~drizzle-trunk/drizzle/development

1548.2.1 by Barry.Leslie at PrimeBase
Added the PBMS daemon plugin.
1
/* Copyright (c) 2008 PrimeBase Technologies GmbH, Germany
2
 *
3
 * PrimeBase Media Stream for MySQL
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
1802.10.2 by Monty Taylor
Update all of the copyright headers to include the correct address.
17
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1548.2.1 by Barry.Leslie at PrimeBase
Added the PBMS daemon plugin.
18
 *
19
 * Original author: Paul McCullagh (H&G2JCtL)
20
 * Continued development: Barry Leslie
21
 *
22
 * 2007-06-02
23
 *
24
 * CORE SYSTEM:
25
 * Common definitions that may be required be included at the
26
 * top of every header file.
27
 *
28
 */
29
30
#ifndef __CSDEFS_H__
31
#define __CSDEFS_H__
32
33
#include <sys/types.h>
34
35
// Use standard portable data types
36
#include <stdint.h>
37
38
/*
39
 * An unsigned integer, 1 byte long:
40
 */
41
#ifndef u_char
42
#define u_char			unsigned char
43
#endif
44
45
/*
46
 * An usigned integer, 1 byte long:
47
 */
48
#define s_char			unsigned char
49
1548.2.11 by Barry.Leslie at PrimeBase
Removed libxml reqirement by using a home grown xml parser.
50
/* PBMS assumes that off_t is 8 bytes so to ensure this always use  off64_t*/
1548.2.1 by Barry.Leslie at PrimeBase
Added the PBMS daemon plugin.
51
#define off64_t			uint64_t
52
53
54
/*
55
 * A signed integer at least 32 bits long.
56
 * The size used is whatever is most
57
 * convenient to the machine.
58
 */
59
#define s_int int_fast32_t
60
61
/* Forward declartion of a thread: */
62
class CSThread;
63
1548.2.28 by Barry.Leslie at PrimeBase
Replaced the use of __attribute__((unused)) with my own macro.
64
// Used to avoid warnings about unused parameters.
65
#define UNUSED(x) (void)x
66
1548.2.1 by Barry.Leslie at PrimeBase
Added the PBMS daemon plugin.
67
#ifdef OS_WINDOWS
68
69
#define CS_DEFAULT_EOL		"\r\n"
70
#define CS_DIR_CHAR			'\\'
71
#define CS_DIR_DELIM		"\\"
72
#define IS_DIR_CHAR(ch)		((ch) == CS_DIR_CHAR || (ch) == '/')
73
74
#else
75
76
#define CS_DEFAULT_EOL		"\n"
77
#define CS_DIR_CHAR			'/'
78
#define CS_DIR_DELIM		"/"
79
#define IS_DIR_CHAR(ch)		((ch) == CS_DIR_CHAR)
80
81
#endif // OS_WINDOWS
82
83
#define CS_CALL_STACK_SIZE		100
84
#define CS_RELEASE_STACK_SIZE	200
85
#define CS_JUMP_STACK_SIZE		20
86
87
/* Fixed length types */
88
89
#ifdef CS_WIN
90
91
#ifndef PATH_MAX
92
#define PATH_MAX		MAX_PATH
93
#endif
94
95
#ifndef NAME_MAX
96
#define NAME_MAX		MAX_PATH
97
#endif
98
99
#endif // CS_WIN
100
101
/* C string display width sizes including space for a null terminator and possible sign. */
102
#define CS_WIDTH_INT_8	5
103
#define CS_WIDTH_INT_16	7
104
#define CS_WIDTH_INT_32	12
105
#define CS_WIDTH_INT_64	22
106
107
typedef uint8_t			CSDiskValue1[1];	
108
typedef uint8_t			CSDiskValue2[2];	
109
typedef uint8_t			CSDiskValue3[3];	
110
typedef uint8_t			CSDiskValue4[4];	
111
typedef uint8_t			CSDiskValue6[6];	
112
typedef uint8_t			CSDiskValue8[8];	
113
114
/*
115
 * Byte order on the disk is little endian! This is the byte order of the i386.
116
 * Little endian byte order starts with the least significan byte.
117
 *
118
 * The reason for choosing this byte order for the disk is 2-fold:
119
 * Firstly the i386 is the cheapest and fasted platform today.
120
 * Secondly the i386, unlike RISK chips (with big endian) can address
121
 * memory that is not aligned!
