1
by brian
clean slate |
1 |
#ifndef INCLUDES_MYSQL_SQL_LIST_H
|
2 |
#define INCLUDES_MYSQL_SQL_LIST_H
|
|
3 |
/* Copyright (C) 2000-2003 MySQL AB
|
|
4 |
||
5 |
This program is free software; you can redistribute it and/or modify
|
|
6 |
it under the terms of the GNU General Public License as published by
|
|
7 |
the Free Software Foundation; version 2 of the License.
|
|
8 |
||
9 |
This program is distributed in the hope that it will be useful,
|
|
10 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
11 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
12 |
GNU General Public License for more details.
|
|
13 |
||
14 |
You should have received a copy of the GNU General Public License
|
|
15 |
along with this program; if not, write to the Free Software
|
|
16 |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
17 |
||
18 |
||
19 |
#ifdef USE_PRAGMA_INTERFACE
|
|
20 |
#pragma interface /* gcc class implementation */ |
|
21 |
#endif
|
|
22 |
||
23 |
/* mysql standard class memory allocator */
|
|
24 |
||
25 |
class Sql_alloc |
|
26 |
{
|
|
27 |
public: |
|
28 |
static void *operator new(size_t size) throw () |
|
29 |
{
|
|
30 |
return sql_alloc(size); |
|
31 |
}
|
|
32 |
static void *operator new[](size_t size) |
|
33 |
{
|
|
34 |
return sql_alloc(size); |
|
35 |
}
|
|
36 |
static void *operator new[](size_t size, MEM_ROOT *mem_root) throw () |
|
37 |
{ return alloc_root(mem_root, size); } |
|
38 |
static void *operator new(size_t size, MEM_ROOT *mem_root) throw () |
|
39 |
{ return alloc_root(mem_root, size); } |
|
40 |
static void operator delete(void *ptr, size_t size) { TRASH(ptr, size); } |
|
41 |
static void operator delete(void *ptr, MEM_ROOT *mem_root) |
|
42 |
{ /* never called */ } |
|
43 |
static void operator delete[](void *ptr, MEM_ROOT *mem_root) |
|
44 |
{ /* never called */ } |
|
45 |
static void operator delete[](void *ptr, size_t size) { TRASH(ptr, size); } |
|
46 |
#ifdef HAVE_purify
|
|
47 |
bool dummy; |
|
48 |
inline Sql_alloc() :dummy(0) {} |
|
49 |
inline ~Sql_alloc() {} |
|
50 |
#else
|
|
51 |
inline Sql_alloc() {} |
|
52 |
inline ~Sql_alloc() {} |
|
53 |
#endif
|
|
54 |
||
55 |
};
|
|
56 |
||
57 |
||
58 |
/*
|
|
59 |
Basic single linked list
|
|
60 |
Used for item and item_buffs.
|
|
61 |
All list ends with a pointer to the 'end_of_list' element, which
|
|
62 |
data pointer is a null pointer and the next pointer points to itself.
|
|
63 |
This makes it very fast to traverse lists as we don't have to
|
|
64 |
test for a specialend condition for list that can't contain a null
|
|
65 |
pointer.
|
|
66 |
*/
|
|
67 |
||
68 |
||
69 |
/**
|
|
70 |
list_node - a node of a single-linked list.
|
|
71 |
@note We never call a destructor for instances of this class.
|
|
72 |
*/
|
|
73 |
||
74 |
struct list_node :public Sql_alloc |
|
75 |
{
|
|
76 |
list_node *next; |
|
77 |
void *info; |
|
78 |
list_node(void *info_par,list_node *next_par) |
|
79 |
:next(next_par),info(info_par) |
|
80 |
{}
|
|
81 |
list_node() /* For end_of_list */ |
|
82 |
{
|
|
83 |
info= 0; |
|
84 |
next= this; |
|
85 |
}
|
|
86 |
};
|
|
87 |
||
88 |
||
89 |
extern list_node end_of_list; |
|
90 |
||
91 |
class base_list :public Sql_alloc |
|
92 |
{
|
|
93 |
protected: |
|
94 |
list_node *first,**last; |
|
95 |
||
96 |
public: |
|
97 |
uint elements; |
|
98 |
||
99 |
inline void empty() { elements=0; first= &end_of_list; last=&first;} |
|
100 |
inline base_list() { empty(); } |
|
101 |
/**
|
|
102 |
This is a shallow copy constructor that implicitly passes the ownership
|
|
103 |
from the source list to the new instance. The old instance is not
|
|
104 |
updated, so both objects end up sharing the same nodes. If one of
|
|
105 |
the instances then adds or removes a node, the other becomes out of
|
|
106 |
sync ('last' pointer), while still operational. Some old code uses and
|
|
107 |
relies on this behaviour. This logic is quite tricky: please do not use
|
|
108 |
it in any new code.
