~drizzle-trunk/drizzle/development

1 by brian
clean slate
1
/* Copyright (C) 2000 MySQL AB
2
3
   This program is free software; you can redistribute it and/or modify
4
   it under the terms of the GNU General Public License as published by
5
   the Free Software Foundation; version 2 of the License.
6
7
   This program is distributed in the hope that it will be useful,
8
   but WITHOUT ANY WARRANTY; without even the implied warranty of
9
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10
   GNU General Public License for more details.
11
12
   You should have received a copy of the GNU General Public License
13
   along with this program; if not, write to the Free Software
14
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */
15
16
/*
17
  Code for handling red-black (balanced) binary trees.
18
  key in tree is allocated accrding to following:
19
20
  1) If size < 0 then tree will not allocate keys and only a pointer to
21
     each key is saved in tree.
22
     compare and search functions uses and returns key-pointer
23
24
  2) If size == 0 then there are two options:
25
       - key_size != 0 to tree_insert: The key will be stored in the tree.
26
       - key_size == 0 to tree_insert:  A pointer to the key is stored.
27
     compare and search functions uses and returns key-pointer.
28
29
  3) if key_size is given to init_tree then each node will continue the
30
     key and calls to insert_key may increase length of key.
31
     if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
     allign) then key will be put on a 8 alligned adress. Else
33
     the key will be on adress (element+1). This is transparent for user
34
     compare and search functions uses a pointer to given key-argument.
35
36
  - If you use a free function for tree-elements and you are freeing
37
    the element itself, you should use key_size = 0 to init_tree and
38
    tree_search
39
40
  The actual key in TREE_ELEMENT is saved as a pointer or after the
41
  TREE_ELEMENT struct.
42
  If one uses only pointers in tree one can use tree_set_pointer() to
43
  change address of data.
44
45
  Implemented by monty.
46
*/
47
48
/*
49
  NOTE:
50
  tree->compare function should be ALWAYS called as
51
    (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
  and not other way around, as
53
    (*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
54
*/
55
56
#include "mysys_priv.h"
57
#include <m_string.h>
58
#include <my_tree.h>
59
#include "my_base.h"
60
61
#define BLACK		1
62
#define RED		0
63
#define DEFAULT_ALLOC_SIZE 8192
64
#define DEFAULT_ALIGN_SIZE 8192
65
66
static void delete_tree_element(TREE *,TREE_ELEMENT *);
67
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
68
				     tree_walk_action,void *);
69
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
70
				     tree_walk_action,void *);
71
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
72
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
73
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
74
		      TREE_ELEMENT *leaf);
75
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
76
77
78
	/* The actuall code for handling binary trees */
79
80
#ifndef DBUG_OFF
81
static int test_rb_tree(TREE_ELEMENT *element);
82
#endif
83
84
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
146 by Brian Aker
my_bool cleanup.
85
               int size, qsort_cmp2 compare, bool with_delete,
1 by brian
clean slate
86
	       tree_element_free free_element, void *custom_arg)
87
{
88
  DBUG_ENTER("init_tree");
89
  DBUG_PRINT("enter",("tree: 0x%lx  size: %d", (long) tree, size));
90
91
  if (default_alloc_size < DEFAULT_ALLOC_SIZE)
92
    default_alloc_size= DEFAULT_ALLOC_SIZE;
93
  default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
94
  bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
95
  tree->root= &tree->null_element;
96
  tree->compare=compare;
97
  tree->size_of_element=size > 0 ? (uint) size : 0;
98
  tree->memory_limit=memory_limit;
99
  tree->free=free_element;
100
  tree->allocated=0;
101
  tree->elements_in_tree=0;
102
  tree->custom_arg = custom_arg;
103
  tree->null_element.colour=BLACK;
104
  tree->null_element.left=tree->null_element.right=0;
105
  tree->flag= 0;
106
  if (!free_element && size >= 0 &&
107
      ((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
108
  {
109
    /*
110
      We know that the data doesn't have to be aligned (like if the key
111
      contains a double), so we can store the data combined with the
112
      TREE_ELEMENT.
