/************************************************************************ The hash table with external chains (c) 1994-1997 Innobase Oy Created 8/22/1994 Heikki Tuuri *************************************************************************/ #include "ha0ha.h" #ifdef UNIV_NONINL #include "ha0ha.ic" #endif #include "buf0buf.h" /***************************************************************** Creates a hash table with >= n array cells. The actual number of cells is chosen to be a prime number slightly bigger than n. */ hash_table_t* ha_create_func( /*===========*/ /* out, own: created table */ ibool in_btr_search, /* in: TRUE if the hash table is used in the btr_search module */ ulint n, /* in: number of array cells */ #ifdef UNIV_SYNC_DEBUG ulint mutex_level, /* in: level of the mutexes in the latching order: this is used in the debug version */ #endif /* UNIV_SYNC_DEBUG */ ulint n_mutexes) /* in: number of mutexes to protect the hash table: must be a power of 2, or 0 */ { hash_table_t* table; ulint i; table = hash_create(n); if (in_btr_search) { table->adaptive = TRUE; } else { table->adaptive = FALSE; } /* Creating MEM_HEAP_BTR_SEARCH type heaps can potentially fail, but in practise it never should in this case, hence the asserts. */ if (n_mutexes == 0) { if (in_btr_search) { table->heap = mem_heap_create_in_btr_search(4096); ut_a(table->heap); } else { table->heap = mem_heap_create_in_buffer(4096); } return(table); } hash_create_mutexes(table, n_mutexes, mutex_level); table->heaps = mem_alloc(n_mutexes * sizeof(void*)); for (i = 0; i < n_mutexes; i++) { if (in_btr_search) { table->heaps[i] = mem_heap_create_in_btr_search(4096); ut_a(table->heaps[i]); } else { table->heaps[i] = mem_heap_create_in_buffer(4096); } } return(table); } /***************************************************************** Inserts an entry into a hash table. If an entry with the same fold number is found, its node is updated to point to the new data, and no new node is inserted. */ ibool ha_insert_for_fold( /*===============*/ /* out: TRUE if succeed, FALSE if no more memory could be allocated */ hash_table_t* table, /* in: hash table */ ulint fold, /* in: folded value of data; if a node with the same fold value already exists, it is updated to point to the same data, and no new node is created! */ void* data) /* in: data, must not be NULL */ { hash_cell_t* cell; ha_node_t* node; ha_node_t* prev_node; buf_block_t* prev_block; ulint hash; ut_ad(table && data); ut_ad(!table->mutexes || mutex_own(hash_get_mutex(table, fold))); hash = hash_calc_hash(fold, table); cell = hash_get_nth_cell(table, hash); prev_node = cell->node; while (prev_node != NULL) { if (prev_node->fold == fold) { if (table->adaptive) { prev_block = buf_block_align(prev_node->data); ut_a(prev_block->n_pointers > 0); prev_block->n_pointers--; buf_block_align(data)->n_pointers++; } prev_node->data = data; return(TRUE); } prev_node = prev_node->next; } /* We have to allocate a new chain node */ node = mem_heap_alloc(hash_get_heap(table, fold), sizeof(ha_node_t)); if (node == NULL) { /* It was a btr search type memory heap and at the moment no more memory could be allocated: return */ ut_ad(hash_get_heap(table, fold)->type & MEM_HEAP_BTR_SEARCH); return(FALSE); } ha_node_set_data(node, data); if (table->adaptive) { buf_block_align(data)->n_pointers++; } node->fold = fold; node->next = NULL; prev_node = cell->node; if (prev_node == NULL) { cell->node = node; return(TRUE); } while (prev_node->next != NULL) { prev_node = prev_node->next; } prev_node->next = node; return(TRUE); } /*************************************************************** Deletes a hash node. */ void ha_delete_hash_node( /*================*/ hash_table_t* table, /* in: hash table */ ha_node_t* del_node) /* in: node to be deleted */ { if (table->adaptive) { ut_a(buf_block_align(del_node->data)->n_pointers > 