~drizzle-trunk/drizzle/development

1 by brian
clean slate
1
/* Copyright (C) 2000 MySQL AB
2
3
   This program is free software; you can redistribute it and/or modify
4
   it under the terms of the GNU General Public License as published by
5
   the Free Software Foundation; version 2 of the License.
6
7
   This program is distributed in the hope that it will be useful,
8
   but WITHOUT ANY WARRANTY; without even the implied warranty of
9
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10
   GNU General Public License for more details.
11
12
   You should have received a copy of the GNU General Public License
13
   along with this program; if not, write to the Free Software
14
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
15
16
/*
17
  Code for handling red-black (balanced) binary trees.
18
  key in tree is allocated accrding to following:
19
20
  1) If size < 0 then tree will not allocate keys and only a pointer to
21
     each key is saved in tree.
22
     compare and search functions uses and returns key-pointer
23
24
  2) If size == 0 then there are two options:
25
       - key_size != 0 to tree_insert: The key will be stored in the tree.
26
       - key_size == 0 to tree_insert:  A pointer to the key is stored.
27
     compare and search functions uses and returns key-pointer.
28
29
  3) if key_size is given to init_tree then each node will continue the
30
     key and calls to insert_key may increase length of key.
31
     if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
     allign) then key will be put on a 8 alligned adress. Else
33
     the key will be on adress (element+1). This is transparent for user
34
     compare and search functions uses a pointer to given key-argument.
35
36
  - If you use a free function for tree-elements and you are freeing
37
    the element itself, you should use key_size = 0 to init_tree and
38
    tree_search
39
40
  The actual key in TREE_ELEMENT is saved as a pointer or after the
41
  TREE_ELEMENT struct.
42
  If one uses only pointers in tree one can use tree_set_pointer() to
43
  change address of data.
44
45
  Implemented by monty.
46
*/
47
48
/*
49
  NOTE:
50
  tree->compare function should be ALWAYS called as
51
    (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
  and not other way around, as
53
    (*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
54
55
  ft_boolean_search.c (at least) relies on that.
56
*/
57
58
#include "mysys_priv.h"
59
#include <m_string.h>
60
#include <my_tree.h>
61
#include "my_base.h"
62
63
#define BLACK		1
64
#define RED		0
65
#define DEFAULT_ALLOC_SIZE 8192
66
#define DEFAULT_ALIGN_SIZE 8192
67
68
static void delete_tree_element(TREE *,TREE_ELEMENT *);
69
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
70
				     tree_walk_action,void *);
71
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
72
				     tree_walk_action,void *);
73
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
74
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
75
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
76
		      TREE_ELEMENT *leaf);
77
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
78
79
80
	/* The actuall code for handling binary trees */
81
82
#ifndef DBUG_OFF
83
static int test_rb_tree(TREE_ELEMENT *element);
84
#endif
85
86
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
87
               int size, qsort_cmp2 compare, my_bool with_delete,
88
	       tree_element_free free_element, void *custom_arg)
89
{
90
  DBUG_ENTER("init_tree");
91
  DBUG_PRINT("enter",("tree: 0x%lx  size: %d", (long) tree, size));
92
93
  if (default_alloc_size < DEFAULT_ALLOC_SIZE)
94
    default_alloc_size= DEFAULT_ALLOC_SIZE;
95
  default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
96
  bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
97
  tree->root= &tree->null_element;
98
  tree->compare=compare;
99
  tree->size_of_element=size > 0 ? (uint) size : 0;
100
  tree->memory_limit=memory_limit;
101
  tree->free=free_element;
102
  tree->allocated=0;
103
  tree->elements_in_tree=0;
104
  tree->custom_arg = custom_arg;
105
  tree->null_element.colour=BLACK;
106
  tree->null_element.left=tree->null_element.right=0;
107
  tree->flag= 0;
108
  if (!free_element && size >= 0 &&
109
      ((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
110
  {
111
    /*
112
      We know that the data doesn't have to be aligned (like if the key
113
      contains a double), so we can store the data combined with the
114
      TREE_ELEMENT.
