1
by brian
clean slate |
1 |
/* Copyright (C) 2002-2004, 2006 MySQL AB & Ramil Kalimullin
|
2 |
|
|
3 |
This program is free software; you can redistribute it and/or modify
|
|
4 |
it under the terms of the GNU General Public License as published by
|
|
5 |
the Free Software Foundation; version 2 of the License.
|
|
6 |
|
|
7 |
This program is distributed in the hope that it will be useful,
|
|
8 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
9 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
10 |
GNU General Public License for more details.
|
|
11 |
|
|
12 |
You should have received a copy of the GNU General Public License
|
|
13 |
along with this program; if not, write to the Free Software
|
|
14 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
15 |
||
16 |
#include "myisamdef.h" |
|
17 |
||
18 |
#ifdef HAVE_RTREE_KEYS
|
|
19 |
||
20 |
#include "rt_index.h" |
|
21 |
#include "rt_mbr.h" |
|
22 |
||
23 |
#define INTERSECT_CMP(amin, amax, bmin, bmax) ((amin > bmax) || (bmin > amax))
|
|
24 |
#define CONTAIN_CMP(amin, amax, bmin, bmax) ((bmin > amin) || (bmax < amax))
|
|
25 |
#define WITHIN_CMP(amin, amax, bmin, bmax) ((amin > bmin) || (amax < bmax))
|
|
26 |
#define DISJOINT_CMP(amin, amax, bmin, bmax) ((amin <= bmax) && (bmin <= amax))
|
|
27 |
#define EQUAL_CMP(amin, amax, bmin, bmax) ((amin != bmin) || (amax != bmax))
|
|
28 |
||
29 |
#define FCMP(A, B) ((int)(A) - (int)(B))
|
|
30 |
#define p_inc(A, B, X) {A += X; B += X;}
|
|
31 |
||
32 |
#define RT_CMP(nextflag) \
|
|
33 |
if (nextflag & MBR_INTERSECT) \
|
|
34 |
{ \
|
|
35 |
if (INTERSECT_CMP(amin, amax, bmin, bmax)) \
|
|
36 |
return 1; \
|
|
37 |
} \
|
|
38 |
else if (nextflag & MBR_CONTAIN) \
|
|
39 |
{ \
|
|
40 |
if (CONTAIN_CMP(amin, amax, bmin, bmax)) \
|
|
41 |
return 1; \
|
|
42 |
} \
|
|
43 |
else if (nextflag & MBR_WITHIN) \
|
|
44 |
{ \
|
|
45 |
if (WITHIN_CMP(amin, amax, bmin, bmax)) \
|
|
46 |
return 1; \
|
|
47 |
} \
|
|
48 |
else if (nextflag & MBR_EQUAL) \
|
|
49 |
{ \
|
|
50 |
if (EQUAL_CMP(amin, amax, bmin, bmax)) \
|
|
51 |
return 1; \
|
|
52 |
} \
|
|
53 |
else if (nextflag & MBR_DISJOINT) \
|
|
54 |
{ \
|
|
55 |
if (DISJOINT_CMP(amin, amax, bmin, bmax)) \
|
|
56 |
return 1; \
|
|
57 |
}\
|
|
58 |
else /* if unknown comparison operator */ \ |
|
59 |
{ \
|
|
60 |
DBUG_ASSERT(0); \
|
|
61 |
}
|
|
62 |
||
63 |
#define RT_CMP_KORR(type, korr_func, len, nextflag) \
|
|
64 |
{ \
|
|
65 |
type amin, amax, bmin, bmax; \
|
|
66 |
amin = korr_func(a); \
|
|
67 |
bmin = korr_func(b); \
|
|
68 |
amax = korr_func(a+len); \
|
|
69 |
bmax = korr_func(b+len); \
|
|
70 |
RT_CMP(nextflag); \
|
|
71 |
}
|
|
72 |
||
73 |
#define RT_CMP_GET(type, get_func, len, nextflag) \
|
|
74 |
{ \
|
|
75 |
type amin, amax, bmin, bmax; \
|
|
76 |
get_func(amin, a); \
|
|
77 |
get_func(bmin, b); \
|
|
78 |
get_func(amax, a+len); \
|
|
79 |
get_func(bmax, b+len); \
|
|
80 |
RT_CMP(nextflag); \
|
|
81 |
}
|
|
82 |
||
83 |
/*
|
|
84 |
Compares two keys a and b depending on nextflag
|
|
85 |
nextflag can contain these flags:
|
|
86 |
MBR_INTERSECT(a,b) a overlaps b
|
|
87 |
MBR_CONTAIN(a,b) a contains b
|
|
88 |
MBR_DISJOINT(a,b) a disjoint b
|
|
89 |
MBR_WITHIN(a,b) a within b
|
|
90 |
MBR_EQUAL(a,b) All coordinates of MBRs are equal
|
|
91 |
MBR_DATA(a,b) Data reference is the same
|
|
92 |
Returns 0 on success.