|
|
109 |
*/
|
|
110 |
inline base_list(const base_list &tmp) :Sql_alloc() |
|
111 |
{
|
|
112 |
elements= tmp.elements; |
|
113 |
first= tmp.first; |
|
114 |
last= elements ? tmp.last : &first; |
|
115 |
}
|
|
116 |
/**
|
|
117 |
Construct a deep copy of the argument in memory root mem_root.
|
|
118 |
The elements themselves are copied by pointer. If you also
|
|
119 |
need to copy elements by value, you should employ
|
|
120 |
list_copy_and_replace_each_value after creating a copy.
|
|
121 |
*/
|
|
122 |
base_list(const base_list &rhs, MEM_ROOT *mem_root); |
|
123 |
inline base_list(bool error) { } |
|
124 |
inline bool push_back(void *info) |
|
125 |
{
|
|
126 |
if (((*last)=new list_node(info, &end_of_list))) |
|
127 |
{
|
|
128 |
last= &(*last)->next; |
|
129 |
elements++; |
|
130 |
return 0; |
|
131 |
}
|
|
132 |
return 1; |
|
133 |
}
|
|
134 |
inline bool push_back(void *info, MEM_ROOT *mem_root) |
|
135 |
{
|
|
136 |
if (((*last)=new (mem_root) list_node(info, &end_of_list))) |
|
137 |
{
|
|
138 |
last= &(*last)->next; |
|
139 |
elements++; |
|
140 |
return 0; |
|
141 |
}
|
|
142 |
return 1; |
|
143 |
}
|
|
144 |
inline bool push_front(void *info) |
|
145 |
{
|
|
146 |
list_node *node=new list_node(info,first); |
|
147 |
if (node) |
|
148 |
{
|
|
149 |
if (last == &first) |
|
150 |
last= &node->next; |
|
151 |
first=node; |
|
152 |
elements++; |
|
153 |
return 0; |
|
154 |
}
|
|
155 |
return 1; |
|
156 |
}
|
|
157 |
void remove(list_node **prev) |
|
158 |
{
|
|
159 |
list_node *node=(*prev)->next; |
|
160 |
if (!--elements) |
|
161 |
last= &first; |
|
162 |
else if (last == &(*prev)->next) |
|
163 |
last= prev; |
|
164 |
delete *prev; |
|
165 |
*prev=node; |
|
166 |
}
|
|
167 |
inline void concat(base_list *list) |
|
168 |
{
|
|
169 |
if (!list->is_empty()) |
|
170 |
{
|
|
171 |
*last= list->first; |
|
172 |
last= list->last; |
|
173 |
elements+= list->elements; |
|
174 |
}
|
|
175 |
}
|
|
176 |
inline void *pop(void) |
|
177 |
{
|
|
178 |
if (first == &end_of_list) return 0; |
|
179 |
list_node *tmp=first; |
|
180 |
first=first->next; |
|
181 |
if (!--elements) |
|
182 |
last= &first; |
|
183 |
return tmp->info; |
|
184 |
}
|
|
185 |
inline void disjoin(base_list *list) |
|
186 |
{
|
|
187 |
list_node **prev= &first; |
|
188 |
list_node *node= first; |
|
189 |
list_node *list_first= list->first; |
|
190 |
elements=0; |
|
191 |
while (node && node != list_first) |
|
192 |
{
|
|
193 |
prev= &node->next; |
|
194 |
node= node->next; |
|
195 |
elements++; |
|
196 |
}
|
|
197 |
*prev= *last; |
|
198 |
last= prev; |
|
199 |
}
|
|
200 |
inline void prepand(base_list *list) |
|
201 |
{
|
|
202 |
if (!list->is_empty()) |
|
203 |
{
|
|
204 |
*list->last= first; |
|
205 |
first= list->first; |
|
206 |
elements+= list->elements; |
|
207 |
}
|
|
208 |
}
|
|
209 |
/**
|
|
210 |
Swap two lists.
