/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=2:tabstop=2:smarttab: * * Copyright (C) 2008 Sun Microsystems * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef DRIZZLED_SQL_SELECT_H #define DRIZZLED_SQL_SELECT_H #include #include #include #include class select_result; /** @file @brief classes to use when handling where clause */ /* PREV_BITS only used in sql_select.cc */ #define PREV_BITS(type,A) ((type) (((type) 1 << (A)) -1)) #include #include /* Values in optimize */ #define KEY_OPTIMIZE_EXISTS 1 #define KEY_OPTIMIZE_REF_OR_NULL 2 typedef struct keyuse_t { Table *table; Item *val; /**< or value if no field */ table_map used_tables; uint key, keypart; uint32_t optimize; // 0, or KEY_OPTIMIZE_* key_part_map keypart_map; ha_rows ref_table_rows; /** If true, the comparison this value was created from will not be satisfied if val has NULL 'value'. */ bool null_rejecting; /* !NULL - This KEYUSE was created from an equality that was wrapped into an Item_func_trig_cond. This means the equality (and validity of this KEYUSE element) can be turned on and off. The on/off state is indicted by the pointed value: *cond_guard == true <=> equality condition is on *cond_guard == false <=> equality condition is off NULL - Otherwise (the source equality can't be turned off) */ bool *cond_guard; /* 0..64 <=> This was created from semi-join IN-equality # sj_pred_no. MAX_UINT Otherwise */ uint32_t sj_pred_no; } KEYUSE; class store_key; typedef struct st_table_ref { bool key_err; uint32_t key_parts; ///< num of ... uint32_t key_length; ///< length of key_buff int32_t key; ///< key no unsigned char *key_buff; ///< value to look for with key unsigned char *key_buff2; ///< key_buff+key_length store_key **key_copy; // Item **items; ///< val()'s for each keypart /* Array of pointers to trigger variables. Some/all of the pointers may be NULL. The ref access can be used iff for each used key part i, (!cond_guards[i] || *cond_guards[i]) This array is used by subquery code. The subquery code may inject triggered conditions, i.e. conditions that can be 'switched off'. A ref access created from such condition is not valid when at least one of the underlying conditions is switched off (see subquery code for more details) */ bool **cond_guards; /** (null_rejecting & (1< index-based access method must return records in order */ bool sorted; /* If it's not 0 the number stored this field indicates that the index scan has been chosen to access the table data and we expect to scan this number of rows for the table. */ ha_rows limit; TABLE_REF ref; JOIN_CACHE cache; JOIN *join; /** Bitmap of nested joins this table is part of */ /* SemiJoinDuplicateElimination variables: */ /* Embedding SJ-nest (may be not the direct parent), or NULL if none. This variable holds the result of table pullout. */ TableList *emb_sj_nest; /* Variables for semi-join duplicate elimination */ SJ_TMP_TABLE *flush_weedout_table; SJ_TMP_TABLE *check_weed_out_table; struct st_join_table *do_firstmatch; /* ptr - this join tab should do an InsideOut scan. Points to the tab for which we'll need to check tab->found_match. NULL - Not an insideout scan. */ struct st_join_table *insideout_match_tab; unsigned char *insideout_buf; // Buffer to save index tuple to be able to skip dups /* Used by InsideOut scan. Just set to true when have found a row. */ bool found_match; enum { /* If set, the rowid of this table must be put into the temptable. */ KEEP_ROWID=1, /* If set, one should call h->position() to obtain the rowid, otherwise, the rowid is assumed to already be in h->ref (this is because join caching and filesort() save the rowid and then put it back into h->ref) */ CALL_POSITION=2 }; /* A set of flags from the above enum */ int rowid_keep_flags; /* NestedOuterJoins: Bitmap of nested joins this table is part of */ nested_join_map embedding_map; void cleanup(); inline bool is_using_loose_index_scan() { return (select && select->quick && (select->quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)); } } JOIN_TAB; enum_nested_loop_state sub_select_cache(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state sub_select(JOIN *join,JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state end_send_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); enum_nested_loop_state end_write_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records); /** Information about a position of table within a join order. Used in join optimization. */ typedef struct st_position { /* The "fanout": number of output rows that will be produced (after pushed down selection condition is applied) per each row combination of previous tables. */ double records_read; /* Cost accessing the table in course of the entire complete join execution, i.e. cost of one access method use (e.g. 