|
|
93 |
*/
|
|
94 |
int rtree_key_cmp(HA_KEYSEG *keyseg, uchar *b, uchar *a, uint key_length, |
|
95 |
uint nextflag) |
|
96 |
{
|
|
97 |
for (; (int) key_length > 0; keyseg += 2 ) |
|
98 |
{
|
|
99 |
uint32 keyseg_length; |
|
100 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
101 |
case HA_KEYTYPE_INT8: |
|
102 |
RT_CMP_KORR(int8, mi_sint1korr, 1, nextflag); |
|
103 |
break; |
|
104 |
case HA_KEYTYPE_BINARY: |
|
105 |
RT_CMP_KORR(uint8, mi_uint1korr, 1, nextflag); |
|
106 |
break; |
|
107 |
case HA_KEYTYPE_SHORT_INT: |
|
108 |
RT_CMP_KORR(int16, mi_sint2korr, 2, nextflag); |
|
109 |
break; |
|
110 |
case HA_KEYTYPE_USHORT_INT: |
|
111 |
RT_CMP_KORR(uint16, mi_uint2korr, 2, nextflag); |
|
112 |
break; |
|
113 |
case HA_KEYTYPE_INT24: |
|
114 |
RT_CMP_KORR(int32, mi_sint3korr, 3, nextflag); |
|
115 |
break; |
|
116 |
case HA_KEYTYPE_UINT24: |
|
117 |
RT_CMP_KORR(uint32, mi_uint3korr, 3, nextflag); |
|
118 |
break; |
|
119 |
case HA_KEYTYPE_LONG_INT: |
|
120 |
RT_CMP_KORR(int32, mi_sint4korr, 4, nextflag); |
|
121 |
break; |
|
122 |
case HA_KEYTYPE_ULONG_INT: |
|
123 |
RT_CMP_KORR(uint32, mi_uint4korr, 4, nextflag); |
|
124 |
break; |
|
125 |
#ifdef HAVE_LONG_LONG
|
|
126 |
case HA_KEYTYPE_LONGLONG: |
|
127 |
RT_CMP_KORR(longlong, mi_sint8korr, 8, nextflag) |
|
128 |
break; |
|
129 |
case HA_KEYTYPE_ULONGLONG: |
|
130 |
RT_CMP_KORR(ulonglong, mi_uint8korr, 8, nextflag) |
|
131 |
break; |
|
132 |
#endif
|
|
133 |
case HA_KEYTYPE_FLOAT: |
|
134 |
/* The following should be safe, even if we compare doubles */
|
|
135 |
RT_CMP_GET(float, mi_float4get, 4, nextflag); |
|
136 |
break; |
|
137 |
case HA_KEYTYPE_DOUBLE: |
|
138 |
RT_CMP_GET(double, mi_float8get, 8, nextflag); |
|
139 |
break; |
|
140 |
case HA_KEYTYPE_END: |
|
141 |
goto end; |
|
142 |
default: |
|
143 |
return 1; |
|
144 |
}
|
|
145 |
keyseg_length= keyseg->length * 2; |
|
146 |
key_length-= keyseg_length; |
|
147 |
a+= keyseg_length; |
|
148 |
b+= keyseg_length; |
|
149 |
}
|
|
150 |
||
151 |
end: |
|
152 |
if (nextflag & MBR_DATA) |
|
153 |
{
|
|
154 |
uchar *end = a + keyseg->length; |
|
155 |
do
|
|
156 |
{
|
|
157 |
if (*a++ != *b++) |
|
158 |
return FCMP(a[-1], b[-1]); |
|
159 |
} while (a != end); |
|
160 |
}
|
|
161 |
return 0; |
|
162 |
}
|
|
163 |
||
164 |
#define RT_VOL_KORR(type, korr_func, len, cast) \
|
|
165 |
{ \
|
|
166 |
type amin, amax; \
|
|
167 |
amin = korr_func(a); \
|
|
168 |
amax = korr_func(a+len); \
|
|
169 |
res *= (cast(amax) - cast(amin)); \
|
|
170 |
}
|
|
171 |
||
172 |
#define RT_VOL_GET(type, get_func, len, cast) \
|
|
173 |
{ \
|
|
174 |
type amin, amax; \
|
|
175 |
get_func(amin, a); \
|
|
176 |
get_func(amax, a+len); \
|
|
177 |
res *= (cast(amax) - cast(amin)); \
|
|
178 |
}
|
|
179 |
||
180 |
/*
|
|
181 |
Calculates rectangle volume
|
|
182 |
*/
|
|
183 |
double rtree_rect_volume(HA_KEYSEG *keyseg, uchar *a, uint key_length) |
|
184 |
{
|
|
185 |
double res = 1; |
|
186 |
for (; (int)key_length > 0; keyseg += 2) |
|
187 |
{
|
|
188 |
uint32 keyseg_length; |
|
189 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
190 |
case HA_KEYTYPE_INT8: |
|
191 |
RT_VOL_KORR(int8, mi_sint1korr, 1, (double)); |
|
192 |
break; |
|
193 |
case HA_KEYTYPE_BINARY: |
|
194 |
RT_VOL_KORR(uint8, mi_uint1korr, 1, (double)); |
|
195 |
break; |
|
196 |
case HA_KEYTYPE_SHORT_INT: |
|
197 |
RT_VOL_KORR(int16, mi_sint2korr, 2, (double)); |
|
198 |
break; |
|
199 |
case HA_KEYTYPE_USHORT_INT: |
|
200 |
RT_VOL_KORR(uint16, mi_uint2korr, 2, (double)); |
|
201 |
break; |
|
202 |
case HA_KEYTYPE_INT24: |
|
203 |
