~drizzle-trunk/drizzle/development

641.1.2 by Monty Taylor
Imported 1.0.1 with clean - with no changes.
1
/**********************************************************************
2
List utilities
3
4
(c) 1995 Innobase Oy
5
6
Created 9/10/1995 Heikki Tuuri
7
***********************************************************************/
8
9
#ifndef ut0lst_h
10
#define ut0lst_h
11
12
#include "univ.i"
13
14
/* This module implements the two-way linear list which should be used
15
if a list is used in the database. Note that a single struct may belong
16
to two or more lists, provided that the list are given different names.
17
An example of the usage of the lists can be found in fil0fil.c. */
18
19
/***********************************************************************
20
This macro expands to the unnamed type definition of a struct which acts
21
as the two-way list base node. The base node contains pointers
22
to both ends of the list and a count of nodes in the list (excluding
23
the base node from the count). TYPE should be the list node type name. */
24
25
#define UT_LIST_BASE_NODE_T(TYPE)\
26
struct {\
27
	ulint	count;	/* count of nodes in list */\
28
	TYPE *	start;	/* pointer to list start, NULL if empty */\
29
	TYPE *	end;	/* pointer to list end, NULL if empty */\
30
}\
31
32
/***********************************************************************
33
This macro expands to the unnamed type definition of a struct which
34
should be embedded in the nodes of the list, the node type must be a struct.
35
This struct contains the pointers to next and previous nodes in the list.
36
The name of the field in the node struct should be the name given
37
to the list. TYPE should be the list node type name. Example of usage:
38
39
typedef struct LRU_node_struct	LRU_node_t;
40
struct LRU_node_struct {
41
	UT_LIST_NODE_T(LRU_node_t)	LRU_list;
42
	...
43
}
44
The example implements an LRU list of name LRU_list. Its nodes are of type
45
LRU_node_t.
46
*/
47
48
#define UT_LIST_NODE_T(TYPE)\
49
struct {\
50
	TYPE *	prev;	/* pointer to the previous node,\
51
			NULL if start of list */\
52
	TYPE *	next;	/* pointer to next node, NULL if end of list */\
53
}\
54
55
/***********************************************************************
56
Initializes the base node of a two-way list. */
57
58
#define UT_LIST_INIT(BASE)\
59
{\
60
	(BASE).count = 0;\
61
	(BASE).start = NULL;\
62
	(BASE).end   = NULL;\
63
}\
64
65
/***********************************************************************
66
Adds the node as the first element in a two-way linked list.
67
BASE has to be the base node (not a pointer to it). N has to be
68
the pointer to the node to be added to the list. NAME is the list name. */
69
70
#define UT_LIST_ADD_FIRST(NAME, BASE, N)\
71
{\
72
	ut_ad(N);\
73
	((BASE).count)++;\
74
	((N)->NAME).next = (BASE).start;\
75
	((N)->NAME).prev = NULL;\
76
	if (UNIV_LIKELY((BASE).start != NULL)) {\
77
		ut_ad((BASE).start != (N));\
78
		(((BASE).start)->NAME).prev = (N);\
79
	}\
80
	(BASE).start = (N);\
81
	if (UNIV_UNLIKELY((BASE).end == NULL)) {\
82
		(BASE).end = (N);\
83
	}\
84
}\
85
86
/***********************************************************************
87
Adds the node as the last element in a two-way linked list.
88
BASE has to be the base node (not a pointer to it). N has to be
89
the pointer to the node to be added to the list. NAME is the list name. */
90
91
#define UT_LIST_ADD_LAST(NAME, BASE, N)\
92
{\
93
	ut_ad(N);\
94
	((BASE).count)++;\
95
	((N)->NAME).prev = (BASE).end;\
96
	((N)->NAME).next = NULL;\
97
	if ((BASE).end != NULL) {\
98
		ut_ad((BASE).end != (N));\
99
		(((BASE).end)->NAME).next = (N);\
100
	}\
101
	(BASE).end = (N);\
102
	if ((BASE).start == NULL) {\
103
		(BASE).start = (N);\
104
	}\
105
}\
106
107
/***********************************************************************
108
Inserts a NODE2 after NODE1 in a list.