122
 *
123
 * Since the disk image of PrimeBase XT is not aligned, the second point
124
 * is significant. A RISK chip needs to access it byte-wise, so we might as
125
 * well do the byte swapping at the same time.
126
 *
127
 * The macros below are of 4 general types:
128
 *
129
 * GET/SET - Get and set 1,2,4,8 byte values (short, int, long, etc).
130
 * Values are swapped only on big endian platforms. This makes these
131
 * functions very efficient on little-endian platforms.
132
 *
133
 * COPY - Transfer data without swapping regardless of platform. This
134
 * function is a bit more efficient on little-endian platforms
135
 * because alignment is not an issue.
136
 *
137
 * MOVE - Similar to get and set, but the deals with memory instead
138
 * of values. Since no swapping is done on little-endian platforms
139
 * this function is identical to COPY on little-endian platforms.
140
 *
141
 * SWAP - Transfer and swap data regardless of the platform type.
142
 * Aligment is not assumed.
143
 *
144
 * The DISK component of the macro names indicates that alignment of
145
 * the value cannot be assumed.
146
 *
147
 */
148
#if BYTE_ORDER == BIG_ENDIAN
149
/* The native order of the machine is big endian. Since the native disk
150
 * disk order of XT is little endian, all data to and from disk
151
 * must be swapped.
152
 */
153
#define CS_SET_DISK_1(d, s)		((d)[0] = (uint8_t) (s))
154
155
#define CS_SET_DISK_2(d, s)		do { (d)[0] = (uint8_t)  (((uint16_t) (s))        & 0xFF); (d)[1] = (uint8_t) ((((uint16_t) (s)) >> 8 ) & 0xFF); } while (0)
156
157
#define CS_SET_DISK_3(d, s)		do { (d)[0] = (uint8_t)  (((uint32_t) (s))        & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
158
									 (d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); } while (0)
159
160
#define CS_SET_DISK_4(d, s)		do { (d)[0] = (uint8_t)  (((uint32_t) (s))        & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
161
									 (d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint32_t) (s)) >> 24) & 0xFF); } while (0)
162
163
#define CS_SET_DISK_6(d, s)		do { (d)[0] = (uint8_t)  (((uint64_t) (s))        & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
164
									 (d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
165
									 (d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); } while (0)
166
167
#define CS_SET_DISK_8(d, s)		do { (d)[0] = (uint8_t)  (((uint64_t) (s))        & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
168
									 (d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
169
									 (d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); \
170
									 (d)[6] = (uint8_t) ((((uint64_t) (s)) >> 48) & 0xFF); (d)[7] = (uint8_t) ((((uint64_t) (s)) >> 56) & 0xFF); } while (0)
171
172
#define CS_GET_DISK_1(s)		((s)[0])
173
174
#define CS_GET_DISK_2(s)		((uint16_t) (((uint16_t) (s)[0]) | (((uint16_t) (s)[1]) << 8)))
175
176
#define CS_GET_DISK_3(s)		((uint32_t) (((uint32_t) (s)[0]) | (((uint32_t) (s)[1]) << 8) | (((uint32_t) (s)[2]) << 16)))
177
178
#define CS_GET_DISK_4(s)		(((uint32_t) (s)[0])        | (((uint32_t) (s)[1]) << 8 ) | \
179
								(((uint32_t) (s)[2]) << 16) | (((uint32_t) (s)[3]) << 24))
180
181
#define CS_GET_DISK_6(s)		(((uint64_t) (s)[0])        | (((uint64_t) (s)[1]) << 8 ) | \
182
								(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
183
								(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40))
184
185
#define CS_GET_DISK_8(s)		(((uint64_t) (s)[0])        | (((uint64_t) (s)[1]) << 8 ) | \
186
								(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
187
								(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40) | \
188
								(((uint64_t) (s)[6]) << 48) | (((uint64_t) (s)[7]) << 56))
189
190
/* Move will copy memory, and swap the bytes on a big endian machine.
191
 * On a little endian machine it is the same as COPY.
192
 */
193
#define CS_MOVE_DISK_1(d, s)	((d)[0] = (s)[0])
194
#define CS_MOVE_DISK_2(d, s)	do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
195
#define CS_MOVE_DISK_3(d, s)	do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
196
#define CS_MOVE_DISK_4(d, s)	do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
197
#define CS_MOVE_DISK_8(d, s)	do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; \
198
									 (d)[2] = (s)[5]; (d)[3] = (s)[4]; \
199
									 (d)[4] = (s)[3]; (d)[5] = (s)[2]; \
200
									 (d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
201
202
/*
203
 * Copy just copies the number of bytes assuming the data is not alligned.