RT_VOL_KORR(int32, mi_sint3korr, 3, (double)); |
|
204 |
break; |
|
205 |
case HA_KEYTYPE_UINT24: |
|
206 |
RT_VOL_KORR(uint32, mi_uint3korr, 3, (double)); |
|
207 |
break; |
|
208 |
case HA_KEYTYPE_LONG_INT: |
|
209 |
RT_VOL_KORR(int32, mi_sint4korr, 4, (double)); |
|
210 |
break; |
|
211 |
case HA_KEYTYPE_ULONG_INT: |
|
212 |
RT_VOL_KORR(uint32, mi_uint4korr, 4, (double)); |
|
213 |
break; |
|
214 |
#ifdef HAVE_LONG_LONG
|
|
215 |
case HA_KEYTYPE_LONGLONG: |
|
216 |
RT_VOL_KORR(longlong, mi_sint8korr, 8, (double)); |
|
217 |
break; |
|
218 |
case HA_KEYTYPE_ULONGLONG: |
|
219 |
RT_VOL_KORR(longlong, mi_sint8korr, 8, ulonglong2double); |
|
220 |
break; |
|
221 |
#endif
|
|
222 |
case HA_KEYTYPE_FLOAT: |
|
223 |
RT_VOL_GET(float, mi_float4get, 4, (double)); |
|
224 |
break; |
|
225 |
case HA_KEYTYPE_DOUBLE: |
|
226 |
RT_VOL_GET(double, mi_float8get, 8, (double)); |
|
227 |
break; |
|
228 |
case HA_KEYTYPE_END: |
|
229 |
key_length = 0; |
|
230 |
break; |
|
231 |
default: |
|
232 |
return -1; |
|
233 |
}
|
|
234 |
keyseg_length= keyseg->length * 2; |
|
235 |
key_length-= keyseg_length; |
|
236 |
a+= keyseg_length; |
|
237 |
}
|
|
238 |
return res; |
|
239 |
}
|
|
240 |
||
241 |
#define RT_D_MBR_KORR(type, korr_func, len, cast) \
|
|
242 |
{ \
|
|
243 |
type amin, amax; \
|
|
244 |
amin = korr_func(a); \
|
|
245 |
amax = korr_func(a+len); \
|
|
246 |
*res++ = cast(amin); \
|
|
247 |
*res++ = cast(amax); \
|
|
248 |
}
|
|
249 |
||
250 |
#define RT_D_MBR_GET(type, get_func, len, cast) \
|
|
251 |
{ \
|
|
252 |
type amin, amax; \
|
|
253 |
get_func(amin, a); \
|
|
254 |
get_func(amax, a+len); \
|
|
255 |
*res++ = cast(amin); \
|
|
256 |
*res++ = cast(amax); \
|
|
257 |
}
|
|
258 |
||
259 |
||
260 |
/*
|
|
261 |
Creates an MBR as an array of doubles.
|
|
262 |
*/
|
|
263 |
||
264 |
int rtree_d_mbr(HA_KEYSEG *keyseg, uchar *a, uint key_length, double *res) |
|
265 |
{
|
|
266 |
for (; (int)key_length > 0; keyseg += 2) |
|
267 |
{
|
|
268 |
uint32 keyseg_length; |
|
269 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
270 |
case HA_KEYTYPE_INT8: |
|
271 |
RT_D_MBR_KORR(int8, mi_sint1korr, 1, (double)); |
|
272 |
break; |
|
273 |
case HA_KEYTYPE_BINARY: |
|
274 |
RT_D_MBR_KORR(uint8, mi_uint1korr, 1, (double)); |
|
275 |
break; |
|
276 |
case HA_KEYTYPE_SHORT_INT: |
|
277 |
RT_D_MBR_KORR(int16, mi_sint2korr, 2, (double)); |
|
278 |
break; |
|
279 |
case HA_KEYTYPE_USHORT_INT: |
|
280 |
RT_D_MBR_KORR(uint16, mi_uint2korr, 2, (double)); |
|
281 |
break; |
|
282 |
case HA_KEYTYPE_INT24: |
|
283 |
RT_D_MBR_KORR(int32, mi_sint3korr, 3, (double)); |
|
284 |
break; |
|
285 |
case HA_KEYTYPE_UINT24: |
|
286 |
RT_D_MBR_KORR(uint32, mi_uint3korr, 3, (double)); |
|
287 |
break; |
|
288 |
case HA_KEYTYPE_LONG_INT: |
|
289 |
RT_D_MBR_KORR(int32, mi_sint4korr, 4, (double)); |
|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULONG_INT: |
|
292 |
RT_D_MBR_KORR(uint32, mi_uint4korr, 4, (double)); |
|
293 |
break; |
|
294 |
#ifdef HAVE_LONG_LONG
|
|
295 |
case HA_KEYTYPE_LONGLONG: |
|
296 |
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, (double)); |
|
297 |
break; |
|
298 |
case HA_KEYTYPE_ULONGLONG: |
|
299 |
RT_D_MBR_KORR(longlong, mi_sint8korr, 8, ulonglong2double); |
|
300 |
break; |
|
301 |
#endif
|
|
302 |
case HA_KEYTYPE_FLOAT: |
|
303 |
RT_D_MBR_GET(float, mi_float4get, 4, (double)); |
|
304 |
break; |
|
305 |
case HA_KEYTYPE_DOUBLE: |
|
306 |
RT_D_MBR_GET(double, mi_float8get, 8, (double)); |
|
307 |
break; |
|
308 |
case HA_KEYTYPE_END: |
|
309 |
key_length = 0; |
|
310 |
break; |
|
311 |
default: |
|
312 |
