~drizzle-trunk/drizzle/development

813.1.2 by Jay Pipes
First function cleanup for temporal handling: YEAR()
1
/* - mode: c; c-basic-offset: 2; indent-tabs-mode: nil; -*-
2
 *  vim:expandtab:shiftwidth=2:tabstop=2:smarttab:
3
 *
4
 *  Copyright (C) 2008 Sun Microsystems
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19
 */
20
21
/**
22
 * @file 
23
 *
24
 * Common functions for dealing with calendrical calculations
25
 */
26
27
#include "drizzled/global.h"
28
#include "drizzled/calendar.h"
29
30
/** Static arrays for number of days in a month and their "day ends" */
31
static const uint32_t __leap_days_in_month[12]=       {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
32
static const uint32_t __normal_days_in_month[12]=     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
33
static const uint32_t __leap_days_to_end_month[13]=   {0, 31, 60, 91, 121, 151, 182, 213, 244, 274, 305, 335, 366};
34
static const uint32_t __normal_days_to_end_month[13]= {0, 31, 59, 90, 120, 150, 181, 212, 243, 273, 304, 334, 365};
35
36
/** 
37
 * Private utility macro for enabling a switch between
38
 * Gregorian and Julian leap year date arrays.
39
 */
40
#define __DAYS_IN_MONTH(y, c) (const uint32_t *) (IS_LEAP_YEAR((y),(c)) ? __leap_days_in_month : __normal_days_in_month)
41
#define __DAYS_TO_END_MONTH(y, c) (const uint32_t *) (IS_LEAP_YEAR((y),(c)) ? __leap_days_to_end_month : __normal_days_to_end_month)
42
43
/**
44
 * Calculates the Julian Day Number from the year, month 
45
 * and day at noon supplied in the Julian calendar.
46
 *
47
 * The following formula is used to calculate the Julian
48
 * Day Number from a date in the Julian Calendar.
49
 *
50
 * The months January to December are 1 to 12. 
51
 * Astronomical year numbering is used, thus 1 BC is 0, 2 BC is −1, 
52
 * and 4713 BC is −4712. In all divisions (except for JD) the floor 
53
 * function is applied to the quotient (for dates since 
54
 * March 1, −4800 all quotients are non-negative, so we can also 
55
 * apply truncation).
56
 *
57
 * a = (14 - month) / 12
58
 * y = year + 4800 - a
59
 * m = month + 12a - 3
60
 * JDN = day + ((153m + 2) / 5) + 365y + (y / 4) - 32083
61
 *
62
 * @cite http://en.wikipedia.org/wiki/Julian_day#Calculation
63
 *
64
 * @note
65
 *
66
 * Year month and day values are assumed to be valid.  This 
67
 * method does no bounds checking or validation.
68
 *
69
 * @param Year of date
70
 * @param Month of date
71
 * @param Day of date
72
 */
73
int64_t julian_day_number_from_julian_date(uint32_t year, uint32_t month, uint32_t day)
74
{
75
  int64_t day_number;
76
  int64_t a= (14 - month) / 12;
77
  int64_t y= year + 4800 - a;
78
  int64_t m= month + (12 * a) - 3;
79
80
  day_number= day + (((153 * m) + 2) / 5) + (365 * y) + (y / 4) - 32083;
81
  return day_number;
82
}
83
84
/**
85
 * Calculates the Julian Day Number from the year, month 
86
 * and day supplied.  The calendar used by the supplied
87
 * year, month, and day is assumed to be Gregorian Proleptic.
88
 *
89
 * The months January to December are 1 to 12. 
90
 * Astronomical year numbering is used, thus 1 BC is 0, 2 BC is −1, 
91
 * and 4713 BC is −4712. In all divisions (except for JD) the floor 
92
 * function is applied to the quotient (for dates since 
93
 * March 1, −4800 all quotients are non-negative, so we can also 
94
 * apply truncation).