'range' or 'ref' scan ) times number the access method will be invoked. */ double read_time; JOIN_TAB *table; /* NULL - 'index' or 'range' or 'index_merge' or 'ALL' access is used. Other - [eq_]ref[_or_null] access is used. Pointer to {t.keypart1 = expr} */ KEYUSE *key; /* If ref-based access is used: bitmap of tables this table depends on */ table_map ref_depend_map; bool use_insideout_scan; } POSITION; typedef struct st_rollup { enum State { STATE_NONE, STATE_INITED, STATE_READY }; State state; Item_null_result **null_items; Item ***ref_pointer_arrays; List *fields; } ROLLUP; class JOIN :public Sql_alloc { JOIN(const JOIN &rhs); /**< not implemented */ JOIN& operator=(const JOIN &rhs); /**< not implemented */ public: JOIN_TAB *join_tab,**best_ref; JOIN_TAB **map2table; ///< mapping between table indexes and JOIN_TABs JOIN_TAB *join_tab_save; ///< saved join_tab for subquery reexecution Table **table,**all_tables; /** The table which has an index that allows to produce the requried ordering. A special value of 0x1 means that the ordering will be produced by passing 1st non-const table to filesort(). NULL means no such table exists. */ Table *sort_by_table; uint tables; /**< Number of tables in the join */ uint32_t outer_tables; /**< Number of tables that are not inside semijoin */ uint32_t const_tables; uint send_group_parts; bool sort_and_group,first_record,full_join,group, no_field_update; bool do_send_rows; /** true when we want to resume nested loop iterations when fetching data from a cursor */ bool resume_nested_loop; table_map const_table_map,found_const_table_map,outer_join; ha_rows send_records,found_records,examined_rows,row_limit, select_limit; /** Used to fetch no more than given amount of rows per one fetch operation of server side cursor. The value is checked in end_send and end_send_group in fashion, similar to offset_limit_cnt: - fetch_limit= HA_POS_ERROR if there is no cursor. - when we open a cursor, we set fetch_limit to 0, - on each fetch iteration we add num_rows to fetch to fetch_limit */ ha_rows fetch_limit; POSITION positions[MAX_TABLES+1],best_positions[MAX_TABLES+1]; /* * Bitmap of nested joins embedding the position at the end of the current partial join (valid only during join optimizer run). */ nested_join_map cur_embedding_map; double best_read; List *fields; List group_fields, group_fields_cache; Table *tmp_table; /// used to store 2 possible tmp table of SELECT Table *exec_tmp_table1, *exec_tmp_table2; Session *session; Item_sum **sum_funcs, ***sum_funcs_end; /** second copy of sumfuncs (for queries with 2 temporary tables */ Item_sum **sum_funcs2, ***sum_funcs_end2; Item *having; Item *tmp_having; ///< To store having when processed temporary table Item *having_history; ///< Store having for explain uint64_t select_options; select_result *result; Tmp_Table_Param tmp_table_param; DRIZZLE_LOCK *lock; /// unit structure (with global parameters) for this select Select_Lex_Unit *unit; /// select that processed Select_Lex *select_lex; /** true <=> optimizer must not mark any table as a constant table. This is needed for subqueries in form "a IN (SELECT .. UNION SELECT ..): when we optimize the select that reads the results of the union from a temporary table, we must not mark the temp. table as constant because the number of rows in it may vary from one subquery execution to another. */ bool no_const_tables; JOIN *tmp_join; ///< copy of this JOIN to be used with temporary tables ROLLUP rollup; ///< Used with rollup bool select_distinct; ///< Set if SELECT DISTINCT /** If we have the GROUP BY statement in the query, but the group_list was emptied by optimizer, this flag is true. It happens when fields in the GROUP BY are from constant table */ bool group_optimized_away; /* simple_xxxxx is set if order_st/GROUP BY doesn't include any references to other tables than the first non-constant table in the JOIN. It's also set if order_st/GROUP BY is empty. */ bool simple_order, simple_group; /** Is set only in case if we have a GROUP BY clause and no order_st BY after constant elimination of 'order'. */ bool no_order; /** Is set if we have a GROUP BY and we have order_st BY on a constant. */ bool skip_sort_order; bool need_tmp, hidden_group_fields; DYNAMIC_ARRAY keyuse; Item::cond_result cond_value, having_value; List all_fields; ///< to store all fields that used in query ///Above list changed to use temporary table List tmp_all_fields1, tmp_all_fields2, tmp_all_fields3; ///Part, shared with list above, emulate following list List tmp_fields_list1, tmp_fields_list2, tmp_fields_list3; List &fields_list; ///< hold field list passed to mysql_select int error; order_st *order, *group_list; //hold parameters of mysql_select COND *conds; // ---"--- Item *conds_history; // store WHERE for explain TableList *tables_list; /// *join_list; ///< list of joined tables in reverse order COND_EQUAL *cond_equal; SQL_SELECT *select; /// sj_subselects; /* Descriptions of temporary tables used to weed-out semi-join duplicates */ SJ_TMP_TABLE *sj_tmp_tables; table_map cur_emb_sj_nests; /* storage for caching buffers allocated during query execution. These buffers allocations need to be cached as the thread memory pool is cleared only at the end of the execution of the whole query and not caching allocations that occur in repetition at execution time will result in excessive memory usage. */ SORT_FIELD *sortorder; // make_unireg_sortorder() Table **table_reexec; // make_simple_join() JOIN_TAB *join_tab_reexec; // make_simple_join() /* end of allocation caching storage */ JOIN(Session *session_arg, List &fields_arg, uint64_t select_options_arg, select_result *result_arg) :fields_list(fields_arg), sj_subselects(session_arg->mem_root, 4) { init(session_arg, fields_arg, select_options_arg, result_arg); } void init(Session *session_arg, List &fields_arg, uint64_t select_options_arg, select_result *result_arg) { join_tab= join_tab_save= 0; table= 0; tables= 0; const_tables= 0; join_list= 0; sort_and_group= 0; first_record= 0; do_send_rows= 1; resume_nested_loop= false; send_records= 0; found_records= 0; fetch_limit= HA_POS_ERROR; examined_rows= 0; exec_tmp_table1= 0; exec_tmp_table2= 0; sortorder= 0; table_reexec= 0; join_tab_reexec= 0; session= session_arg; sum_funcs= sum_funcs2= 0; having= tmp_having= having_history= 0; select_options= select_options_arg; result= result_arg; lock= session_arg->lock; select_lex= 0; //for safety tmp_join= 0; select_distinct= test(select_options & SELECT_DISTINCT); no_order= 0; simple_order= 0; simple_group= 0; skip_sort_order= 0; need_tmp= 0; hidden_group_fields= 0; /*safety*/ error= 0; select= 0; return_tab= 0; ref_pointer_array= items0= items1= items2= items3= 0; ref_pointer_array_size= 0; zero_result_cause= 0; optimized= 0; cond_equal= 0; group_optimized_away= 0; all_fields= fields_arg; if (&fields_list != &fields_arg) /* only copy if not same*/ fields_list= fields_arg; memset(&keyuse, 0, sizeof(keyuse)); tmp_table_param.init(); tmp_table_param.end_write_records= HA_POS_ERROR; rollup.state= ROLLUP::STATE_NONE; sj_tmp_tables= NULL; no_const_tables= false; } int prepare(Item ***rref_pointer_array, TableList *tables, uint32_t wind_num, COND *conds, uint32_t og_num, order_st *order, order_st *group, Item *having, Select_Lex *select, Select_Lex_Unit *unit); int optimize(); int reinit(); void exec(); int destroy(); void restore_tmp(); bool alloc_func_list(); bool flatten_subqueries(); bool setup_subquery_materialization(); bool make_sum_func_list(List &all_fields, List &send_fields, bool before_group_by, bool recompute= false); inline void set_items_ref_array(Item **ptr) { memcpy(ref_pointer_array, ptr, ref_pointer_array_size); current_ref_pointer_array= ptr; } inline void init_items_ref_array() { items0= ref_pointer_array + all_fields.elements; memcpy(items0, ref_pointer_array, ref_pointer_array_size); current_ref_pointer_array= items0; } bool rollup_init(); bool rollup_make_fields(List &all_fields, List &fields, Item_sum ***func); int rollup_send_data(uint32_t idx); int rollup_write_data(uint32_t idx, Table *table); void remove_subq_pushed_predicates(Item **where); /** Release memory and, if possible, the open tables held by this execution plan (and nested plans). It's used to release some tables before the end of execution in order to increase concurrency and reduce memory consumption. */ void join_free(); /** Cleanup this JOIN, possibly for reuse */ void cleanup(bool full); void clear(); bool save_join_tab(); bool init_save_join_tab(); bool send_row_on_empty_set() { return (do_send_rows && tmp_table_param.sum_func_count != 0 && !group_list); } bool change_result(select_result *result); bool is_top_level_join() const { return (unit == &session->lex->unit && (unit->fake_select_lex == 0 || select_lex == unit->fake_select_lex)); } }; typedef struct st_select_check { uint32_t const_ref,reg_ref; } SELECT_CHECK; extern const char *join_type_str[]; void TEST_join(JOIN *join); /* Extern functions in sql_select.cc */ bool store_val_in_field(Field *field, Item *val, enum_check_fields check_flag); Table *create_tmp_table(Session *session,Tmp_Table_Param *param,List &fields, order_st *group, bool distinct, bool save_sum_fields, uint64_t select_options, ha_rows rows_limit, const