return 1; |
|
313 |
}
|
|
314 |
keyseg_length= keyseg->length * 2; |
|
315 |
key_length-= keyseg_length; |
|
316 |
a+= keyseg_length; |
|
317 |
}
|
|
318 |
return 0; |
|
319 |
}
|
|
320 |
||
321 |
#define RT_COMB_KORR(type, korr_func, store_func, len) \
|
|
322 |
{ \
|
|
323 |
type amin, amax, bmin, bmax; \
|
|
324 |
amin = korr_func(a); \
|
|
325 |
bmin = korr_func(b); \
|
|
326 |
amax = korr_func(a+len); \
|
|
327 |
bmax = korr_func(b+len); \
|
|
328 |
amin = min(amin, bmin); \
|
|
329 |
amax = max(amax, bmax); \
|
|
330 |
store_func(c, amin); \
|
|
331 |
store_func(c+len, amax); \
|
|
332 |
}
|
|
333 |
||
334 |
#define RT_COMB_GET(type, get_func, store_func, len) \
|
|
335 |
{ \
|
|
336 |
type amin, amax, bmin, bmax; \
|
|
337 |
get_func(amin, a); \
|
|
338 |
get_func(bmin, b); \
|
|
339 |
get_func(amax, a+len); \
|
|
340 |
get_func(bmax, b+len); \
|
|
341 |
amin = min(amin, bmin); \
|
|
342 |
amax = max(amax, bmax); \
|
|
343 |
store_func(c, amin); \
|
|
344 |
store_func(c+len, amax); \
|
|
345 |
}
|
|
346 |
||
347 |
/*
|
|
348 |
Creates common minimal bounding rectungle
|
|
349 |
for two input rectagnles a and b
|
|
350 |
Result is written to c
|
|
351 |
*/
|
|
352 |
||
353 |
int rtree_combine_rect(HA_KEYSEG *keyseg, uchar* a, uchar* b, uchar* c, |
|
354 |
uint key_length) |
|
355 |
{
|
|
356 |
for ( ; (int) key_length > 0 ; keyseg += 2) |
|
357 |
{
|
|
358 |
uint32 keyseg_length; |
|
359 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
360 |
case HA_KEYTYPE_INT8: |
|
361 |
RT_COMB_KORR(int8, mi_sint1korr, mi_int1store, 1); |
|
362 |
break; |
|
363 |
case HA_KEYTYPE_BINARY: |
|
364 |
RT_COMB_KORR(uint8, mi_uint1korr, mi_int1store, 1); |
|
365 |
break; |
|
366 |
case HA_KEYTYPE_SHORT_INT: |
|
367 |
RT_COMB_KORR(int16, mi_sint2korr, mi_int2store, 2); |
|
368 |
break; |
|
369 |
case HA_KEYTYPE_USHORT_INT: |
|
370 |
RT_COMB_KORR(uint16, mi_uint2korr, mi_int2store, 2); |
|
371 |
break; |
|
372 |
case HA_KEYTYPE_INT24: |
|
373 |
RT_COMB_KORR(int32, mi_sint3korr, mi_int3store, 3); |
|
374 |
break; |
|
375 |
case HA_KEYTYPE_UINT24: |
|
376 |
RT_COMB_KORR(uint32, mi_uint3korr, mi_int3store, 3); |
|
377 |
break; |
|
378 |
case HA_KEYTYPE_LONG_INT: |
|
379 |
RT_COMB_KORR(int32, mi_sint4korr, mi_int4store, 4); |
|
380 |
break; |
|
381 |
case HA_KEYTYPE_ULONG_INT: |
|
382 |
RT_COMB_KORR(uint32, mi_uint4korr, mi_int4store, 4); |
|
383 |
break; |
|
384 |
#ifdef HAVE_LONG_LONG
|
|
385 |
case HA_KEYTYPE_LONGLONG: |
|
386 |
RT_COMB_KORR(longlong, mi_sint8korr, mi_int8store, 8); |
|
387 |
break; |
|
388 |
case HA_KEYTYPE_ULONGLONG: |
|
389 |
RT_COMB_KORR(ulonglong, mi_uint8korr, mi_int8store, 8); |
|
390 |
break; |
|
391 |
#endif
|
|
392 |
case HA_KEYTYPE_FLOAT: |
|
393 |
RT_COMB_GET(float, mi_float4get, mi_float4store, 4); |
|
394 |
break; |
|
395 |
case HA_KEYTYPE_DOUBLE: |
|
396 |
RT_COMB_GET(double, mi_float8get, mi_float8store, 8); |
|
397 |
break; |
|
398 |
case HA_KEYTYPE_END: |
|
399 |
return 0; |
|
400 |
default: |
|
401 |
return 1; |
|
402 |
}
|
|
403 |
keyseg_length= keyseg->length * 2; |
|
404 |
key_length-= keyseg_length; |
|
405 |
a+= keyseg_length; |
|
406 |
b+= keyseg_length; |
|
407 |
c+= keyseg_length; |
|
408 |
}
|
|
409 |
return 0; |
|
410 |
}
|
|
411 |
||
412 |
||
413 |
#define RT_OVL_AREA_KORR(type, korr_func, len) \
|
|
414 |
{ \
|
|
415 |
type amin, amax, bmin, bmax; \
|
|
416 |
amin = korr_func(a); \
|
|
417 |
bmin = korr_func(b); \
|
|
418 |
amax = korr_func(a+len); \
|
|
419 |
bmax = korr_func(b+len); \
|
|
420 |
amin = max(amin, bmin); \
|
|
421 |
amax = min(amax, bmax); \
|
|
422 |