109
BASE has to be the base node (not a pointer to it). NAME is the list
110
name, NODE1 and NODE2 are pointers to nodes. */
111
112
#define UT_LIST_INSERT_AFTER(NAME, BASE, NODE1, NODE2)\
113
{\
114
	ut_ad(NODE1);\
115
	ut_ad(NODE2);\
116
	ut_ad((NODE1) != (NODE2));\
117
	((BASE).count)++;\
118
	((NODE2)->NAME).prev = (NODE1);\
119
	((NODE2)->NAME).next = ((NODE1)->NAME).next;\
120
	if (((NODE1)->NAME).next != NULL) {\
121
		((((NODE1)->NAME).next)->NAME).prev = (NODE2);\
122
	}\
123
	((NODE1)->NAME).next = (NODE2);\
124
	if ((BASE).end == (NODE1)) {\
125
		(BASE).end = (NODE2);\
126
	}\
127
}\
128
129
/* Invalidate the pointers in a list node. */
130
#ifdef UNIV_LIST_DEBUG
131
# define UT_LIST_REMOVE_CLEAR(NAME, N)		\
132
((N)->NAME.prev = (N)->NAME.next = (void*) -1)
133
#else
134
# define UT_LIST_REMOVE_CLEAR(NAME, N) while (0)
135
#endif
136
137
/***********************************************************************
138
Removes a node from a two-way linked list. BASE has to be the base node
139
(not a pointer to it). N has to be the pointer to the node to be removed
140
from the list. NAME is the list name. */
141
142
#define UT_LIST_REMOVE(NAME, BASE, N)					\
143
do {									\
144
	ut_ad(N);							\
145
	ut_a((BASE).count > 0);						\
146
	((BASE).count)--;						\
147
	if (((N)->NAME).next != NULL) {					\
148
		((((N)->NAME).next)->NAME).prev = ((N)->NAME).prev;	\
149
	} else {							\
150
		(BASE).end = ((N)->NAME).prev;				\
151
	}								\
152
	if (((N)->NAME).prev != NULL) {					\
153
		((((N)->NAME).prev)->NAME).next = ((N)->NAME).next;	\
154
	} else {							\
155
		(BASE).start = ((N)->NAME).next;			\
156
	}								\
157
	UT_LIST_REMOVE_CLEAR(NAME, N);					\
158
} while (0)
159
160
/************************************************************************
161
Gets the next node in a two-way list. NAME is the name of the list
162
and N is pointer to a node. */
163
164
#define UT_LIST_GET_NEXT(NAME, N)\
165
	(((N)->NAME).next)
166
167
/************************************************************************
168
Gets the previous node in a two-way list. NAME is the name of the list
169
and N is pointer to a node. */
170
171
#define UT_LIST_GET_PREV(NAME, N)\
172
	(((N)->NAME).prev)
173
174
/************************************************************************
175
Alternative macro to get the number of nodes in a two-way list, i.e.,
176
its length. BASE is the base node (not a pointer to it). */
177
178
#define UT_LIST_GET_LEN(BASE)\
179
	(BASE).count
180
181
/************************************************************************
182
Gets the first node in a two-way list, or returns NULL,
183
if the list is empty. BASE is the base node (not a pointer to it). */
184
185
#define UT_LIST_GET_FIRST(BASE)\
186
	(BASE).start
187
188
/************************************************************************
189
Gets the last node in a two-way list, or returns NULL,
190
if the list is empty. BASE is the base node (not a pointer to it). */
191
192
#define UT_LIST_GET_LAST(BASE)\
193
	(BASE).end
194
195
/************************************************************************
196
Checks the consistency of a two-way list. NAME is the name of the list,
197
TYPE is the node type, and BASE is the base node (not a pointer to it). */
198
199
#define UT_LIST_VALIDATE(NAME, TYPE, BASE)\
200
{\
201
	ulint	ut_list_i_313;\
202
	TYPE *	ut_list_node_313;\
203
\
204
	ut_list_node_313 = (BASE).start;\
205
\
206
	for (ut_list_i_313 = 0; ut_list_i_313 < (BASE).count;\
207
						ut_list_i_313++) {\
208
		ut_a(ut_list_node_313);\
209
		ut_list_node_313 = (ut_list_node_313->NAME).next;\
210
	}\
211
\
212
	ut_a(ut_list_node_313 == NULL);\
213
\
214
	ut_list_node_313 = (BASE).end;\
215
\
216
	for (ut_list_i_313 = 0; ut_list_i_313 < (BASE).count;\
217
						ut_list_i_313++) {\
218
		ut_a(ut_list_node_313);\
219
		ut_list_node_313 = (ut_list_node_313->NAME).prev;\
220
	}\
221
\
222
	ut_a(ut_list_node_313 == NULL);\
223
}\
224
225
226
#endif
227