115
    */
116
    tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
117
    /* Fix allocation size so that we don't lose any memory */
118
    default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
119
    if (!default_alloc_size)
120
      default_alloc_size=1;
121
    default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
122
  }
123
  else
124
  {
125
    tree->offset_to_key=0;		/* use key through pointer */
126
    tree->size_of_element+=sizeof(void*);
127
  }
128
  if (!(tree->with_delete=with_delete))
129
  {
130
    init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
131
    tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
132
  }
133
  DBUG_VOID_RETURN;
134
}
135
136
static void free_tree(TREE *tree, myf free_flags)
137
{
138
  DBUG_ENTER("free_tree");
139
  DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
140
141
  if (tree->root)				/* If initialized */
142
  {
143
    if (tree->with_delete)
144
      delete_tree_element(tree,tree->root);
145
    else
146
    {
147
      if (tree->free)
148
      {
149
        if (tree->memory_limit)
150
          (*tree->free)(NULL, free_init, tree->custom_arg);
151
	delete_tree_element(tree,tree->root);
152
        if (tree->memory_limit)
153
          (*tree->free)(NULL, free_end, tree->custom_arg);
154
      }
155
      free_root(&tree->mem_root, free_flags);
156
    }
157
  }
158
  tree->root= &tree->null_element;
159
  tree->elements_in_tree=0;
160
  tree->allocated=0;
161
162
  DBUG_VOID_RETURN;
163
}
164
165
void delete_tree(TREE* tree)
166
{
167
  free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
168
}
169
170
void reset_tree(TREE* tree)
171
{
172
  /* do not free mem_root, just mark blocks as free */
173
  free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
174
}
175
176
177
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
178
{
179
  if (element != &tree->null_element)
180
  {
181
    delete_tree_element(tree,element->left);
182
    if (tree->free)
183
      (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
184
    delete_tree_element(tree,element->right);
185
    if (tree->with_delete)
186
      my_free((char*) element,MYF(0));
187
  }
188
}
189
190
191
/*
192
  insert, search and delete of elements
193
194
  The following should be true:
195
    parent[0] = & parent[-1][0]->left ||
196
    parent[0] = & parent[-1][0]->right
197
*/
198
199
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size, 
200
                          void* custom_arg)
201
{
202
  int cmp;
203
  TREE_ELEMENT *element,***parent;
204
205
  parent= tree->parents;
206
  *parent = &tree->root; element= tree->root;
207
  for (;;)
208
  {
209
    if (element == &tree->null_element ||
210
	(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
211
                                key)) == 0)
212
      break;
213
    if (cmp < 0)
214
    {
215
      *++parent= &element->right; element= element->right;
216
    }
217
    else
218
    {
219
      *++parent = &element->left; element= element->left;
220
    }
221
  }
222
  if (element == &tree->null_element)
223
  {
224
    uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
225
    tree->allocated+=alloc_size;
226
227
    if (tree->memory_limit && tree->elements_in_tree
228
                           && tree->allocated > tree->memory_limit)
229
    {
230
      reset_tree(tree);
231
      return tree_insert(tree, key, key_size, custom_arg);
232
    }
233
234
    key_size+=tree->size_of_element;
235
    if (tree->with_delete)
236
      element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
237
    else
238
      element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
239
    if (!element)
240
      return(NULL);
241
    **parent=element;
242
    element->left=element->right= &tree->null_element;
243
    if (!tree->offset_to_key)
244
    {
245
      if (key_size == sizeof(void*))		 /* no length, save pointer */
246
	*((void**) (element+1))=key;
247
      else
248
      {
249
	*((void**) (element+1))= (void*) ((void **) (element+1)+1);
250
	memcpy((uchar*) *((void **) (element+1)),key,
251
	       (size_t) (key_size-sizeof(void*)));
252
      }
253
    }
254
    else
255
      memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
256
    element->count=1;			/* May give warning in purify */
257
    tree->elements_in_tree++;
258
    rb_insert(tree,parent,element);	/* rebalance tree */
259
  }
260
  else
261
  {
262
    if (tree->flag & TREE_NO_DUPS)
263
      return(NULL);
264
    element->count++;
265
    /* Avoid a wrap over of the count. */
266
    if (! element->count)
267
      element->count--;
268
  }
269
  DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
270
  return element;
271
}
272
273
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
274
{
275
  int cmp,remove_colour;
276