if (amin >= amax) \
|
|
423 |
return 0; \
|
|
424 |
res *= amax - amin; \
|
|
425 |
}
|
|
426 |
||
427 |
#define RT_OVL_AREA_GET(type, get_func, len) \
|
|
428 |
{ \
|
|
429 |
type amin, amax, bmin, bmax; \
|
|
430 |
get_func(amin, a); \
|
|
431 |
get_func(bmin, b); \
|
|
432 |
get_func(amax, a+len); \
|
|
433 |
get_func(bmax, b+len); \
|
|
434 |
amin = max(amin, bmin); \
|
|
435 |
amax = min(amax, bmax); \
|
|
436 |
if (amin >= amax) \
|
|
437 |
return 0; \
|
|
438 |
res *= amax - amin; \
|
|
439 |
}
|
|
440 |
||
441 |
/*
|
|
442 |
Calculates overlapping area of two MBRs a & b
|
|
443 |
*/
|
|
444 |
double rtree_overlapping_area(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
|
445 |
uint key_length) |
|
446 |
{
|
|
447 |
double res = 1; |
|
448 |
for (; (int) key_length > 0 ; keyseg += 2) |
|
449 |
{
|
|
450 |
uint32 keyseg_length; |
|
451 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
452 |
case HA_KEYTYPE_INT8: |
|
453 |
RT_OVL_AREA_KORR(int8, mi_sint1korr, 1); |
|
454 |
break; |
|
455 |
case HA_KEYTYPE_BINARY: |
|
456 |
RT_OVL_AREA_KORR(uint8, mi_uint1korr, 1); |
|
457 |
break; |
|
458 |
case HA_KEYTYPE_SHORT_INT: |
|
459 |
RT_OVL_AREA_KORR(int16, mi_sint2korr, 2); |
|
460 |
break; |
|
461 |
case HA_KEYTYPE_USHORT_INT: |
|
462 |
RT_OVL_AREA_KORR(uint16, mi_uint2korr, 2); |
|
463 |
break; |
|
464 |
case HA_KEYTYPE_INT24: |
|
465 |
RT_OVL_AREA_KORR(int32, mi_sint3korr, 3); |
|
466 |
break; |
|
467 |
case HA_KEYTYPE_UINT24: |
|
468 |
RT_OVL_AREA_KORR(uint32, mi_uint3korr, 3); |
|
469 |
break; |
|
470 |
case HA_KEYTYPE_LONG_INT: |
|
471 |
RT_OVL_AREA_KORR(int32, mi_sint4korr, 4); |
|
472 |
break; |
|
473 |
case HA_KEYTYPE_ULONG_INT: |
|
474 |
RT_OVL_AREA_KORR(uint32, mi_uint4korr, 4); |
|
475 |
break; |
|
476 |
#ifdef HAVE_LONG_LONG
|
|
477 |
case HA_KEYTYPE_LONGLONG: |
|
478 |
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8); |
|
479 |
break; |
|
480 |
case HA_KEYTYPE_ULONGLONG: |
|
481 |
RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8); |
|
482 |
break; |
|
483 |
#endif
|
|
484 |
case HA_KEYTYPE_FLOAT: |
|
485 |
RT_OVL_AREA_GET(float, mi_float4get, 4); |
|
486 |
break; |
|
487 |
case HA_KEYTYPE_DOUBLE: |
|
488 |
RT_OVL_AREA_GET(double, mi_float8get, 8); |
|
489 |
break; |
|
490 |
case HA_KEYTYPE_END: |
|
491 |
return res; |
|
492 |
default: |
|
493 |
return -1; |
|
494 |
}
|
|
495 |
keyseg_length= keyseg->length * 2; |
|
496 |
key_length-= keyseg_length; |
|
497 |
a+= keyseg_length; |
|
498 |
b+= keyseg_length; |
|
499 |
}
|
|
500 |
return res; |
|
501 |
}
|
|
502 |
||
503 |
#define RT_AREA_INC_KORR(type, korr_func, len) \
|
|
504 |
{ \
|
|
505 |
type amin, amax, bmin, bmax; \
|
|
506 |
amin = korr_func(a); \
|
|
507 |
bmin = korr_func(b); \
|
|
508 |
amax = korr_func(a+len); \
|
|
509 |
bmax = korr_func(b+len); \
|
|
510 |
a_area *= (((double)amax) - ((double)amin)); \
|
|
511 |
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
|
|
512 |
}
|
|
513 |
||
514 |
#define RT_AREA_INC_GET(type, get_func, len)\
|
|
515 |
{\
|
|
516 |
type amin, amax, bmin, bmax; \
|
|
517 |
get_func(amin, a); \
|
|
518 |
get_func(bmin, b); \
|
|
519 |
get_func(amax, a+len); \
|
|
520 |
get_func(bmax, b+len); \
|
|
521 |
a_area *= (((double)amax) - ((double)amin)); \
|
|
522 |
loc_ab_area *= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
|
|
523 |
}
|
|
524 |
||
525 |
/*
|
|
526 |
Calculates MBR_AREA(a+b) - MBR_AREA(a)
|
|
527 |
Note: when 'a' and 'b' objects are far from each other,
|
|
528 |
the area increase can be really big, so this function
|
|
529 |
can return 'inf' as a result.
