plugin::StorageEngine *engine= ha_info->engine();
674
      if ((err= engine->commit(session, all)))
675
      {
676
        my_error(ER_ERROR_DURING_COMMIT, MYF(0), err);
677
        error=1;
678
      }
679
      status_var_increment(session->status_var.ha_commit_count);
680
      ha_info_next= ha_info->next();
681
      ha_info->reset(); /* keep it conveniently zero-filled */
682
    }
683
    trans->ha_list= 0;
684
    trans->no_2pc=0;
685
    if (is_real_trans)
686
      session->transaction.xid_state.xid.null();
687
    if (all)
688
    {
689
      session->variables.tx_isolation=session->session_tx_isolation;
690
      session->transaction.cleanup();
691
    }
692
  }
693
  if (error == 0)
694
  {
695
    if (is_real_trans)
696
    {
697
      /* 
698
        * We commit the normal transaction by finalizing the transaction message
699
        * and propogating the message to all registered replicators.
700
        */
701
      ReplicationServices &replication_services= ReplicationServices::singleton();
702
      replication_services.commitNormalTransaction(session);
703
    }
704
  }
705
  return error;
706
}
707
708
709
int ha_rollback_trans(Session *session, bool all)
710
{
711
  int error=0;
712
  Session_TRANS *trans=all ? &session->transaction.all : &session->transaction.stmt;
713
  Ha_trx_info *ha_info= trans->ha_list, *ha_info_next;
714
  bool is_real_trans=all || session->transaction.all.ha_list == 0;
715
716
  /*
717
    We must not rollback the normal transaction if a statement
718
    transaction is pending.
719
  */
720
  assert(session->transaction.stmt.ha_list == NULL ||
721
              trans == &session->transaction.stmt);
722
723
  if (ha_info)
724
  {
725
    for (; ha_info; ha_info= ha_info_next)
726
    {
727
      int err;
728
      plugin::StorageEngine *engine= ha_info->engine();
729
      if ((err= engine->rollback(session, all)))
730
      { // cannot happen
731
        my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err);
732
        error=1;
733
      }
734
      status_var_increment(session->status_var.ha_rollback_count);
735
      ha_info_next= ha_info->next();
736
      ha_info->reset(); /* keep it conveniently zero-filled */
737
    }
738
    trans->ha_list= 0;
739
    trans->no_2pc=0;
740
    if (is_real_trans)
741
      session->transaction.xid_state.xid.null();
742
    if (all)
743
    {
744
      session->variables.tx_isolation=session->session_tx_isolation;
745
      session->transaction.cleanup();
746
    }
747
  }
748
  if (all)
749
    session->transaction_rollback_request= false;
750
751
  /*
752
    If a non-transactional table was updated, warn; don't warn if this is a
753
    slave thread (because when a slave thread executes a ROLLBACK, it has
754
    been read from the binary log, so it's 100% sure and normal to produce
755
    error ER_WARNING_NOT_COMPLETE_ROLLBACK. If we sent the warning to the
756
    slave SQL thread, it would not stop the thread but just be printed in
757
    the error log; but we don't want users to wonder why they have this
758
    message in the error log, so we don't send it.
759
  */
760
  if (is_real_trans && session->transaction.all.modified_non_trans_table && session->killed != Session::KILL_CONNECTION)
761
    push_warning(session, DRIZZLE_ERROR::WARN_LEVEL_WARN,
762
                 ER_WARNING_NOT_COMPLETE_ROLLBACK,
763
                 ER(ER_WARNING_NOT_COMPLETE_ROLLBACK));
764
  return error;
765
}
766
767
/**
768
  This is used to commit or rollback a single statement depending on
769
  the value of error.
770
771
  @note
772
    Note that if the autocommit is on, then the following call inside
773
    InnoDB will commit or rollback the whole transaction (= the statement). The
774
    autocommit mechanism built into InnoDB is based on counting locks, but if
775
    the user has used LOCK TABLES then that mechanism does not know to do the
776
    commit.
777
*/
778
int ha_autocommit_or_rollback(Session *session, int error)
779
{
780
  if (session->transaction.stmt.ha_list)
781
  {
782
    if (!error)
783
    {
784
      if (ha_commit_trans(session, 0))
785
        error= 1;
786
    }
787
    else
788
    {
789
      (void) ha_rollback_trans(session, 0);
790
      if (session->transaction_rollback_request)
791
        (void) ha_rollback(session);
792
    }
793
794
    session->variables.tx_isolation=session->session_tx_isolation;
795
  }
796
797
  return error;
798
}
799
800
/**
801
  return the list of XID's to a client, the same way SHOW commands do.
802
803
  @note
804
    I didn't find in XA specs that an RM cannot return the same XID twice,
805
    so mysql_xa_recover does not filter XID's to ensure uniqueness.
806
    It can be easily fixed later, if necessary.