char* alias); void free_tmp_table(Session *session, Table *entry); void count_field_types(Select_Lex *select_lex, Tmp_Table_Param *param, List &fields, bool reset_with_sum_func); bool setup_copy_fields(Session *session, Tmp_Table_Param *param, Item **ref_pointer_array, List &new_list1, List &new_list2, uint32_t elements, List &fields); void copy_fields(Tmp_Table_Param *param); void copy_funcs(Item **func_ptr); Field* create_tmp_field_from_field(Session *session, Field* org_field, const char *name, Table *table, Item_field *item, uint32_t convert_blob_length); /* functions from opt_sum.cc */ bool simple_pred(Item_func *func_item, Item **args, bool *inv_order); int opt_sum_query(TableList *tables, List &all_fields,COND *conds); /* from sql_delete.cc, used by opt_range.cc */ extern "C" int refpos_order_cmp(void* arg, const void *a,const void *b); /** class to copying an field/item to a key struct */ class store_key :public Sql_alloc { public: bool null_key; /* true <=> the value of the key has a null part */ enum store_key_result { STORE_KEY_OK, STORE_KEY_FATAL, STORE_KEY_CONV }; store_key(Session *session, Field *field_arg, unsigned char *ptr, unsigned char *null, uint32_t length) :null_key(0), null_ptr(null), err(0) { if (field_arg->type() == DRIZZLE_TYPE_BLOB) { /* Key segments are always packed with a 2 byte length prefix. See mi_rkey for details. */ to_field= new Field_varstring(ptr, length, 2, null, 1, Field::NONE, field_arg->field_name, field_arg->table->s, field_arg->charset()); to_field->init(field_arg->table); } else to_field=field_arg->new_key_field(session->mem_root, field_arg->table, ptr, null, 1); } virtual ~store_key() {} /** Not actually needed */ virtual const char *name() const=0; /** @brief sets ignore truncation warnings mode and calls the real copy method @details this function makes sure truncation warnings when preparing the key buffers don't end up as errors (because of an enclosing INSERT/UPDATE). */ enum store_key_result copy() { enum store_key_result result; Session *session= to_field->table->in_use; enum_check_fields saved_count_cuted_fields= session->count_cuted_fields; session->count_cuted_fields= CHECK_FIELD_IGNORE; result= copy_inner(); session->count_cuted_fields= saved_count_cuted_fields; return result; } protected: Field *to_field; // Store data here unsigned char *null_ptr; unsigned char err; virtual enum store_key_result copy_inner()=0; }; class store_key_field: public store_key { Copy_field copy_field; const char *field_name; public: store_key_field(Session *session, Field *to_field_arg, unsigned char *ptr, unsigned char *null_ptr_arg, uint32_t length, Field *from_field, const char *name_arg) :store_key(session, to_field_arg,ptr, null_ptr_arg ? null_ptr_arg : from_field->maybe_null() ? &err : (unsigned char*) 0, length), field_name(name_arg) { if (to_field) { copy_field.set(to_field,from_field,0); } } const char *name() const { return field_name; } protected: enum store_key_result copy_inner() { copy_field.do_copy(©_field); null_key= to_field->is_null(); return err != 0 ? STORE_KEY_FATAL : STORE_KEY_OK; } }; class store_key_item :public store_key { protected: Item *item; public: store_key_item(Session *session, Field *to_field_arg, unsigned char *ptr, unsigned char *null_ptr_arg, uint32_t length, Item *item_arg) :store_key(session, to_field_arg, ptr, null_ptr_arg ? null_ptr_arg : item_arg->maybe_null ? &err : (unsigned char*) 0, length), item(item_arg) {} const char *name() const { return "func"; } protected: enum store_key_result copy_inner() { int res= item->save_in_field(to_field, 1); null_key= to_field->is_null() || item->null_value; return (err != 0 || res > 2 ? STORE_KEY_FATAL : (store_key_result) res); } }; class store_key_const_item :public store_key_item { bool inited; public: store_key_const_item(Session *session, Field *to_field_arg, unsigned char *ptr, unsigned char *null_ptr_arg, uint32_t length, Item *item_arg) :store_key_item(session, to_field_arg,ptr, null_ptr_arg ? null_ptr_arg : item_arg->maybe_null ? &err : (unsigned char*) 0, length, item_arg), inited(0) { } const char *name() const { return "const"; } protected: enum store_key_result copy_inner() { int res; if (!inited) { inited=1; if ((res= item->save_in_field(to_field, 1))) { if (!err) err= res; } } null_key= to_field->is_null() || item->null_value; return (err > 2 ? STORE_KEY_FATAL : (store_key_result) err); } }; bool cp_buffer_from_ref(Session *session, TABLE_REF *ref); bool error_if_full_join(JOIN *join); int safe_index_read(JOIN_TAB *tab); COND *remove_eq_conds(Session *session, COND *cond, Item::cond_result *cond_value); int test_if_item_cache_changed(List &list); #endif /* DRIZZLED_SQL_SELECT_H */