  TREE_ELEMENT *element,***parent, ***org_parent, *nod;
277
  if (!tree->with_delete)
278
    return 1;					/* not allowed */
279
280
  parent= tree->parents;
281
  *parent= &tree->root; element= tree->root;
282
  for (;;)
283
  {
284
    if (element == &tree->null_element)
285
      return 1;				/* Was not in tree */
286
    if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
287
                                key)) == 0)
288
      break;
289
    if (cmp < 0)
290
    {
291
      *++parent= &element->right; element= element->right;
292
    }
293
    else
294
    {
295
      *++parent = &element->left; element= element->left;
296
    }
297
  }
298
  if (element->left == &tree->null_element)
299
  {
300
    (**parent)=element->right;
301
    remove_colour= element->colour;
302
  }
303
  else if (element->right == &tree->null_element)
304
  {
305
    (**parent)=element->left;
306
    remove_colour= element->colour;
307
  }
308
  else
309
  {
310
    org_parent= parent;
311
    *++parent= &element->right; nod= element->right;
312
    while (nod->left != &tree->null_element)
313
    {
314
      *++parent= &nod->left; nod= nod->left;
315
    }
316
    (**parent)=nod->right;		/* unlink nod from tree */
317
    remove_colour= nod->colour;
318
    org_parent[0][0]=nod;		/* put y in place of element */
319
    org_parent[1]= &nod->right;
320
    nod->left=element->left;
321
    nod->right=element->right;
322
    nod->colour=element->colour;
323
  }
324
  if (remove_colour == BLACK)
325
    rb_delete_fixup(tree,parent);
326
  if (tree->free)
327
    (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
328
  tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
329
  my_free((uchar*) element,MYF(0));
330
  tree->elements_in_tree--;
331
  return 0;
332
}
333
334
335
void *tree_search(TREE *tree, void *key, void *custom_arg)
336
{
337
  int cmp;
338
  TREE_ELEMENT *element=tree->root;
339
340
  for (;;)
341
  {
342
    if (element == &tree->null_element)
343
      return (void*) 0;
344
    if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
345
                                key)) == 0)
346
      return ELEMENT_KEY(tree,element);
347
    if (cmp < 0)
348
      element=element->right;
349
    else
350
      element=element->left;
351
  }
352
}
353
354
void *tree_search_key(TREE *tree, const void *key, 
355
                      TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
356
                      enum ha_rkey_function flag, void *custom_arg)
357
{
358
  int cmp;
359
  TREE_ELEMENT *element= tree->root;
360
  TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
361
  TREE_ELEMENT **last_equal_element= NULL;
362
363
/* 
364
  TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
365
*/
366
367
  *parents = &tree->null_element;
368
  while (element != &tree->null_element)
369
  {
370
    *++parents= element;
371
    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), 
372
			       key)) == 0)
373
    {
374
      switch (flag) {
375
      case HA_READ_KEY_EXACT:
376
      case HA_READ_KEY_OR_NEXT:
377
      case HA_READ_BEFORE_KEY:
378
	last_equal_element= parents;
379
	cmp= 1;
380
	break;
381
      case HA_READ_AFTER_KEY:
382
	cmp= -1;
383
	break;
384
      case HA_READ_PREFIX_LAST:
385
      case HA_READ_PREFIX_LAST_OR_PREV:
386
	last_equal_element= parents;
387
	cmp= -1;
388
	break;
389
      default:
390
	return NULL;
391
      }
392
    }
393
    if (cmp < 0) /* element < key */
394
    {
395
      last_right_step_parent= parents;
396
      element= element->right;
397
    }
398
    else
399
    {
400
      last_left_step_parent= parents;
401
      element= element->left;
402
    }
403
  }
404
  switch (flag) {
405
  case HA_READ_KEY_EXACT:
406
  case HA_READ_PREFIX_LAST:
407
    *last_pos= last_equal_element;
408
    break;
409
  case HA_READ_KEY_OR_NEXT:
410
    *last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
411
    break;
412
  case HA_READ_AFTER_KEY:
413
    *last_pos= last_left_step_parent;
414
    break;
415
  case HA_READ_PREFIX_LAST_OR_PREV:
416
    *last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
417
    break;
418
  case HA_READ_BEFORE_KEY:
419
    *last_pos= last_right_step_parent;
420
    break;
421
  default:
422
    return NULL;
423
  }
424
  return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
425
}
426
427
/* 
428
  Search first (the most left) or last (the most right) tree element 
429
*/
430
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents, 
431
		       TREE_ELEMENT ***last_pos, int child_offs)
432
{
433
  TREE_ELEMENT *element= tree->root;
434
  
435
  *parents= &tree->null_element;
436
  while (element != &tree->null_element)
437
  {
438
    *++parents= element;
439
    element= ELEMENT_CHILD(element, child_offs);
440
  }
441
  *last_pos= parents;
442
  return **last_pos != &tree->null_element ? 