204
 */
205
#define CS_COPY_DISK_1(d, s)	(d)[0] = s
206
#define CS_COPY_DISK_2(d, s)	do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; } while (0)
207
#define CS_COPY_DISK_3(d, s)	do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; } while (0)
208
#define CS_COPY_DISK_4(d, s)	do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; (d)[3] = (s)[3]; } while (0)
209
#define CS_COPY_DISK_6(d, s)	memcpy(&((d)[0]), &((s)[0]), 6)
210
#define CS_COPY_DISK_8(d, s)	memcpy(&((d)[0]), &((s)[0]), 8)
211
#define CS_COPY_DISK_10(d, s)	memcpy(&((d)[0]), &((s)[0]), 10)
212
213
#define CS_SET_NULL_DISK_1(d)	CS_SET_DISK_1(d, 0)
214
#define CS_SET_NULL_DISK_2(d)	do { (d)[0] = 0; (d)[1] = 0; } while (0)
215
#define CS_SET_NULL_DISK_4(d)	do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; } while (0)
216
#define CS_SET_NULL_DISK_6(d)	do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; } while (0)
217
#define CS_SET_NULL_DISK_8(d)	do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; (d)[6] = 0; (d)[7] = 0; } while (0)
218
219
#define CS_IS_NULL_DISK_1(d)	(!(CS_GET_DISK_1(d)))
220
#define CS_IS_NULL_DISK_4(d)	(!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3])
221
#define CS_IS_NULL_DISK_8(d)	(!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3] && !(d)[4] && !(d)[5] && !(d)[6] && !(7)[3])
222
223
#define CS_EQ_DISK_4(d, s)		((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3])
224
#define CS_EQ_DISK_8(d, s)		((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3] && \
225
								(d)[4] == (s)[4] && (d)[5] == (s)[5] && (d)[6] == (s)[6] && (d)[7] == (s)[7])
226
227
#define CS_IS_FF_DISK_4(d)		((d)[0] == 0xFF && (d)[1] == 0xFF && (d)[2] == 0xFF && (d)[3] == 0xFF)
228
#else
229
/*
230
 * The native order of the machine is little endian. This means the data to
231
 * and from disk need not be swapped. In addition to this, since
232
 * the i386 can access non-aligned memory we are not required to
233
 * handle the data byte-for-byte.
234
 */
235
#define CS_SET_DISK_1(d, s)		((d)[0] = (uint8_t) (s))
236
#define CS_SET_DISK_2(d, s)		(*((uint16_t *) &((d)[0])) = (uint16_t) (s))
237
#define CS_SET_DISK_3(d, s)		do { (*((uint16_t *) &((d)[0])) = (uint16_t) (s));  *((uint8_t *) &((d)[2])) = (uint8_t) (((uint32_t) (s)) >> 16); } while (0)
238
#define CS_SET_DISK_4(d, s)		(*((uint32_t *) &((d)[0])) = (uint32_t) (s))
239
#define CS_SET_DISK_6(d, s)		do { *((uint32_t *) &((d)[0])) = (uint32_t) (s); *((uint16_t *) &((d)[4])) = (uint16_t) (((uint64_t) (s)) >> 32); } while (0)
240
#define CS_SET_DISK_8(d, s)		(*((uint64_t *) &((d)[0])) = (uint64_t) (s))
241
242
#define CS_GET_DISK_1(s)		((s)[0])
243
#define CS_GET_DISK_2(s)		*((uint16_t *) &((s)[0]))
244
#define CS_GET_DISK_3(s)		((uint32_t) *((uint16_t *) &((s)[0])) | (((uint32_t) *((uint8_t *) &((s)[2]))) << 16))
245
#define CS_GET_DISK_4(s)		*((uint32_t *) &((s)[0]))
246
#define CS_GET_DISK_6(s)		((uint64_t) *((uint32_t *) &((s)[0])) | (((uint64_t) *((uint16_t *) &((s)[4]))) << 32))