95
 *
96
 * a = (14 - month) / 12
97
 * y = year + 4800 - a
98
 * m = month + 12a - 3
99
 * JDN = day + ((153m + 2) / 5) + 365y + (y / 4) - (y / 100) + (y / 400) - 32045
100
 *
101
 * @cite http://en.wikipedia.org/wiki/Julian_day#Calculation
102
 *
103
 * @note
104
 *
105
 * Year month and day values are assumed to be valid.  This 
106
 * method does no bounds checking or validation.
107
 *
108
 * @param Year of date
109
 * @param Month of date
110
 * @param Day of date
111
 */
112
int64_t julian_day_number_from_gregorian_date(uint32_t year, uint32_t month, uint32_t day)
113
{
114
  int64_t day_number;
115
  int64_t a= (14 - month) / 12;
116
  int64_t y= year + 4800 - a;
117
  int64_t m= month + (12 * a) - 3;
118
119
  day_number= day + (((153 * m) + 2) / 5) + (365 * y) + (y / 4) - (y / 100) + (y / 400) - 32045;
120
  return day_number;
121
}
122
123
/**
124
 * Translates an absolute day number to a 
125
 * Julian day number.  Note that a Julian day number
126
 * is not the same as a date in the Julian proleptic calendar.
127
 *
128
 * @param The absolute day number
129
 */
130
int64_t absolute_day_number_to_julian_day_number(int64_t absolute_day)
131
{
132
  return absolute_day + JULIAN_DAY_NUMBER_AT_ABSOLUTE_DAY_ONE;
133
}
134
135
/**
136
 * Translates a Julian day number to an 
137
 * absolute day number.  Note that a Julian day number
138
 * is not the same as a date in the Julian proleptic calendar.
139
 *
140
 * @param The Julian day number
141
 */
142
int64_t julian_day_number_to_absolute_day_number(int64_t julian_day)
143
{
144
  return julian_day - JULIAN_DAY_NUMBER_AT_ABSOLUTE_DAY_ONE;
145
}
146
147
/**
148
 * Given a supplied Julian Day Number, populates a year, month, and day
149
 * with the date in the Gregorian Proleptic calendar which corresponds to
150
 * the given Julian Day Number.
151
 *
152
 * @cite Algorithm from http://en.wikipedia.org/wiki/Julian_day
153
 *
154
 * @param Julian Day Number
155
 * @param Pointer to year to populate
156
 * @param Pointer to month to populate
157
 * @param Pointer to the day to populate
158
 */
159
void gregorian_date_from_julian_day_number(int64_t julian_day
160
                                         , uint32_t *year_out
161
                                         , uint32_t *month_out
162
                                         , uint32_t *day_out)
163
{
164
  int64_t j = julian_day + 32044;
165
  int64_t g = j / 146097;
166
  int64_t dg = j % 146097;
167
  int64_t c = (dg / 36524 + 1) * 3 / 4;
168
  int64_t dc = dg - c * 36524;
169
  int64_t b = dc / 1461;
170
  int64_t db = dc % 1461;
171
  int64_t a = (db / 365 + 1) * 3 / 4;
172
  int64_t da = db - a * 365;
173
  int64_t y = g * 400 + c * 100 + b * 4 + a;
174
  int64_t m = (da * 5 + 308) / 153 - 2;
175
  int64_t d = da - (m + 4) * 153 / 5 + 122;
176
  int64_t Y = y - 4800 + (m + 2) / 12;
177
  int64_t M = (m + 2) % 12 + 1;
902 by Monty Taylor
Added the double cast to shut up the CentOS warnings.
178
  int64_t D = (int64_t)((double)d + 1.5);
813.1.2 by Jay Pipes
First function cleanup for temporal handling: YEAR()
179
180
  /* Push out parameters */
181
  *year_out= (uint32_t) Y;
182
  *month_out= (uint32_t) M;
183
  *day_out= (uint32_t) D;
184
}
185
186
/**
187
 * Given a supplied Absolute Day Number, populates a year, month, and day
188
 * with the date in the Gregorian Proleptic calendar which corresponds to
189
 * the given Absolute Day Number.
