/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=2:tabstop=2:smarttab: * * Copyright (C) 2008 Sun Microsystems * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef DRIZZLED_SESSION_H #define DRIZZLED_SESSION_H /* Classes in mysql */ #include #include #include #include #include // rand_struct #include #include #include #include #include #include #include #include #include #include class Relay_log_info; class Query_log_event; class Load_log_event; class Slave_log_event; class Lex_input_stream; class Rows_log_event; class user_var_entry; class Copy_field; class Table_ident; extern char internal_table_name[2]; extern char empty_c_string[1]; extern const char **errmesg; #define TC_LOG_PAGE_SIZE 8192 #define TC_LOG_MIN_SIZE (3*TC_LOG_PAGE_SIZE) #define TC_HEURISTIC_RECOVER_COMMIT 1 #define TC_HEURISTIC_RECOVER_ROLLBACK 2 extern uint32_t tc_heuristic_recover; typedef struct st_user_var_events { user_var_entry *user_var_event; char *value; ulong length; Item_result type; uint32_t charset_number; } BINLOG_USER_VAR_EVENT; #define RP_LOCK_LOG_IS_ALREADY_LOCKED 1 #define RP_FORCE_ROTATE 2 /* The COPY_INFO structure is used by INSERT/REPLACE code. The schema of the row counting by the INSERT/INSERT ... ON DUPLICATE KEY UPDATE code: If a row is inserted then the copied variable is incremented. If a row is updated by the INSERT ... ON DUPLICATE KEY UPDATE and the new data differs from the old one then the copied and the updated variables are incremented. The touched variable is incremented if a row was touched by the update part of the INSERT ... ON DUPLICATE KEY UPDATE no matter whether the row was actually changed or not. */ typedef struct st_copy_info { ha_rows records; /**< Number of processed records */ ha_rows deleted; /**< Number of deleted records */ ha_rows updated; /**< Number of updated records */ ha_rows copied; /**< Number of copied records */ ha_rows error_count; ha_rows touched; /* Number of touched records */ enum enum_duplicates handle_duplicates; int escape_char, last_errno; bool ignore; /* for INSERT ... UPDATE */ List *update_fields; List *update_values; /* for VIEW ... WITH CHECK OPTION */ } COPY_INFO; typedef struct st_mysql_lock { Table **table; uint32_t table_count,lock_count; THR_LOCK_DATA **locks; } DRIZZLE_LOCK; class LEX_COLUMN : public Sql_alloc { public: String column; uint32_t rights; LEX_COLUMN (const String& x,const uint& y ): column (x),rights (y) {} }; class select_result; class Time_zone; #define Session_SENTRY_MAGIC 0xfeedd1ff #define Session_SENTRY_GONE 0xdeadbeef #define Session_CHECK_SENTRY(session) assert(session->dbug_sentry == Session_SENTRY_MAGIC) struct system_variables { /* How dynamically allocated system variables are handled: The global_system_variables and max_system_variables are "authoritative" They both should have the same 'version' and 'size'. When attempting to access a dynamic variable, if the session version is out of date, then the session version is updated and realloced if neccessary and bytes copied from global to make up for missing data. */ ulong dynamic_variables_version; char* dynamic_variables_ptr; uint32_t dynamic_variables_head; /* largest valid variable offset */ uint32_t dynamic_variables_size; /* how many bytes are in use */ uint64_t myisam_max_extra_sort_file_size; uint64_t max_heap_table_size; uint64_t tmp_table_size; ha_rows select_limit; ha_rows max_join_size; uint32_t auto_increment_increment; uint32_t auto_increment_offset; uint64_t bulk_insert_buff_size; uint64_t join_buff_size; uint32_t max_allowed_packet; uint64_t max_error_count; uint64_t max_length_for_sort_data; uint64_t max_sort_length; uint64_t max_tmp_tables; uint64_t min_examined_row_limit; uint32_t myisam_stats_method; uint32_t net_buffer_length; uint32_t net_interactive_timeout; uint32_t net_read_timeout; uint32_t net_retry_count; uint32_t net_wait_timeout; uint32_t net_write_timeout; bool optimizer_prune_level; uint32_t optimizer_search_depth; /* Controls use of Engine-MRR: 0 - auto, based on cost 1 - force MRR when the storage engine is capable of doing it 2 - disable MRR. */ uint32_t optimizer_use_mrr; /* A bitmap for switching optimizations on/off */ uint32_t optimizer_switch; uint64_t preload_buff_size; uint32_t read_buff_size; uint32_t read_rnd_buff_size; uint32_t div_precincrement; size_t sortbuff_size; uint32_t thread_handling; uint32_t tx_isolation; uint32_t completion_type; /* Determines which non-standard SQL behaviour should be enabled */ uint32_t sql_mode; uint32_t default_week_format; uint64_t max_seeks_for_key; size_t range_alloc_block_size; uint32_t query_alloc_block_size; uint32_t