|
|
211 |
*/
|
|
212 |
inline void swap(base_list &rhs) |
|
213 |
{
|
|
214 |
swap_variables(list_node *, first, rhs.first); |
|
215 |
swap_variables(list_node **, last, rhs.last); |
|
216 |
swap_variables(uint, elements, rhs.elements); |
|
217 |
}
|
|
218 |
inline list_node* last_node() { return *last; } |
|
219 |
inline list_node* first_node() { return first;} |
|
220 |
inline void *head() { return first->info; } |
|
221 |
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; } |
|
222 |
inline bool is_empty() { return first == &end_of_list ; } |
|
223 |
inline list_node *last_ref() { return &end_of_list; } |
|
224 |
friend class base_list_iterator; |
|
225 |
friend class error_list; |
|
226 |
friend class error_list_iterator; |
|
227 |
||
228 |
#ifdef LIST_EXTRA_DEBUG
|
|
229 |
/*
|
|
230 |
Check list invariants and print results into trace. Invariants are:
|
|
231 |
- (*last) points to end_of_list
|
|
232 |
- There are no NULLs in the list.
|
|
233 |
- base_list::elements is the number of elements in the list.
|
|
234 |
||
235 |
SYNOPSIS
|
|
236 |
check_list()
|
|
237 |
name Name to print to trace file
|
|
238 |
||
239 |
RETURN
|
|
240 |
1 The list is Ok.
|
|
241 |
0 List invariants are not met.
|
|
242 |
*/
|
|
243 |
||
244 |
bool check_list(const char *name) |
|
245 |
{
|
|
246 |
base_list *list= this; |
|
247 |
list_node *node= first; |
|
248 |
uint cnt= 0; |
|
249 |
||
250 |
while (node->next != &end_of_list) |
|
251 |
{
|
|
252 |
if (!node->info) |
|
253 |
{
|
|
254 |
DBUG_PRINT("list_invariants",("%s: error: NULL element in the list", |
|
255 |
name)); |
|
256 |
return FALSE; |
|
257 |
}
|
|
258 |
node= node->next; |
|
259 |
cnt++; |
|
260 |
}
|
|
261 |
if (last != &(node->next)) |
|
262 |
{
|
|
263 |
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name)); |
|
264 |
return FALSE; |
|
265 |
}
|
|
266 |
if (cnt+1 != elements) |
|
267 |
{
|
|
268 |
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name)); |
|
269 |
return FALSE; |
|
270 |
}
|
|
271 |
DBUG_PRINT("list_invariants", ("%s: list is ok", name)); |
|
272 |
return TRUE; |
|
273 |
}
|
|
274 |
#endif // LIST_EXTRA_DEBUG |
|
275 |
||
276 |
protected: |
|
277 |
void after(void *info,list_node *node) |
|
278 |
{
|
|
279 |
list_node *new_node=new list_node(info,node->next); |
|
280 |
node->next=new_node; |
|
281 |
elements++; |
|
282 |
if (last == &(node->next)) |
|
283 |
last= &new_node->next; |
|
284 |
}
|
|
285 |
};
|
|
286 |
||
287 |
||
288 |
class base_list_iterator |
|
289 |
{
|
|
290 |
protected: |
|
291 |
base_list *list; |
|
292 |
list_node **el,**prev,*current; |
|
293 |
void sublist(base_list &ls, uint elm) |
|
294 |
{
|
|
295 |
ls.first= *el; |
|
296 |
ls.last= list->last; |
|
297 |
ls.elements= elm; |
|
298 |
}
|
|
299 |
public: |
|
300 |
base_list_iterator() |
|
301 |
:list(0), el(0), prev(0), current(0) |
|
302 |
{}
|
|
303 |
||
304 |
base_list_iterator(base_list &list_par) |
|
305 |
{ init(list_par); } |
|
306 |
||
307 |
inline void init(base_list &list_par) |
|
308 |
{
|
|
309 |
list= &list_par; |
|
310 |
el= &list_par.first; |
|
311 |
prev= 0; |
|
312 |
current= 0; |
|
313 |
}
|
|
314 |
||
315 |
inline void *next(void) |
|
316 |
{
|
|
317 |
prev=el; |
|
318 |
current= *el; |
|
319 |
el= ¤t->next; |