113
    */
114
    tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
115
    /* Fix allocation size so that we don't lose any memory */
116
    default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
117
    if (!default_alloc_size)
118
      default_alloc_size=1;
119
    default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
120
  }
121
  else
122
  {
123
    tree->offset_to_key=0;		/* use key through pointer */
124
    tree->size_of_element+=sizeof(void*);
125
  }
126
  if (!(tree->with_delete=with_delete))
127
  {
128
    init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
129
    tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
130
  }
131
  DBUG_VOID_RETURN;
132
}
133
134
static void free_tree(TREE *tree, myf free_flags)
135
{
136
  DBUG_ENTER("free_tree");
137
  DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
138
139
  if (tree->root)				/* If initialized */
140
  {
141
    if (tree->with_delete)
142
      delete_tree_element(tree,tree->root);
143
    else
144
    {
145
      if (tree->free)
146
      {
147
        if (tree->memory_limit)
148
          (*tree->free)(NULL, free_init, tree->custom_arg);
149
	delete_tree_element(tree,tree->root);
150
        if (tree->memory_limit)
151
          (*tree->free)(NULL, free_end, tree->custom_arg);
152
      }
153
      free_root(&tree->mem_root, free_flags);
154
    }
155
  }
156
  tree->root= &tree->null_element;
157
  tree->elements_in_tree=0;
158
  tree->allocated=0;
159
160
  DBUG_VOID_RETURN;
161
}
162
163
void delete_tree(TREE* tree)
164
{
165
  free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
166
}
167
168
void reset_tree(TREE* tree)
169
{
170
  /* do not free mem_root, just mark blocks as free */
171
  free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
172
}
173
174
175
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
176
{
177
  if (element != &tree->null_element)
178
  {
179
    delete_tree_element(tree,element->left);
180
    if (tree->free)
181
      (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
182
    delete_tree_element(tree,element->right);
183
    if (tree->with_delete)
184
      my_free((char*) element,MYF(0));
185
  }
186
}
187
188
189
/*
190
  insert, search and delete of elements
191
192
  The following should be true:
193
    parent[0] = & parent[-1][0]->left ||
194
    parent[0] = & parent[-1][0]->right
195
*/
196
197
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size, 
198
                          void* custom_arg)
199
{
200
  int cmp;
201
  TREE_ELEMENT *element,***parent;
202
203
  parent= tree->parents;
204
  *parent = &tree->root; element= tree->root;
205
  for (;;)
206
  {
207
    if (element == &tree->null_element ||
208
	(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
209
                                key)) == 0)
210
      break;
211
    if (cmp < 0)
212
    {
213
      *++parent= &element->right; element= element->right;
214
    }
215
    else
216
    {
217
      *++parent = &element->left; element= element->left;
218
    }
219
  }
220
  if (element == &tree->null_element)
221
  {
222
    uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
223
    tree->allocated+=alloc_size;
224
225
    if (tree->memory_limit && tree->elements_in_tree
226
                           && tree->allocated > tree->memory_limit)
227
    {
228
      reset_tree(tree);
229
      return tree_insert(tree, key, key_size, custom_arg);
230
    }
231
232
    key_size+=tree->size_of_element;
233
    if (tree->with_delete)
234
      element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
235
    else
236
      element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
237
    if (!element)
238
      return(NULL);
239
    **parent=element;
240
    element->left=element->right= &tree->null_element;
241
    if (!tree->offset_to_key)
242
    {
243
      if (key_size == sizeof(void*))		 /* no length, save pointer */
244
	*((void**) (element+1))=key;
245
      else
246
      {
247
	*((void**) (element+1))= (void*) ((void **) (element+1)+1);
248
	memcpy((uchar*) *((void **) (element+1)),key,
249
	       (size_t) (key_size-sizeof(void*)));
250
      }
251
    }
252
    else
253
      memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
254
    element->count=1;			/* May give warning in purify */
255
    tree->elements_in_tree++;
256
    rb_insert(tree,parent,element);	/* rebalance tree */
257
  }
258
  else
259
  {
260
    if (tree->flag & TREE_NO_DUPS)
261
      return(NULL);
262
    element->count++;
263
    /* Avoid a wrap over of the count. */
264
    if (! element->count)
265
      element->count--;
266
  }
267
  DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
268
  return element;
269
}
270
271
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
272
{
273
  int cmp,remove_colour;
274