|
|
530 |
*/
|
|
531 |
double rtree_area_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
|
532 |
uint key_length, double *ab_area) |
|
533 |
{
|
|
534 |
double a_area= 1.0; |
|
535 |
double loc_ab_area= 1.0; |
|
536 |
||
537 |
*ab_area= 1.0; |
|
538 |
for (; (int)key_length > 0; keyseg += 2) |
|
539 |
{
|
|
540 |
uint32 keyseg_length; |
|
541 |
||
542 |
if (keyseg->null_bit) /* Handle NULL part */ |
|
543 |
return -1; |
|
544 |
||
545 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
546 |
case HA_KEYTYPE_INT8: |
|
547 |
RT_AREA_INC_KORR(int8, mi_sint1korr, 1); |
|
548 |
break; |
|
549 |
case HA_KEYTYPE_BINARY: |
|
550 |
RT_AREA_INC_KORR(uint8, mi_uint1korr, 1); |
|
551 |
break; |
|
552 |
case HA_KEYTYPE_SHORT_INT: |
|
553 |
RT_AREA_INC_KORR(int16, mi_sint2korr, 2); |
|
554 |
break; |
|
555 |
case HA_KEYTYPE_USHORT_INT: |
|
556 |
RT_AREA_INC_KORR(uint16, mi_uint2korr, 2); |
|
557 |
break; |
|
558 |
case HA_KEYTYPE_INT24: |
|
559 |
RT_AREA_INC_KORR(int32, mi_sint3korr, 3); |
|
560 |
break; |
|
561 |
case HA_KEYTYPE_UINT24: |
|
562 |
RT_AREA_INC_KORR(int32, mi_uint3korr, 3); |
|
563 |
break; |
|
564 |
case HA_KEYTYPE_LONG_INT: |
|
565 |
RT_AREA_INC_KORR(int32, mi_sint4korr, 4); |
|
566 |
break; |
|
567 |
case HA_KEYTYPE_ULONG_INT: |
|
568 |
RT_AREA_INC_KORR(uint32, mi_uint4korr, 4); |
|
569 |
break; |
|
570 |
#ifdef HAVE_LONG_LONG
|
|
571 |
case HA_KEYTYPE_LONGLONG: |
|
572 |
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8); |
|
573 |
break; |
|
574 |
case HA_KEYTYPE_ULONGLONG: |
|
575 |
RT_AREA_INC_KORR(longlong, mi_sint8korr, 8); |
|
576 |
break; |
|
577 |
#endif
|
|
578 |
case HA_KEYTYPE_FLOAT: |
|
579 |
RT_AREA_INC_GET(float, mi_float4get, 4); |
|
580 |
break; |
|
581 |
case HA_KEYTYPE_DOUBLE: |
|
582 |
RT_AREA_INC_GET(double, mi_float8get, 8); |
|
583 |
break; |
|
584 |
case HA_KEYTYPE_END: |
|
585 |
goto safe_end; |
|
586 |
default: |
|
587 |
return -1; |
|
588 |
}
|
|
589 |
keyseg_length= keyseg->length * 2; |
|
590 |
key_length-= keyseg_length; |
|
591 |
a+= keyseg_length; |
|
592 |
b+= keyseg_length; |
|
593 |
}
|
|
594 |
safe_end: |
|
595 |
*ab_area= loc_ab_area; |
|
596 |
return loc_ab_area - a_area; |
|
597 |
}
|
|
598 |
||
599 |
#define RT_PERIM_INC_KORR(type, korr_func, len) \
|
|
600 |
{ \
|
|
601 |
type amin, amax, bmin, bmax; \
|
|
602 |
amin = korr_func(a); \
|
|
603 |
bmin = korr_func(b); \
|
|
604 |
amax = korr_func(a+len); \
|
|
605 |
bmax = korr_func(b+len); \
|
|
606 |
a_perim+= (((double)amax) - ((double)amin)); \
|
|
607 |
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
|
|
608 |
}
|
|
609 |
||
610 |
#define RT_PERIM_INC_GET(type, get_func, len)\
|
|
611 |
{\
|
|
612 |
type amin, amax, bmin, bmax; \
|
|
613 |
get_func(amin, a); \
|
|
614 |
get_func(bmin, b); \
|
|
615 |
get_func(amax, a+len); \
|
|
616 |
get_func(bmax, b+len); \
|
|
617 |
a_perim+= (((double)amax) - ((double)amin)); \
|
|
618 |
*ab_perim+= ((double)max(amax, bmax) - (double)min(amin, bmin)); \
|
|
619 |
}
|
|
620 |
||
621 |
/*
|
|
622 |
Calculates MBR_PERIMETER(a+b) - MBR_PERIMETER(a)
|
|
623 |
*/
|
|
624 |
double rtree_perimeter_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
|
625 |
uint key_length, double *ab_perim) |
|
626 |
{
|
|
627 |
double a_perim = 0.0; |
|
628 |
||
629 |
*ab_perim= 0.0; |
|
630 |
for (; (int)key_length > 0; keyseg += 2) |
|
631 |
{
|
|
632 |
uint32 keyseg_length; |