807
*/
808
bool mysql_xa_recover(Session *session)
809
{
810
  List<Item> field_list;
811
  int i= 0;
812
  XID_STATE *xs;
813
814
  field_list.push_back(new Item_int("formatID", 0, MY_INT32_NUM_DECIMAL_DIGITS));
815
  field_list.push_back(new Item_int("gtrid_length", 0, MY_INT32_NUM_DECIMAL_DIGITS));
816
  field_list.push_back(new Item_int("bqual_length", 0, MY_INT32_NUM_DECIMAL_DIGITS));
817
  field_list.push_back(new Item_empty_string("data",XIDDATASIZE));
818
819
  if (session->client->sendFields(&field_list))
820
    return 1;
821
822
  pthread_mutex_lock(&LOCK_xid_cache);
823
  while ((xs= (XID_STATE*)hash_element(&xid_cache, i++)))
824
  {
825
    if (xs->xa_state==XA_PREPARED)
826
    {
827
      session->client->store((int64_t)xs->xid.formatID);
828
      session->client->store((int64_t)xs->xid.gtrid_length);
829
      session->client->store((int64_t)xs->xid.bqual_length);
830
      session->client->store(xs->xid.data,
831
                             xs->xid.gtrid_length+xs->xid.bqual_length);
832
      if (session->client->flush())
833
      {
834
        pthread_mutex_unlock(&LOCK_xid_cache);
835
        return 1;
836
      }
837
    }
838
  }
839
840
  pthread_mutex_unlock(&LOCK_xid_cache);
841
  session->my_eof();
842
  return 0;
843
}
844
845
846
int ha_rollback_to_savepoint(Session *session, SAVEPOINT *sv)
847
{
848
  int error= 0;
849
  Session_TRANS *trans= &session->transaction.all;
850
  Ha_trx_info *ha_info, *ha_info_next;
851
852
  trans->no_2pc=0;
853
  /*
854
    rolling back to savepoint in all storage engines that were part of the
855
    transaction when the savepoint was set
856
  */
857
  for (ha_info= sv->ha_list; ha_info; ha_info= ha_info->next())
858
  {
859
    int err;
860
    plugin::StorageEngine *engine= ha_info->engine();
861
    assert(engine);
862
    if ((err= engine->savepoint_rollback(session,
863
                                         (void *)(sv+1))))
864
    { // cannot happen
865
      my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err);
866
      error= 1;
867
    }
868
    status_var_increment(session->status_var.ha_savepoint_rollback_count);
869
    trans->no_2pc|= not engine->has_2pc();
870
  }
871
  /*
872
    rolling back the transaction in all storage engines that were not part of
873
    the transaction when the savepoint was set
874
  */
875
  for (ha_info= trans->ha_list; ha_info != sv->ha_list;
876
       ha_info= ha_info_next)
877
  {
878
    int err;
879
    plugin::StorageEngine *engine= ha_info->engine();
880
    if ((err= engine->rollback(session, !(0))))
881
    { // cannot happen
882
      my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err);
883
      error= 1;
884
    }
885
    status_var_increment(session->status_var.ha_rollback_count);
886
    ha_info_next= ha_info->next();
887
    ha_info->reset(); /* keep it conveniently zero-filled */
888
  }
889
  trans->ha_list= sv->ha_list;
890
  return error;
891
}
892
893
/**
894
  @note
895
  according to the sql standard (ISO/IEC 9075-2:2003)
896
  section "4.33.4 SQL-statements and transaction states",
897
  SAVEPOINT is *not* transaction-initiating SQL-statement
898
*/
899
int ha_savepoint(Session *session, SAVEPOINT *sv)
900
{
901
  int error= 0;
902
  Session_TRANS *trans= &session->transaction.all;
903
  Ha_trx_info *ha_info= trans->ha_list;
904
  for (; ha_info; ha_info= ha_info->next())
905
  {
906
    int err;
907
    plugin::StorageEngine *engine= ha_info->engine();
908
    assert(engine);
909
#ifdef NOT_IMPLEMENTED /*- TODO (examine this againt the original code base) */
910
    if (! engine->savepoint_set)
911
    {
912
      my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), "SAVEPOINT");
913
      error= 1;
914
      break;
915
    } 
916
#endif
917
    if ((err= engine->savepoint_set(session, (void *)(sv+1))))
918
    { // cannot happen
919
      my_error(ER_GET_ERRNO, MYF(0), err);
920
      error= 1;
921
    }
922
    status_var_increment(session->status_var.ha_savepoint_count);
923
  }
924
  /*
925
    Remember the list of registered storage engines. All new
926
    engines are prepended to the beginning of the list.
927
  */
928
  sv->ha_list= trans->ha_list;
929
  return error;
930
}
931
932
int ha_release_savepoint(Session *session, SAVEPOINT *sv)
933
{
934
  int error= 0;
935
  Ha_trx_info *ha_info= sv->ha_list;
936
937
  for (; ha_info; ha_info= ha_info->next())
938
  {
939
    int err;
940
    plugin::StorageEngine *engine= ha_info->engine();
941
    /* Savepoint life time is enclosed into transaction life time. */
942
    assert(engine);
943
    if ((err= engine->savepoint_release(session,
944
                                        (void *)(sv+1))))
945
    { // cannot happen
946
      my_error(ER_GET_ERRNO, MYF(0), err);
947
      error= 1;
948
    }
949
  }
950
  return error;
951
}