|
320 |
return current->info; |
|
321 |
}
|
|
322 |
inline void *next_fast(void) |
|
323 |
{
|
|
324 |
list_node *tmp; |
|
325 |
tmp= *el; |
|
326 |
el= &tmp->next; |
|
327 |
return tmp->info; |
|
328 |
}
|
|
329 |
inline void rewind(void) |
|
330 |
{
|
|
331 |
el= &list->first; |
|
332 |
}
|
|
333 |
inline void *replace(void *element) |
|
334 |
{ // Return old element |
|
335 |
void *tmp=current->info; |
|
336 |
DBUG_ASSERT(current->info != 0); |
|
337 |
current->info=element; |
|
338 |
return tmp; |
|
339 |
}
|
|
340 |
void *replace(base_list &new_list) |
|
341 |
{
|
|
342 |
void *ret_value=current->info; |
|
343 |
if (!new_list.is_empty()) |
|
344 |
{
|
|
345 |
*new_list.last=current->next; |
|
346 |
current->info=new_list.first->info; |
|
347 |
current->next=new_list.first->next; |
|
348 |
if ((list->last == ¤t->next) && (new_list.elements > 1)) |
|
349 |
list->last= new_list.last; |
|
350 |
list->elements+=new_list.elements-1; |
|
351 |
}
|
|
352 |
return ret_value; // return old element |
|
353 |
}
|
|
354 |
inline void remove(void) // Remove current |
|
355 |
{
|
|
356 |
list->remove(prev); |
|
357 |
el=prev; |
|
358 |
current=0; // Safeguard |
|
359 |
}
|
|
360 |
void after(void *element) // Insert element after current |
|
361 |
{
|
|
362 |
list->after(element,current); |
|
363 |
current=current->next; |
|
364 |
el= ¤t->next; |
|
365 |
}
|
|
366 |
inline void **ref(void) // Get reference pointer |
|
367 |
{
|
|
368 |
return ¤t->info; |
|
369 |
}
|
|
370 |
inline bool is_last(void) |
|
371 |
{
|
|
372 |
return el == &list->last_ref()->next; |
|
373 |
}
|
|
374 |
friend class error_list_iterator; |
|
375 |
};
|
|
376 |
||
377 |
template <class T> class List :public base_list |
|
378 |
{
|
|
379 |
public: |
|
380 |
inline List() :base_list() {} |
|
381 |
inline List(const List<T> &tmp) :base_list(tmp) {} |
|
382 |
inline List(const List<T> &tmp, MEM_ROOT *mem_root) : |
|
383 |
base_list(tmp, mem_root) {} |
|
384 |
inline bool push_back(T *a) { return base_list::push_back(a); } |
|
385 |
inline bool push_back(T *a, MEM_ROOT *mem_root) |
|
386 |
{ return base_list::push_back(a, mem_root); } |
|
387 |
inline bool push_front(T *a) { return base_list::push_front(a); } |
|
388 |
inline T* head() {return (T*) base_list::head(); } |
|
389 |
inline T** head_ref() {return (T**) base_list::head_ref(); } |
|
390 |
inline T* pop() {return (T*) base_list::pop(); } |
|
391 |
inline void concat(List<T> *list) { base_list::concat(list); } |
|
392 |
inline void disjoin(List<T> *list) { base_list::disjoin(list); } |
|
393 |
inline void prepand(List<T> *list) { base_list::prepand(list); } |
|
394 |
void delete_elements(void) |
|
395 |
{
|
|
396 |
list_node *element,*next; |
|
397 |
for (element=first; element != &end_of_list; element=next) |
|
398 |
{
|
|
399 |
next=element->next; |
|
400 |
delete (T*) element->info; |
|
401 |
}
|
|
402 |
empty(); |
|
403 |
}
|
|
404 |
};
|
|
405 |
||
406 |
||
407 |
template <class T> class List_iterator :public base_list_iterator |
|
408 |
{
|
|
409 |
public: |
|
410 |
List_iterator(List<T> &a) : base_list_iterator(a) {} |
|
411 |
List_iterator() : base_list_iterator() {} |
|
412 |
inline void init(List<T> &a) { base_list_iterator::init(a); } |
|
413 |