|
633 |
||
634 |
if (keyseg->null_bit) /* Handle NULL part */ |
|
635 |
return -1; |
|
636 |
||
637 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
638 |
case HA_KEYTYPE_INT8: |
|
639 |
RT_PERIM_INC_KORR(int8, mi_sint1korr, 1); |
|
640 |
break; |
|
641 |
case HA_KEYTYPE_BINARY: |
|
642 |
RT_PERIM_INC_KORR(uint8, mi_uint1korr, 1); |
|
643 |
break; |
|
644 |
case HA_KEYTYPE_SHORT_INT: |
|
645 |
RT_PERIM_INC_KORR(int16, mi_sint2korr, 2); |
|
646 |
break; |
|
647 |
case HA_KEYTYPE_USHORT_INT: |
|
648 |
RT_PERIM_INC_KORR(uint16, mi_uint2korr, 2); |
|
649 |
break; |
|
650 |
case HA_KEYTYPE_INT24: |
|
651 |
RT_PERIM_INC_KORR(int32, mi_sint3korr, 3); |
|
652 |
break; |
|
653 |
case HA_KEYTYPE_UINT24: |
|
654 |
RT_PERIM_INC_KORR(int32, mi_uint3korr, 3); |
|
655 |
break; |
|
656 |
case HA_KEYTYPE_LONG_INT: |
|
657 |
RT_PERIM_INC_KORR(int32, mi_sint4korr, 4); |
|
658 |
break; |
|
659 |
case HA_KEYTYPE_ULONG_INT: |
|
660 |
RT_PERIM_INC_KORR(uint32, mi_uint4korr, 4); |
|
661 |
break; |
|
662 |
#ifdef HAVE_LONG_LONG
|
|
663 |
case HA_KEYTYPE_LONGLONG: |
|
664 |
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8); |
|
665 |
break; |
|
666 |
case HA_KEYTYPE_ULONGLONG: |
|
667 |
RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8); |
|
668 |
break; |
|
669 |
#endif
|
|
670 |
case HA_KEYTYPE_FLOAT: |
|
671 |
RT_PERIM_INC_GET(float, mi_float4get, 4); |
|
672 |
break; |
|
673 |
case HA_KEYTYPE_DOUBLE: |
|
674 |
RT_PERIM_INC_GET(double, mi_float8get, 8); |
|
675 |
break; |
|
676 |
case HA_KEYTYPE_END: |
|
677 |
return *ab_perim - a_perim; |
|
678 |
default: |
|
679 |
return -1; |
|
680 |
}
|
|
681 |
keyseg_length= keyseg->length * 2; |
|
682 |
key_length-= keyseg_length; |
|
683 |
a+= keyseg_length; |
|
684 |
b+= keyseg_length; |
|
685 |
}
|
|
686 |
return *ab_perim - a_perim; |
|
687 |
}
|
|
688 |
||
689 |
||
690 |
#define RT_PAGE_MBR_KORR(type, korr_func, store_func, len) \
|
|
691 |
{ \
|
|
692 |
type amin, amax, bmin, bmax; \
|
|
693 |
amin = korr_func(k + inc); \
|
|
694 |
amax = korr_func(k + inc + len); \
|
|
695 |
k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \
|
|
696 |
for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \
|
|
697 |
{ \
|
|
698 |
bmin = korr_func(k + inc); \
|
|
699 |
bmax = korr_func(k + inc + len); \
|
|
700 |
if (amin > bmin) \
|
|
701 |
amin = bmin; \
|
|
702 |
if (amax < bmax) \
|
|
703 |
amax = bmax; \
|
|
704 |
} \
|
|
705 |
store_func(c, amin); \
|
|
706 |
c += len; \
|
|
707 |
store_func(c, amax); \
|
|
708 |
c += len; \
|
|
709 |
inc += 2 * len; \
|
|
710 |
}
|
|
711 |
||
712 |
#define RT_PAGE_MBR_GET(type, get_func, store_func, len) \
|
|
713 |
{ \
|
|
714 |
type amin, amax, bmin, bmax; \
|
|
715 |
get_func(amin, k + inc); \
|
|
716 |
get_func(amax, k + inc + len); \
|
|
717 |
k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \
|
|
718 |
for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \
|
|
719 |
{ \
|
|
720 |
get_func(bmin, k + inc); \
|
|
721 |
get_func(bmax, k + inc + len); \
|
|
722 |
if (amin > bmin) \
|
|
723 |
amin = bmin; \
|
|
724 |
if (amax < bmax) \
|
|
725 |
amax = bmax; \
|
|
726 |
} \
|
|
727 |
store_func(c, amin); \
|
|
728 |
c += len; \
|
|
729 |
store_func(c, amax); \
|
|
730 |
c += len; \
|
|
731 |
inc += 2 * len; \
|
|
732 |
}
|
|
733 |
||
734 |
/*
|
|
735 |
Calculates key page total MBR = MBR(key1) + MBR(key2) + ...