190
 *
191
 * @param Absolute Day Number
192
 * @param Pointer to year to populate
193
 * @param Pointer to month to populate
194
 * @param Pointer to the day to populate
195
 */
196
void gregorian_date_from_absolute_day_number(int64_t absolute_day
197
                                           , uint32_t *year_out
198
                                           , uint32_t *month_out
199
                                           , uint32_t *day_out)
200
{
201
  gregorian_date_from_julian_day_number(
202
      absolute_day_number_to_julian_day_number(absolute_day)
203
    , year_out
204
    , month_out
205
    , day_out);
206
}
207
208
/**
209
 * Functions to calculate the number of days in a 
210
 * particular year.  The number of days in a year 
211
 * depends on the calendar used for the date.
212
 *
213
 * For the Julian proleptic calendar, a leap year 
214
 * is one which is evenly divisible by 4.
215
 *
216
 * For the Gregorian proleptic calendar, a leap year
217
 * is one which is evenly divisible by 4, and if
218
 * the year is evenly divisible by 100, it must also be evenly
219
 * divisible by 400.
220
 */
221
222
/**
223
 * Returns the number of days in a particular year
224
 * depending on the supplied calendar.
225
 *
226
 * @param year to evaluate
227
 * @param calendar to use
228
 */
229
inline uint32_t days_in_year(const uint32_t year, enum calendar calendar)
230
{
231
  if (calendar == GREGORIAN)
232
    return days_in_year_gregorian(year);
233
  return days_in_year_julian(year);
234
}
235
236
/**
237
 * Returns the number of days in a particular Julian calendar year.
238
 *
239
 * @param year to evaluate
240
 */
241
inline uint32_t days_in_year_julian(const uint32_t year)
242
{
243
  /* Short-circuit. No odd years can be leap years... */
244
  return (year & 3) == 0;
245
}
246
247
/**
248
 * Returns the number of days in a particular Gregorian year.
249
 *
250
 * @param year to evaluate
251
 */
252
inline uint32_t days_in_year_gregorian(const uint32_t year)
253
{
254
  /* Short-circuit. No odd years can be leap years... */
255
  if ((year & 1) == 1)
256
    return 365;
257
  return (            
258
            (year & 3) == 0 
259
            && (year % 100 || ((year % 400 == 0) && year)) 
260
            ? 366 
261
            : 365
262
         );
263
}
264
265
/**
266
 * Returns the number of the day in a week.
267
 *
268
 * Return values:
269
 *
270
 * Day            Day Number  Sunday first day?
271
 * -------------- ----------- -----------------
272
 * Sunday         0           true
273
 * Monday         1           true
274
 * Tuesday        2           true
275
 * Wednesday      3           true
276
 * Thursday       4           true
277
 * Friday         5           true
278
 * Saturday       6           true
279
 * Sunday         6           false
280
 * Monday         0           false
281
 * Tuesday        1           false
282
 * Wednesday      2           false
283
 * Thursday       3           false
284
 * Friday         4           false
285
 * Saturday       5           false
286
 *
287
 * @param Julian Day Number
288
 * @param Consider Sunday the first day of the week?
289
 */
290
uint32_t day_of_week(int64_t day_number
291
                   , bool sunday_is_first_day_of_week)
292
{
293
  uint32_t tmp= (uint32_t) (day_number % 7);
294
  /* 0 returned from above modulo is a Monday */
295
  if (sunday_is_first_day_of_week)
296
    tmp= (tmp == 6 ? 0 : tmp + 1);
297
  return tmp;
298
}
299
300
/**
301
 * Given a year, month, and day, returns whether the date is 
302
 * valid for the Gregorian proleptic calendar.