inline T* operator++(int) { return (T*) base_list_iterator::next(); } |
|
414 |
inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); } |
|
415 |
inline T *replace(List<T> &a) { return (T*) base_list_iterator::replace(a); } |
|
416 |
inline void rewind(void) { base_list_iterator::rewind(); } |
|
417 |
inline void remove() { base_list_iterator::remove(); } |
|
418 |
inline void after(T *a) { base_list_iterator::after(a); } |
|
419 |
inline T** ref(void) { return (T**) base_list_iterator::ref(); } |
|
420 |
};
|
|
421 |
||
422 |
||
423 |
template <class T> class List_iterator_fast :public base_list_iterator |
|
424 |
{
|
|
425 |
protected: |
|
426 |
inline T *replace(T *a) { return (T*) 0; } |
|
427 |
inline T *replace(List<T> &a) { return (T*) 0; } |
|
428 |
inline void remove(void) { } |
|
429 |
inline void after(T *a) { } |
|
430 |
inline T** ref(void) { return (T**) 0; } |
|
431 |
||
432 |
public: |
|
433 |
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {} |
|
434 |
inline List_iterator_fast() : base_list_iterator() {} |
|
435 |
inline void init(List<T> &a) { base_list_iterator::init(a); } |
|
436 |
inline T* operator++(int) { return (T*) base_list_iterator::next_fast(); } |
|
437 |
inline void rewind(void) { base_list_iterator::rewind(); } |
|
438 |
void sublist(List<T> &list_arg, uint el_arg) |
|
439 |
{
|
|
440 |
base_list_iterator::sublist(list_arg, el_arg); |
|
441 |
}
|
|
442 |
};
|
|
443 |
||
444 |
||
445 |
/*
|
|
446 |
A simple intrusive list which automaticly removes element from list
|
|
447 |
on delete (for THD element)
|
|
448 |
*/
|
|
449 |
||
450 |
struct ilink |
|
451 |
{
|
|
452 |
struct ilink **prev,*next; |
|
453 |
static void *operator new(size_t size) |
|
454 |
{
|
|
455 |
return (void*)my_malloc((uint)size, MYF(MY_WME | MY_FAE | ME_FATALERROR)); |
|
456 |
}
|
|
457 |
static void operator delete(void* ptr_arg, size_t size) |
|
458 |
{
|
|
459 |
my_free((uchar*)ptr_arg, MYF(MY_WME|MY_ALLOW_ZERO_PTR)); |
|
460 |
}
|
|
461 |
||
462 |
inline ilink() |
|
463 |
{
|
|
464 |
prev=0; next=0; |
|
465 |
}
|
|
466 |
inline void unlink() |
|
467 |
{
|
|
468 |
/* Extra tests because element doesn't have to be linked */
|
|
469 |
if (prev) *prev= next; |
|
470 |
if (next) next->prev=prev; |
|
471 |
prev=0 ; next=0; |
|
472 |
}
|
|
473 |
virtual ~ilink() { unlink(); } /*lint -e1740 */ |
|
474 |
};
|
|
475 |
||
476 |
||
477 |
/* Needed to be able to have an I_List of char* strings in mysqld.cc. */
|
|
478 |
||
479 |
class i_string: public ilink |
|
480 |
{
|
|
481 |
public: |
|
482 |
const char* ptr; |
|
483 |
i_string():ptr(0) { } |
|
484 |
i_string(const char* s) : ptr(s) {} |
|
485 |
};
|
|
486 |
||
487 |
/* needed for linked list of two strings for replicate-rewrite-db */
|
|
488 |
class i_string_pair: public ilink |
|
489 |
{
|
|
490 |
public: |
|
491 |
const char* key; |
|
492 |
const char* val; |
|
493 |
i_string_pair():key(0),val(0) { } |
|
494 |
i_string_pair(const char* key_arg, const char* val_arg) : |
|
495 |
key(key_arg),val(val_arg) {} |
|
496 |
};
|
|
497 |
||
498 |
||
499 |
template <class T> class I_List_iterator; |
|
500 |
||
501 |
/*
|
|
502 |
WARNING: copy constructor of this class does not create a usable
|
|
503 |
copy, as its members may point at each other.