|
|
736 |
*/
|
|
737 |
int rtree_page_mbr(MI_INFO *info, HA_KEYSEG *keyseg, uchar *page_buf, |
|
738 |
uchar *c, uint key_length) |
|
739 |
{
|
|
740 |
uint inc = 0; |
|
741 |
uint k_len = key_length; |
|
742 |
uint nod_flag = mi_test_if_nod(page_buf); |
|
743 |
uchar *k; |
|
744 |
uchar *last = rt_PAGE_END(page_buf); |
|
745 |
||
746 |
for (; (int)key_length > 0; keyseg += 2) |
|
747 |
{
|
|
748 |
key_length -= keyseg->length * 2; |
|
749 |
||
750 |
/* Handle NULL part */
|
|
751 |
if (keyseg->null_bit) |
|
752 |
{
|
|
753 |
return 1; |
|
754 |
}
|
|
755 |
||
756 |
k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); |
|
757 |
||
758 |
switch ((enum ha_base_keytype) keyseg->type) { |
|
759 |
case HA_KEYTYPE_INT8: |
|
760 |
RT_PAGE_MBR_KORR(int8, mi_sint1korr, mi_int1store, 1); |
|
761 |
break; |
|
762 |
case HA_KEYTYPE_BINARY: |
|
763 |
RT_PAGE_MBR_KORR(uint8, mi_uint1korr, mi_int1store, 1); |
|
764 |
break; |
|
765 |
case HA_KEYTYPE_SHORT_INT: |
|
766 |
RT_PAGE_MBR_KORR(int16, mi_sint2korr, mi_int2store, 2); |
|
767 |
break; |
|
768 |
case HA_KEYTYPE_USHORT_INT: |
|
769 |
RT_PAGE_MBR_KORR(uint16, mi_uint2korr, mi_int2store, 2); |
|
770 |
break; |
|
771 |
case HA_KEYTYPE_INT24: |
|
772 |
RT_PAGE_MBR_KORR(int32, mi_sint3korr, mi_int3store, 3); |
|
773 |
break; |
|
774 |
case HA_KEYTYPE_UINT24: |
|
775 |
RT_PAGE_MBR_KORR(uint32, mi_uint3korr, mi_int3store, 3); |
|
776 |
break; |
|
777 |
case HA_KEYTYPE_LONG_INT: |
|
778 |
RT_PAGE_MBR_KORR(int32, mi_sint4korr, mi_int4store, 4); |
|
779 |
break; |
|
780 |
case HA_KEYTYPE_ULONG_INT: |
|
781 |
RT_PAGE_MBR_KORR(uint32, mi_uint4korr, mi_int4store, 4); |
|
782 |
break; |
|
783 |
#ifdef HAVE_LONG_LONG
|
|
784 |
case HA_KEYTYPE_LONGLONG: |
|
785 |
RT_PAGE_MBR_KORR(longlong, mi_sint8korr, mi_int8store, 8); |
|
786 |
break; |
|
787 |
case HA_KEYTYPE_ULONGLONG: |
|
788 |
RT_PAGE_MBR_KORR(ulonglong, mi_uint8korr, mi_int8store, 8); |
|
789 |
break; |
|
790 |
#endif
|
|
791 |
case HA_KEYTYPE_FLOAT: |
|
792 |
RT_PAGE_MBR_GET(float, mi_float4get, mi_float4store, 4); |
|
793 |
break; |
|
794 |
case HA_KEYTYPE_DOUBLE: |
|
795 |
RT_PAGE_MBR_GET(double, mi_float8get, mi_float8store, 8); |
|
796 |
break; |
|
797 |
case HA_KEYTYPE_END: |
|
798 |
return 0; |
|
799 |
default: |
|
800 |
return 1; |
|
801 |
}
|
|
802 |
}
|
|
803 |
return 0; |
|
804 |
}
|
|
805 |
||
806 |
#endif /*HAVE_RTREE_KEYS*/ |