443
    ELEMENT_KEY(tree, **last_pos) : NULL;
444
}
445
446
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs, 
447
                       int r_offs)
448
{
449
  TREE_ELEMENT *x= **last_pos;
450
  
451
  if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
452
  {
453
    x= ELEMENT_CHILD(x, r_offs);
454
    *++*last_pos= x;
455
    while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
456
    {
457
      x= ELEMENT_CHILD(x, l_offs);
458
      *++*last_pos= x;
459
    }
460
    return ELEMENT_KEY(tree, x);
461
  }
462
  else
463
  {
464
    TREE_ELEMENT *y= *--*last_pos;
465
    while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
466
    {
467
      x= y;
468
      y= *--*last_pos;
469
    }
470
    return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
471
  }
472
}
473
474
/*
475
  Expected that tree is fully balanced
476
  (each path from root to leaf has the same length)
477
*/
478
ha_rows tree_record_pos(TREE *tree, const void *key, 
479
			enum ha_rkey_function flag, void *custom_arg)
480
{
481
  int cmp;
482
  TREE_ELEMENT *element= tree->root;
483
  double left= 1;
484
  double right= tree->elements_in_tree;
485
486
  while (element != &tree->null_element)
487
  {
488
    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), 
489
			       key)) == 0)
490
    {
491
      switch (flag) {
492
      case HA_READ_KEY_EXACT:
493
      case HA_READ_BEFORE_KEY:
494
        cmp= 1;
495
        break;
496
      case HA_READ_AFTER_KEY:
497
        cmp= -1;
498
        break;
499
      default:
500
        return HA_POS_ERROR;
501
      }
502
    }
503
    if (cmp < 0) /* element < key */
504
    {
505
      element= element->right;
506
      left= (left + right) / 2;
507
    }
508
    else
509
    {
510
      element= element->left;
511
      right= (left + right) / 2;
512
    }
513
  }
514
  switch (flag) {
515
  case HA_READ_KEY_EXACT:
516
  case HA_READ_BEFORE_KEY:
517
    return (ha_rows) right;
518
  case HA_READ_AFTER_KEY:
519
    return (ha_rows) left;
520
  default:
521
    return HA_POS_ERROR;
522
  }
523
}
524
525
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
526
{
527
  switch (visit) {
528
  case left_root_right:
529
    return tree_walk_left_root_right(tree,tree->root,action,argument);
530
  case right_root_left:
531
    return tree_walk_right_root_left(tree,tree->root,action,argument);
532
  }
533
  return 0;			/* Keep gcc happy */
534
}
535
536
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
537
{
538
  int error;
539
  if (element->left)				/* Not null_element */
540
  {
541
    if ((error=tree_walk_left_root_right(tree,element->left,action,
542
					  argument)) == 0 &&
543
	(error=(*action)(ELEMENT_KEY(tree,element),
544
			  (element_count) element->count,
545
			  argument)) == 0)
546
      error=tree_walk_left_root_right(tree,element->right,action,argument);
547
    return error;
548
  }
549
  return 0;
550
}
551
552
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
553
{
554
  int error;
555
  if (element->right)				/* Not null_element */
556
  {
557
    if ((error=tree_walk_right_root_left(tree,element->right,action,
558
					  argument)) == 0 &&
559
	(error=(*action)(ELEMENT_KEY(tree,element),
560
			  (element_count) element->count,
561
			  argument)) == 0)
562
     error=tree_walk_right_root_left(tree,element->left,action,argument);
563
    return error;
564
  }
565
  return 0;
566
}
567
568
569
	/* Functions to fix up the tree after insert and delete */
570
571
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
572
{
573
  TREE_ELEMENT *y;
574
575
  y=leaf->right;
576
  leaf->right=y->left;
577
  parent[0]=y;
578
  y->left=leaf;
579
}
580
581
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
582
{
583
  TREE_ELEMENT *x;
584
585
  x=leaf->left;
586
  leaf->left=x->right;
587
  parent[0]=x;