|
|
504 |
*/
|
|
505 |
||
506 |
class base_ilist |
|
507 |
{
|
|
508 |
public: |
|
509 |
struct ilink *first,last; |
|
510 |
inline void empty() { first= &last; last.prev= &first; } |
|
511 |
base_ilist() { empty(); } |
|
512 |
inline bool is_empty() { return first == &last; } |
|
513 |
inline void append(ilink *a) |
|
514 |
{
|
|
515 |
first->prev= &a->next; |
|
516 |
a->next=first; a->prev= &first; first=a; |
|
517 |
}
|
|
518 |
inline void push_back(ilink *a) |
|
519 |
{
|
|
520 |
*last.prev= a; |
|
521 |
a->next= &last; |
|
522 |
a->prev= last.prev; |
|
523 |
last.prev= &a->next; |
|
524 |
}
|
|
525 |
inline struct ilink *get() |
|
526 |
{
|
|
527 |
struct ilink *first_link=first; |
|
528 |
if (first_link == &last) |
|
529 |
return 0; |
|
530 |
first_link->unlink(); // Unlink from list |
|
531 |
return first_link; |
|
532 |
}
|
|
533 |
inline struct ilink *head() |
|
534 |
{
|
|
535 |
return (first != &last) ? first : 0; |
|
536 |
}
|
|
537 |
friend class base_list_iterator; |
|
538 |
};
|
|
539 |
||
540 |
||
541 |
class base_ilist_iterator |
|
542 |
{
|
|
543 |
base_ilist *list; |
|
544 |
struct ilink **el,*current; |
|
545 |
public: |
|
546 |
base_ilist_iterator(base_ilist &list_par) :list(&list_par), |
|
547 |
el(&list_par.first),current(0) {} |
|
548 |
void *next(void) |
|
549 |
{
|
|
550 |
/* This is coded to allow push_back() while iterating */
|
|
551 |
current= *el; |
|
552 |
if (current == &list->last) return 0; |
|
553 |
el= ¤t->next; |
|
554 |
return current; |
|
555 |
}
|
|
556 |
};
|
|
557 |
||
558 |
||
559 |
template <class T> |
|
560 |
class I_List :private base_ilist |
|
561 |
{
|
|
562 |
public: |
|
563 |
I_List() :base_ilist() {} |
|
564 |
inline void empty() { base_ilist::empty(); } |
|
565 |
inline bool is_empty() { return base_ilist::is_empty(); } |
|
566 |
inline void append(T* a) { base_ilist::append(a); } |
|
567 |
inline void push_back(T* a) { base_ilist::push_back(a); } |
|
568 |
inline T* get() { return (T*) base_ilist::get(); } |
|
569 |
inline T* head() { return (T*) base_ilist::head(); } |
|
570 |
#ifndef _lint
|
|
571 |
friend class I_List_iterator<T>; |
|
572 |
#endif
|
|
573 |
};
|
|
574 |
||
575 |
||
576 |
template <class T> class I_List_iterator :public base_ilist_iterator |
|
577 |
{
|
|
578 |
public: |
|
579 |
I_List_iterator(I_List<T> &a) : base_ilist_iterator(a) {} |
|
580 |
inline T* operator++(int) { return (T*) base_ilist_iterator::next(); } |
|
581 |
};
|
|
582 |
||
583 |
/**
|
|
584 |
Make a deep copy of each list element.
|
|
585 |
||
586 |
@note A template function and not a template method of class List
|
|
587 |
is employed because of explicit template instantiation:
|
|
588 |
in server code there are explicit instantiations of List<T> and
|
|
589 |
an explicit instantiation of a template requires that any method
|
|
590 |
of the instantiated class used in the template can be resolved.
|
|
591 |
Evidently not all template arguments have clone() method with
|
|
592 |
the right signature.
|
|
593 |
||
594 |
@return You must query the error state in THD for out-of-memory
|
|
595 |
situation after calling this function.
|
|
596 |
*/
|
|
597 |
||
598 |
template <typename T> |
|
599 |
inline
|
|
600 |
void
|
|
601 |
list_copy_and_replace_each_value(List<T> &list, MEM_ROOT *mem_root) |
|
602 |
{
|
|
603 |
/* Make a deep copy of each element */
|
|
604 |
List_iterator<T> it(list); |
|
605 |
T *el; |
|
606 |
while ((el= it++)) |
|
607 |
it.replace(el->clone(mem_root)); |
|
608 |
}
|
|
609 |
||
610 |
#endif // INCLUDES_MYSQL_SQL_LIST_H |