303
 *
304
 * @param The year
305
 * @param The month
306
 * @param The day
307
 */
308
bool is_valid_gregorian_date(uint32_t year, uint32_t month, uint32_t day)
309
{
310
  if (year < 1)
311
    return false;
312
  if (month != 2)
313
    return (day <= __normal_days_in_month[month - 1]);
314
  else
315
  {
316
    const uint32_t *p_months= __DAYS_IN_MONTH(year, (enum calendar) GREGORIAN);
317
    return (day <= p_months[1]);
318
  }
319
}
320
321
/**
322
 * Returns the number of days in a month, given
323
 * a year and a month in the Gregorian calendar.
324
 *
325
 * @param Year in Gregorian Proleptic calendar
326
 * @param Month in date
327
 */
328
uint32_t days_in_gregorian_year_month(uint32_t year, uint32_t month)
329
{
330
  const uint32_t *p_months= __DAYS_IN_MONTH(year, GREGORIAN);
331
  return p_months[month - 1];
332
}
333
334
/**
335
 * Returns whether the supplied date components are within the 
336
 * range of the UNIX epoch.
337
 *
338
 * Times in the range of 1970-01-01T00:00:00 to 2038-01-19T03:14:07
339
 *
340
 * @param Year
341
 * @param Month
342
 * @param Day
343
 * @param Hour
344
 * @param Minute
345
 * @param Second
346
 */
347
bool in_unix_epoch_range(uint32_t year
348
                       , uint32_t month
349
                       , uint32_t day
350
                       , uint32_t hour
351
                       , uint32_t minute
352
                       , uint32_t second)
353
{
354
  if (month == 0 || day == 0)
355
    return false;
356
  if (year < UNIX_EPOCH_MAX_YEARS
357
      && year >= UNIX_EPOCH_MIN_YEARS)
358
    return true;
359
  if (year < UNIX_EPOCH_MIN_YEARS)
360
    return false;
361
  if (year == UNIX_EPOCH_MAX_YEARS)
362
  {
363
    if (month > 1)
364
      return false;
365
    if (day > 19)
366
      return false;
367
    else if (day < 19)
368
      return true;
369
    else
370
    {
371
      /* We are on the final day of UNIX Epoch */
372
      uint32_t seconds= (hour * 60 * 60)
373
                      + (minute * 60)
374
                      + (second);
375
      if (seconds <= ((3 * 60 * 60) + (14 * 60) + 7))
376
        return true;
377
      return false;
378
    }
379
  }
380
  return false;
381
}
382
383
/**
384
 * Returns the number of the week from a supplied year, month, and
813.1.22 by Jay Pipes
default_week_format variable has gone the way of the Dodo, as have the
385
 * date in the Gregorian proleptic calendar.  We use strftime() and
386
 * the %U, %W, and %V format specifiers depending on the value
387
 * of the sunday_is_first_day_of_week parameter.
813.1.2 by Jay Pipes
First function cleanup for temporal handling: YEAR()
388
 *
389
 * @param Subject year
390
 * @param Subject month
391
 * @param Subject day
392
 * @param Is sunday the first day of the week?
393
 * @param Pointer to a uint32_t to hold the resulting year, which 
394
 *        may be incremented or decremented depending on flags
395
 */
396
uint32_t week_number_from_gregorian_date(uint32_t year
397
                                       , uint32_t month
398
                                       , uint32_t day
813.1.22 by Jay Pipes
default_week_format variable has gone the way of the Dodo, as have the
399
                                       , bool sunday_is_first_day_of_week)
400
{
401
  struct tm broken_time;
402
403
  broken_time.tm_year= year;
404
  broken_time.tm_mon= month - 1; /* struct tm has non-ordinal months */
405
  broken_time.tm_mday= day;
406
407
  /* fill out the rest of our tm fields. */
408
  (void) mktime(&broken_time);
409
410
  char result[3]; /* 3 is enough space for a max 2-digit week number */
411
  size_t result_len= strftime(result
412
                            , sizeof(result)
413
                            , (sunday_is_first_day_of_week ? "%U" : "%W")
414
                            , &broken_time);
415
416
  if (result_len != 0)
417
    return (uint32_t) atoi(result);
418
  return 0;
419
}
420
421
/**
422
 * Returns the ISO week number of a supplied year, month, and
423
 * date in the Gregorian proleptic calendar.  We use strftime() and
424
 * the %V format specifier to do the calculation, which yields a
425
 * correct ISO 8601:1988 week number.