0); buf_block_align(del_node->data)->n_pointers--; } HASH_DELETE_AND_COMPACT(ha_node_t, next, table, del_node); } /***************************************************************** Deletes an entry from a hash table. */ void ha_delete( /*======*/ hash_table_t* table, /* in: hash table */ ulint fold, /* in: folded value of data */ void* data) /* in: data, must not be NULL and must exist in the hash table */ { ha_node_t* node; ut_ad(!table->mutexes || mutex_own(hash_get_mutex(table, fold))); node = ha_search_with_data(table, fold, data); ut_a(node); ha_delete_hash_node(table, node); } /************************************************************* Looks for an element when we know the pointer to the data, and updates the pointer to data, if found. */ void ha_search_and_update_if_found( /*==========================*/ hash_table_t* table, /* in: hash table */ ulint fold, /* in: folded value of the searched data */ void* data, /* in: pointer to the data */ void* new_data)/* in: new pointer to the data */ { ha_node_t* node; ut_ad(!table->mutexes || mutex_own(hash_get_mutex(table, fold))); node = ha_search_with_data(table, fold, data); if (node) { if (table->adaptive) { ut_a(buf_block_align(node->data)->n_pointers > 0); buf_block_align(node->data)->n_pointers--; buf_block_align(new_data)->n_pointers++; } node->data = new_data; } } /********************************************************************* Removes from the chain determined by fold all nodes whose data pointer points to the page given. */ void ha_remove_all_nodes_to_page( /*========================*/ hash_table_t* table, /* in: hash table */ ulint fold, /* in: fold value */ page_t* page) /* in: buffer page */ { ha_node_t* node; ut_ad(!table->mutexes || mutex_own(hash_get_mutex(table, fold))); node = ha_chain_get_first(table, fold); while (node) { if (buf_frame_align(ha_node_get_data(node)) == page) { /* Remove the hash node */ ha_delete_hash_node(table, node); /* Start again from the first node in the chain because the deletion may compact the heap of nodes and move other nodes! */ node = ha_chain_get_first(table, fold); } else { node = ha_chain_get_next(node); } } #ifdef UNIV_DEBUG /* Check that all nodes really got deleted */ node = ha_chain_get_first(table, fold); while (node) { ut_a(buf_frame_align(ha_node_get_data(node)) != page); node = ha_chain_get_next(node); } #endif } /***************************************************************** Validates a given range of the cells in hash table. */ ibool ha_validate( /*========*/ /* out: TRUE if ok */ hash_table_t* table, /* in: hash table */ ulint start_index, /* in: start index */ ulint end_index) /* in: end index */ { hash_cell_t* cell; ha_node_t* node; ibool ok = TRUE; ulint i; ut_a(start_index <= end_index); ut_a(start_index < hash_get_n_cells(table)); ut_a(end_index < hash_get_n_cells(table)); for (i = start_index; i <= end_index; i++) { cell = hash_get_nth_cell(table, i); node = cell->node; while (node) { if (hash_calc_hash(node->fold, table) != i) { ut_print_timestamp(stderr); fprintf(stderr, "InnoDB: Error: hash table node" " fold value %lu does not\n" "InnoDB: match the cell number %lu.\n", (ulong) node->fold, (ulong) i); ok = FALSE; } node = node->next; } } return(ok); } /***************************************************************** Prints info of a hash table. */ void ha_print_info( /*==========*/ FILE* file, /* in: file where to print */ hash_table_t* table) /* in: hash table */ { hash_cell_t* cell; ulint cells = 0; ulint n_bufs; ulint i; for (i = 0; i < hash_get_n_cells(table); i++) { cell = hash_get_nth_cell(table, i); if (cell->node) { cells++; } } fprintf(file, "Hash table size %lu, used cells %lu", (ulong) hash_get_n_cells(table), (ulong) cells); if (table->heaps == NULL && table->heap != NULL) { /* This calculation is intended for the adaptive hash index: how many buffer frames we have reserved? */ n_bufs = UT_LIST_GET_LEN(table->heap->base) - 1; if (table->heap->free_block) { n_bufs++; } fprintf(file, ", node heap has %lu buffer(s)\n", (ulong) n_bufs); } }