query_prealloc_size; uint32_t trans_alloc_block_size; uint32_t trans_prealloc_size; bool log_warnings; uint64_t group_concat_max_len; /* In slave thread we need to know in behalf of which thread the query is being run to replicate temp tables properly */ /* TODO: change this to my_thread_id - but have to fix set_var first */ uint64_t pseudo_thread_id; bool low_priority_updates; bool new_mode; /* compatibility option: - index usage hints (USE INDEX without a FOR clause) behave as in 5.0 */ bool old_mode; bool engine_condition_pushdown; bool keep_files_on_create; bool old_alter_table; plugin_ref table_plugin; /* Only charset part of these variables is sensible */ const CHARSET_INFO *character_set_filesystem; /* Both charset and collation parts of these variables are important */ const CHARSET_INFO *collation_server; const CHARSET_INFO *collation_database; inline const CHARSET_INFO *getCollation(void) { return collation_database ? collation_database : collation_server; } /* Locale Support */ MY_LOCALE *lc_time_names; Time_zone *time_zone; /* DATE, DATETIME and DRIZZLE_TIME formats */ DATE_TIME_FORMAT *date_format; DATE_TIME_FORMAT *datetime_format; DATE_TIME_FORMAT *time_format; bool sysdate_is_now; }; extern struct system_variables global_system_variables; #include "sql_lex.h" /* only for SQLCOM_END */ /* per thread status variables */ typedef struct system_status_var { uint64_t bytes_received; uint64_t bytes_sent; ulong com_other; ulong com_stat[(uint) SQLCOM_END]; ulong created_tmp_disk_tables; ulong created_tmp_tables; ulong ha_commit_count; ulong ha_delete_count; ulong ha_read_first_count; ulong ha_read_last_count; ulong ha_read_key_count; ulong ha_read_next_count; ulong ha_read_prev_count; ulong ha_read_rnd_count; ulong ha_read_rnd_next_count; ulong ha_rollback_count; ulong ha_update_count; ulong ha_write_count; ulong ha_prepare_count; ulong ha_savepoint_count; ulong ha_savepoint_rollback_count; /* KEY_CACHE parts. These are copies of the original */ ulong key_blocks_changed; ulong key_blocks_used; ulong key_cache_r_requests; ulong key_cache_read; ulong key_cache_w_requests; ulong key_cache_write; /* END OF KEY_CACHE parts */ ulong net_big_packet_count; ulong opened_tables; ulong opened_shares; ulong select_full_join_count; ulong select_full_range_join_count; ulong select_range_count; ulong select_range_check_count; ulong select_scan_count; ulong long_query_count; ulong filesort_merge_passes; ulong filesort_range_count; ulong filesort_rows; ulong filesort_scan_count; /* Number of statements sent from the client */ ulong questions; /* IMPORTANT! SEE last_system_status_var DEFINITION BELOW. Below 'last_system_status_var' are all variables which doesn't make any sense to add to the /global/ status variable counter. */ double last_query_cost; } STATUS_VAR; /* This is used for 'SHOW STATUS'. It must be updated to the last ulong variable in system_status_var which is makes sens to add to the global counter */ #define last_system_status_var questions void mark_transaction_to_rollback(Session *session, bool all); /** @class Statement @brief State of a single command executed against this connection. One connection can contain a lot of simultaneously running statements, some of which could be: - prepared, that is, contain placeholders, To perform some action with statement we reset Session part to the state of that statement, do the action, and then save back modified state from Session to the statement. It will be changed in near future, and Statement will be used explicitly. */ class Statement: public ilink, public Query_arena { Statement(const Statement &rhs); /* not implemented: */ Statement &operator=(const Statement &rhs); /* non-copyable */ public: /* Uniquely identifies each statement object in thread scope; change during statement lifetime. FIXME: must be const */ ulong id; /* MARK_COLUMNS_NONE: Means mark_used_colums is not set and no indicator to handler of fields used is set MARK_COLUMNS_READ: Means a bit in read set is set to inform handler that the field is to be read. If field list contains duplicates, then session->dup_field is set to point to the last found duplicate. MARK_COLUMNS_WRITE: Means a bit is set in write set to inform handler that it needs to update this field in write_row and update_row. */ enum enum_mark_columns mark_used_columns; LEX *lex; // parse tree descriptor /* Points to the query associated with this statement. It's const, but we need to declare it char * because all table handlers are written in C and need to point to it. Note that (A) if we set query = NULL, we must at the same time set