  TREE_ELEMENT *element,***parent, ***org_parent, *nod;
275
  if (!tree->with_delete)
276
    return 1;					/* not allowed */
277
278
  parent= tree->parents;
279
  *parent= &tree->root; element= tree->root;
280
  for (;;)
281
  {
282
    if (element == &tree->null_element)
283
      return 1;				/* Was not in tree */
284
    if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
285
                                key)) == 0)
286
      break;
287
    if (cmp < 0)
288
    {
289
      *++parent= &element->right; element= element->right;
290
    }
291
    else
292
    {
293
      *++parent = &element->left; element= element->left;
294
    }
295
  }
296
  if (element->left == &tree->null_element)
297
  {
298
    (**parent)=element->right;
299
    remove_colour= element->colour;
300
  }
301
  else if (element->right == &tree->null_element)
302
  {
303
    (**parent)=element->left;
304
    remove_colour= element->colour;
305
  }
306
  else
307
  {
308
    org_parent= parent;
309
    *++parent= &element->right; nod= element->right;
310
    while (nod->left != &tree->null_element)
311
    {
312
      *++parent= &nod->left; nod= nod->left;
313
    }
314
    (**parent)=nod->right;		/* unlink nod from tree */
315
    remove_colour= nod->colour;
316
    org_parent[0][0]=nod;		/* put y in place of element */
317
    org_parent[1]= &nod->right;
318
    nod->left=element->left;
319
    nod->right=element->right;
320
    nod->colour=element->colour;
321
  }
322
  if (remove_colour == BLACK)
323
    rb_delete_fixup(tree,parent);
324
  if (tree->free)
325
    (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
326
  tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
327
  my_free((uchar*) element,MYF(0));
328
  tree->elements_in_tree--;
329
  return 0;
330
}
331
332
333
void *tree_search(TREE *tree, void *key, void *custom_arg)
334
{
335
  int cmp;
336
  TREE_ELEMENT *element=tree->root;
337
338
  for (;;)
339
  {
340
    if (element == &tree->null_element)
341
      return (void*) 0;
342
    if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
343
                                key)) == 0)
344
      return ELEMENT_KEY(tree,element);
345
    if (cmp < 0)
346
      element=element->right;
347
    else
348
      element=element->left;
349
  }
350
}
351
352
void *tree_search_key(TREE *tree, const void *key, 
353
                      TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
354
                      enum ha_rkey_function flag, void *custom_arg)
355
{
356
  int cmp;
357
  TREE_ELEMENT *element= tree->root;
358
  TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
359
  TREE_ELEMENT **last_equal_element= NULL;
360
361
/* 
362
  TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
363
*/
364
365
  *parents = &tree->null_element;
366
  while (element != &tree->null_element)
367
  {
368
    *++parents= element;
369
    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), 
370
			       key)) == 0)
371
    {
372
      switch (flag) {
373
      case HA_READ_KEY_EXACT:
374
      case HA_READ_KEY_OR_NEXT:
375
      case HA_READ_BEFORE_KEY:
376
	last_equal_element= parents;
377
	cmp= 1;
378
	break;
379
      case HA_READ_AFTER_KEY:
380
	cmp= -1;
381
	break;
382
      case HA_READ_PREFIX_LAST:
383
      case HA_READ_PREFIX_LAST_OR_PREV:
384
	last_equal_element= parents;
385
	cmp= -1;
386
	break;
387
      default:
388
	return NULL;
389
      }
390
    }
391
    if (cmp < 0) /* element < key */
392
    {
393
      last_right_step_parent= parents;
394
      element= element->right;
395
    }
396
    else
397
    {
398
      last_left_step_parent= parents;
399
      element= element->left;
400
    }
401
  }
402
  switch (flag) {
403
  case HA_READ_KEY_EXACT:
404
  case HA_READ_PREFIX_LAST:
405
    *last_pos= last_equal_element;
406
    break;
407
  case HA_READ_KEY_OR_NEXT:
408
    *last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
409
    break;
410
  case HA_READ_AFTER_KEY:
411
    *last_pos= last_left_step_parent;
412
    break;
413
  case HA_READ_PREFIX_LAST_OR_PREV:
414
    *last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
415
    break;
416
  case HA_READ_BEFORE_KEY:
417
    *last_pos= last_right_step_parent;
418
    break;
419
  default:
420
    return NULL;
421
  }
422
  return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
423
}
424
425
/* 
426
  Search first (the most left) or last (the most right) tree element 
427
*/
428
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents, 
429
		       TREE_ELEMENT ***last_pos, int child_offs)
430
{
431
  TREE_ELEMENT *element= tree->root;
432
  
433
  *parents= &tree->null_element;
434
  while (element != &tree->null_element)
435
  {
436
    *++parents= element;
437
    element= ELEMENT_CHILD(element, child_offs);
438
  }
439
  *last_pos= parents;
440
  return **last_pos != &tree->null_element ? 