247
#define CS_GET_DISK_8(s)		*((uint64_t *) &((s)[0]))
248
249
#define CS_MOVE_DISK_1(d, s)	((d)[0] = (s)[0])
250
#define CS_MOVE_DISK_2(d, s)	CS_COPY_DISK_2(d, s)
251
#define CS_MOVE_DISK_3(d, s)	CS_COPY_DISK_3(d, s)
252
#define CS_MOVE_DISK_4(d, s)	CS_COPY_DISK_4(d, s)
253
#define CS_MOVE_DISK_8(d, s)	CS_COPY_DISK_8(d, s)
254
255
#define CS_COPY_DISK_1(d, s)	(d)[0] = s
256
#define CS_COPY_DISK_2(d, s)	(*((uint16_t *) &((d)[0])) = (*((uint16_t *) &((s)[0]))))
257
#define CS_COPY_DISK_3(d, s)	do { *((uint16_t *) &((d)[0])) = *((uint16_t *) &((s)[0])); (d)[2] = (s)[2]; } while (0)
258
#define CS_COPY_DISK_4(d, s)	(*((uint32_t *) &((d)[0])) = (*((uint32_t *) &((s)[0]))))
259
#define CS_COPY_DISK_6(d, s)	do { *((uint32_t *) &((d)[0])) = *((uint32_t *) &((s)[0])); *((uint16_t *) &((d)[4])) = *((uint16_t *) &((s)[4])); } while (0)
260
#define CS_COPY_DISK_8(d, s)	(*((uint64_t *) &(d[0])) = (*((uint64_t *) &((s)[0]))))
261
#define CS_COPY_DISK_10(d, s)	memcpy(&((d)[0]), &((s)[0]), 10)
262
263
#define CS_SET_NULL_DISK_1(d)	CS_SET_DISK_1(d, 0)
264
#define CS_SET_NULL_DISK_2(d)	CS_SET_DISK_2(d, 0)
265
#define CS_SET_NULL_DISK_3(d)	CS_SET_DISK_3(d, 0)
266
#define CS_SET_NULL_DISK_4(d)	CS_SET_DISK_4(d, 0L)
267
#define CS_SET_NULL_DISK_6(d)	CS_SET_DISK_6(d, 0LL)
268
#define CS_SET_NULL_DISK_8(d)	CS_SET_DISK_8(d, 0LL)
269
270
#define CS_IS_NULL_DISK_1(d)	(!(CS_GET_DISK_1(d)))
271
#define CS_IS_NULL_DISK_2(d)	(!(CS_GET_DISK_2(d)))
272
#define CS_IS_NULL_DISK_3(d)	(!(CS_GET_DISK_3(d)))
273
#define CS_IS_NULL_DISK_4(d)	(!(CS_GET_DISK_4(d)))
274
#define CS_IS_NULL_DISK_8(d)	(!(CS_GET_DISK_8(d)))
275
276
#define CS_EQ_DISK_4(d, s)		(CS_GET_DISK_4(d) == CS_GET_DISK_4(s))
277
#define CS_EQ_DISK_8(d, s)		(CS_GET_DISK_8(d) == CS_GET_DISK_8(s))
278
279
#define CS_IS_FF_DISK_4(d)		(CS_GET_DISK_4(d) == 0xFFFFFFFF)
280
#endif
281
282
#define CS_CMP_DISK_4(a, b)		((int32_t) CS_GET_DISK_4(a) - (int32_t) CS_GET_DISK_4(b))
283
#define CS_CMP_DISK_8(d, s)		memcmp(&((d)[0]), &((s)[0]), 8)
284
//#define CS_CMP_DISK_8(d, s)		(CS_CMP_DISK_4((d).h_number_4, (s).h_number_4) == 0 ? CS_CMP_DISK_4((d).h_file_4, (s).h_file_4) : CS_CMP_DISK_4((d).h_number_4, (s).h_number_4))
285
286
#define CS_SWAP_DISK_2(d, s)	do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
287
#define CS_SWAP_DISK_3(d, s)	do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
288
#define CS_SWAP_DISK_4(d, s)	do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
289
#define CS_SWAP_DISK_8(d, s)	do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; (d)[2] = (s)[5]; (d)[3] = (s)[4]; \
290
									 (d)[4] = (s)[3]; (d)[5] = (s)[2]; (d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
291
292
typedef union {
293
	CSDiskValue1 val_1;
294
	CSDiskValue4 val_4;
295
} CSIntRec, *CSIntPtr;
296
297
typedef union {
298
		const char *rec_cchars;
299
		char *rec_chars;
300
		CSIntPtr int_val;
301
} CSDiskData;
302
	
303
#endif