426
 *
427
 * The final year_out parameter is a pointer to an integer which will
428
 * be set to the year in which the week belongs, according to ISO8601:1988, 
429
 * which may be different from the Gregorian calendar year.
430
 *
431
 * @see http://en.wikipedia.org/wiki/ISO_8601
432
 *
433
 * @param Subject year
434
 * @param Subject month
435
 * @param Subject day
436
 * @param Pointer to a uint32_t to hold the resulting year, which 
437
 *        may be incremented or decremented depending on flags
438
 */
439
uint32_t iso_week_number_from_gregorian_date(uint32_t year
440
                                           , uint32_t month
441
                                           , uint32_t day
442
                                           , uint32_t *year_out)
443
{
444
  struct tm broken_time;
445
446
  if (year_out != NULL)
447
    *year_out= year;
448
449
  broken_time.tm_year= year;
450
  broken_time.tm_mon= month - 1; /* struct tm has non-ordinal months */
451
  broken_time.tm_mday= day;
452
453
  /* fill out the rest of our tm fields. */
454
  (void) mktime(&broken_time);
455
456
  char result[3]; /* 3 is enough space for a max 2-digit week number */
457
  size_t result_len= strftime(result
458
                            , sizeof(result)
459
                            , "%V"
460
                            , &broken_time);
461
462
463
  if (result_len == 0)
464
    return 0; /* Not valid for ISO8601:1988 */
465
466
  uint32_t week_number= (uint32_t) atoi(result);
467
468
  /* 
469
   * ISO8601:1988 states that if the first week in January
470
   * does not contain 4 days, then the resulting week number
471
   * shall be 52 or 53, depending on the number of days in the
472
   * previous year.  In this case, we adjust the outbound
473
   * year parameter down a year.
474
   */
475
  if (year_out != NULL)
476
    if (week_number == 53 || week_number == 52)
477
      if (month == 1)
478
        *year_out--;
479
480
  return week_number;
813.1.2 by Jay Pipes
First function cleanup for temporal handling: YEAR()
481
}
907.1.3 by Jay Pipes
Merging in old r903 temporal changes
482
483
/**
484
 * Takes a number in the form [YY]YYMM and converts it into
485
 * a number of months.
486
 *
487
 * @param Period in the form [YY]YYMM
488
 */
489
uint32_t year_month_to_months(uint32_t year_month)
490
{
491
  if (year_month == 0)
492
    return 0L;
493
494
  uint32_t years= year_month / 100;
495
  if (years < CALENDAR_YY_PART_YEAR)
496
    years+= 2000;
497
  else if (years < 100)
498
    years+= 1900;
499
500
  uint32_t months= year_month % 100;
501
  return (years * 12) + (months - 1);
502
}
503
504
/**
505
 * Takes a number of months and converts it to
506
 * a period in the form YYYYMM.
507
 *
508
 * @param Number of months
509
 */
510
uint32_t months_to_year_month(uint32_t months)
511
{
512
  if (months == 0L)
513
    return 0L;
514
515
  uint32_t years= (months / 12);
516
517
  if (years < 100)
518
    years+= (years < CALENDAR_YY_PART_YEAR) ? 2000 : 1900;
519
520
  return (years * 100) + (months % 12) + 1;
521
}