588
  x->right=leaf;
589
}
590
591
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
592
{
593
  TREE_ELEMENT *y,*par,*par2;
594
595
  leaf->colour=RED;
596
  while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
597
  {
598
    if (par == (par2=parent[-2][0])->left)
599
    {
600
      y= par2->right;
601
      if (y->colour == RED)
602
      {
603
	par->colour=BLACK;
604
	y->colour=BLACK;
605
	leaf=par2;
606
	parent-=2;
607
	leaf->colour=RED;		/* And the loop continues */
608
      }
609
      else
610
      {
611
	if (leaf == par->right)
612
	{
613
	  left_rotate(parent[-1],par);
614
	  par=leaf;			/* leaf is now parent to old leaf */
615
	}
616
	par->colour=BLACK;
617
	par2->colour=RED;
618
	right_rotate(parent[-2],par2);
619
	break;
620
      }
621
    }
622
    else
623
    {
624
      y= par2->left;
625
      if (y->colour == RED)
626
      {
627
	par->colour=BLACK;
628
	y->colour=BLACK;
629
	leaf=par2;
630
	parent-=2;
631
	leaf->colour=RED;		/* And the loop continues */
632
      }
633
      else
634
      {
635
	if (leaf == par->left)
636
	{
637
	  right_rotate(parent[-1],par);
638
	  par=leaf;
639
	}
640
	par->colour=BLACK;
641
	par2->colour=RED;
642
	left_rotate(parent[-2],par2);
643
	break;
644
      }
645
    }
646
  }
647
  tree->root->colour=BLACK;
648
}
649
650
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
651
{
652
  TREE_ELEMENT *x,*w,*par;
653
654
  x= **parent;
655
  while (x != tree->root && x->colour == BLACK)
656
  {
657
    if (x == (par=parent[-1][0])->left)
658
    {
659
      w=par->right;
660
      if (w->colour == RED)
661
      {
662
	w->colour=BLACK;
663
	par->colour=RED;
664
	left_rotate(parent[-1],par);
665
	parent[0]= &w->left;
666
	*++parent= &par->left;
667
	w=par->right;
668
      }
669
      if (w->left->colour == BLACK && w->right->colour == BLACK)
670
      {
671
	w->colour=RED;
672
	x=par;
673
	parent--;
674
      }
675
      else
676
      {
677
	if (w->right->colour == BLACK)
678
	{
679
	  w->left->colour=BLACK;
680
	  w->colour=RED;
681
	  right_rotate(&par->right,w);
682
	  w=par->right;
683
	}
684
	w->colour=par->colour;
685
	par->colour=BLACK;
686
	w->right->colour=BLACK;
687
	left_rotate(parent[-1],par);
688
	x=tree->root;
689
	break;
690
      }
691
    }
692
    else
693
    {
694
      w=par->left;
695
      if (w->colour == RED)
696
      {
697
	w->colour=BLACK;
698
	par->colour=RED;
699
	right_rotate(parent[-1],par);
700
	parent[0]= &w->right;
701
	*++parent= &par->right;
702
	w=par->left;
703
      }
704
      if (w->right->colour == BLACK && w->left->colour == BLACK)
705
      {
706
	w->colour=RED;
707
	x=par;
708
	parent--;
709
      }
710
      else
711
      {
712
	if (w->left->colour == BLACK)
713
	{
714
	  w->right->colour=BLACK;
715
	  w->colour=RED;
716
	  left_rotate(&par->left,w);
717
	  w=par->left;
718
	}
719
	w->colour=par->colour;
720
	par->colour=BLACK;
721
	w->left->colour=BLACK;
722
	right_rotate(parent[-1],par);
723
	x=tree->root;
724
	break;
725
      }
726
    }
727
  }
728
  x->colour=BLACK;
729
}
730
731
#ifndef DBUG_OFF
732
733
	/* Test that the proporties for a red-black tree holds */
734
735
static int test_rb_tree(TREE_ELEMENT *element)
736
{
737
  int count_l,count_r;
738
739
  if (!element->left)
740
    return 0;				/* Found end of tree */
741
  if (element->colour == RED &&
742
      (element->left->colour == RED || element->right->colour == RED))
743
  {
744
    printf("Wrong tree: Found two red in a row\n");
745
    return -1;
746
  }
747
  count_l=test_rb_tree(element->left);
748
  count_r=test_rb_tree(element->right);
749
  if (count_l >= 0 && count_r >= 0)
750
  {
751
    if (count_l == count_r)
752
      return count_l+(element->colour == BLACK);
753
    printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
754
  }
755
  return -1;
756
}
757
#endif