441
    ELEMENT_KEY(tree, **last_pos) : NULL;
442
}
443
444
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs, 
445
                       int r_offs)
446
{
447
  TREE_ELEMENT *x= **last_pos;
448
  
449
  if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
450
  {
451
    x= ELEMENT_CHILD(x, r_offs);
452
    *++*last_pos= x;
453
    while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
454
    {
455
      x= ELEMENT_CHILD(x, l_offs);
456
      *++*last_pos= x;
457
    }
458
    return ELEMENT_KEY(tree, x);
459
  }
460
  else
461
  {
462
    TREE_ELEMENT *y= *--*last_pos;
463
    while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
464
    {
465
      x= y;
466
      y= *--*last_pos;
467
    }
468
    return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
469
  }
470
}
471
472
/*
473
  Expected that tree is fully balanced
474
  (each path from root to leaf has the same length)
475
*/
476
ha_rows tree_record_pos(TREE *tree, const void *key, 
477
			enum ha_rkey_function flag, void *custom_arg)
478
{
479
  int cmp;
480
  TREE_ELEMENT *element= tree->root;
481
  double left= 1;
482
  double right= tree->elements_in_tree;
483
484
  while (element != &tree->null_element)
485
  {
486
    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), 
487
			       key)) == 0)
488
    {
489
      switch (flag) {
490
      case HA_READ_KEY_EXACT:
491
      case HA_READ_BEFORE_KEY:
492
        cmp= 1;
493
        break;
494
      case HA_READ_AFTER_KEY:
495
        cmp= -1;
496
        break;
497
      default:
498
        return HA_POS_ERROR;
499
      }
500
    }
501
    if (cmp < 0) /* element < key */
502
    {
503
      element= element->right;
504
      left= (left + right) / 2;
505
    }
506
    else
507
    {
508
      element= element->left;
509
      right= (left + right) / 2;
510
    }
511
  }
512
  switch (flag) {
513
  case HA_READ_KEY_EXACT:
514
  case HA_READ_BEFORE_KEY:
515
    return (ha_rows) right;
516
  case HA_READ_AFTER_KEY:
517
    return (ha_rows) left;
518
  default:
519
    return HA_POS_ERROR;
520
  }
521
}
522
523
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
524
{
525
  switch (visit) {
526
  case left_root_right:
527
    return tree_walk_left_root_right(tree,tree->root,action,argument);
528
  case right_root_left:
529
    return tree_walk_right_root_left(tree,tree->root,action,argument);
530
  }
531
  return 0;			/* Keep gcc happy */
532
}
533
534
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
535
{
536
  int error;
537
  if (element->left)				/* Not null_element */
538
  {
539
    if ((error=tree_walk_left_root_right(tree,element->left,action,
540
					  argument)) == 0 &&
541
	(error=(*action)(ELEMENT_KEY(tree,element),
542
			  (element_count) element->count,
543
			  argument)) == 0)
544
      error=tree_walk_left_root_right(tree,element->right,action,argument);
545
    return error;
546
  }
547
  return 0;
548
}
549
550
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
551
{
552
  int error;
553
  if (element->right)				/* Not null_element */
554
  {
555
    if ((error=tree_walk_right_root_left(tree,element->right,action,
556
					  argument)) == 0 &&
557
	(error=(*action)(ELEMENT_KEY(tree,element),
558
			  (element_count) element->count,
559
			  argument)) == 0)
560
     error=tree_walk_right_root_left(tree,element->left,action,argument);
561
    return error;
562
  }
563
  return 0;
564
}
565
566
567
	/* Functions to fix up the tree after insert and delete */
568
569
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
570
{
571
  TREE_ELEMENT *y;
572
573
  y=leaf->right;
574
  leaf->right=y->left;
575
  parent[0]=y;
576
  y->left=leaf;
577
}
578
579
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
580
{
581
  TREE_ELEMENT *x;
582
583
  x=leaf->left;
584
  leaf->left=x->right;
585
  parent[0]=x;
586
  x->right=leaf;
587
}
588
589
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
590
{
591
  TREE_ELEMENT *y,*par,*par2;
592
593
  leaf->colour=RED;
594
  while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
595
  {
596
    if (par == (par2=parent[-2][0])->left)
597
    {
598
      y= par2->right;
599
      if (y->colour == RED)
600
      {
601
	par->colour=BLACK;
602
	y->colour=BLACK;
603
	leaf=par2;
604
	parent-=2;
605
	leaf->colour=RED;		/* And the loop continues */
606
      }
607
      else
608
      {
609
	if (leaf == par->right)
610
	{
611
	  left_rotate(parent[-1],par);
612
	  par=leaf;			/* leaf is now parent to old leaf */
613
	}
614
	par->colour=BLACK;
615
	par2->colour=RED;
616
	right_rotate(parent[-2],par2);
617
	break;
618
      }
619
    }
620
    else
621
    {
622
      y= par2->left;
623
      if (y->colour == RED)
624
      {
625
	par->colour=BLACK;
626
	y->colour=BLACK;
627
	leaf=par2;
628
	parent-=2;
629
	leaf->colour=RED;		/* And the loop continues */
630
      }
631
      else
632
      {
633
	if (leaf == par->left)
634
	{
635
	  right_rotate(parent[-1],par);
636
	  par=leaf;
637
	}
638
	par->colour=BLACK;
639
	par2->colour=RED;
640
	left_rotate(parent[-2],par2);
641
	break;
642
      }
643
    }
644
  }
645
  tree->root->colour=BLACK;
646
}
647
648
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
649
{
650
  TREE_ELEMENT *x,*w,*par;
651
652
  x= **parent;
653
  while (x != tree->root && x->colour == BLACK)
654
  {
655
    if (x == (par=parent[-1][0])->left)
656
    {
657
      w=par->right;
658
      if (w->colour == RED)
659
      {
660
	w->colour=BLACK;
661
	par->colour=RED;
662
	left_rotate(parent[-1],par);
663
	parent[0]= &w->left;
664
	*++parent= &par->left;
665
	w=par->right;
666
      }
667
      if (w->left->colour == BLACK && w->right->colour == BLACK)
668
      {
669
	w->colour=RED;
670
	x=par;
671
	parent--;
672
      }
673
      else
674
      {
675
	if (w->right->colour == BLACK)
676
	{
677
	  w->left->colour=BLACK;
678
	  w->colour=RED;
679
	  right_rotate(&par->right,w);
680
	  w=par->right;
681
	}
682
	w->colour=par->colour;
683
	par->colour=BLACK;
684
	w->right->colour=BLACK;
685
	left_rotate(parent[-1],par);
686
	x=tree->root;
687
	break;
688
      }
689
    }
690
    else
691
    {
692
      w=par->left;
693
      if (w->colour == RED)
694
      {
695
	w->colour=BLACK;
696
	par->colour=RED;
697
	right_rotate(parent[-1],par);
698
	parent[0]= &w->right;
699
	*++parent= &par->right;
700
	w=par->left;
701
      }
702
      if (w->right->colour == BLACK && w->left->colour == BLACK)
703
      {
704
	w->colour=RED;
705
	x=par;
706
	parent--;
707
      }
708
      else
709
      {
710
	if (w->left->colour == BLACK)
711
	{
712
	  w->right->colour=BLACK;
713
	  w->colour=RED;
714
	  left_rotate(&par->left,w);
715
	  w=par->left;
716
	}
717
	w->colour=par->colour;
718
	par->colour=BLACK;
719
	w->left->colour=BLACK;
720
	right_rotate(parent[-1],par);
721
	x=tree->root;
722
	break;
723
      }
724
    }
725
  }
726
  x->colour=BLACK;
727
}
728
729
#ifndef DBUG_OFF
730
731
	/* Test that the proporties for a red-black tree holds */
732
733
static int test_rb_tree(TREE_ELEMENT *element)
734
{
735
  int count_l,count_r;
736
737
  if (!element->left)
738
    return 0;				/* Found end of tree */
739
  if (element->colour == RED &&
740
      (element->left->colour == RED || element->right->colour == RED))
741
  {
742
    printf("Wrong tree: Found two red in a row\n");
743
    return -1;
744
  }
745
  count_l=test_rb_tree(element->left);
746
  count_r=test_rb_tree(element->right);
747
  if (count_l >= 0 && count_r >= 0)
748
  {
749
    if (count_l == count_r)
750
      return count_l+(element->colour == BLACK);
751
    printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
752
  }
753
  return -1;
754
}
755
#endif