query_length = 0, and protect the whole operation with the LOCK_thread_count mutex. And (B) we are ONLY allowed to set query to a non-NULL value if its previous value is NULL. We do not need to protect operation (B) with any mutex. To avoid crashes in races, if we do not know that session->query cannot change at the moment, one should print session->query like this: (1) reserve the LOCK_thread_count mutex; (2) check if session->query is NULL; (3) if not NULL, then print at most session->query_length characters from it. We will see the query_length field as either 0, or the right value for it. Assuming that the write and read of an n-bit memory field in an n-bit computer is atomic, we can avoid races in the above way. This printing is needed at least in SHOW PROCESSLIST and SHOW INNODB STATUS. */ char *query; uint32_t query_length; // current query length /** Name of the current (default) database. If there is the current (default) database, "db" contains its name. If there is no current (default) database, "db" is NULL and "db_length" is 0. In other words, "db", "db_length" must either be NULL, or contain a valid database name. @note this attribute is set and alloced by the slave SQL thread (for the Session of that thread); that thread is (and must remain, for now) the only responsible for freeing this member. */ char *db; uint32_t db_length; public: /* This constructor is called for backup statements */ Statement() {} Statement(LEX *lex_arg, MEM_ROOT *mem_root_arg, ulong id_arg); ~Statement() {} }; struct st_savepoint { struct st_savepoint *prev; char *name; uint32_t length; Ha_trx_info *ha_list; }; enum xa_states {XA_NOTR=0, XA_ACTIVE, XA_IDLE, XA_PREPARED}; extern const char *xa_state_names[]; typedef struct st_xid_state { /* For now, this is only used to catch duplicated external xids */ XID xid; // transaction identifier enum xa_states xa_state; // used by external XA only bool in_session; } XID_STATE; extern pthread_mutex_t LOCK_xid_cache; extern HASH xid_cache; bool xid_cache_init(void); void xid_cache_free(void); XID_STATE *xid_cache_search(XID *xid); bool xid_cache_insert(XID *xid, enum xa_states xa_state); bool xid_cache_insert(XID_STATE *xid_state); void xid_cache_delete(XID_STATE *xid_state); /** @class Security_context @brief A set of Session members describing the current authenticated user. */ class Security_context { public: Security_context() {} /* host - host of the client user - user of the client, set to NULL until the user has been read from the connection priv_user - The user privilege we are using. May be "" for anonymous user. ip - client IP */ std::string user; std::string ip; void skip_grants(); inline const char *priv_host_name() { return (ip.c_str() ? ip.c_str() : (char *)"%"); } }; /** A registry for item tree transformations performed during query optimization. We register only those changes which require a rollback to re-execute a prepared statement or stored procedure yet another time. */ struct Item_change_record; typedef I_List Item_change_list; /** Class that holds information about tables which were opened and locked by the thread. It is also used to save/restore this information in push_open_tables_state()/pop_open_tables_state(). */ class Open_tables_state { public: /** List of regular tables in use by this thread. Contains temporary and base tables that were opened with @see open_tables(). */ Table *open_tables; /** List of temporary tables used by this thread. Contains user-level temporary tables, created with CREATE TEMPORARY TABLE, and internal temporary tables, created, e.g., to resolve a SELECT, or for an intermediate table used in ALTER. XXX Why are internal temporary tables added to this list? */ Table *temporary_tables; /** List of tables that were opened with HANDLER OPEN and are still in use by this thread. */ Table *handler_tables; Table *derived_tables; /* During a MySQL session, one can lock tables in two modes: automatic or manual. In automatic mode all necessary tables are locked just before statement execution, and all acquired locks are stored in 'lock' member. Unlocking takes place automatically as well, when the statement ends. Manual mode comes into play when a user issues a 'LOCK TABLES' statement. In this mode the user can only use the locked tables. Trying to use any other tables will give an error. The locked tables are stored in 'locked_tables' member. Manual locking is described in the 'LOCK_TABLES' chapter of the MySQL manual. See also lock_tables() for details. */ DRIZZLE_LOCK *lock; /* Tables that were locked with explicit or implicit LOCK TABLES. (Implicit LOCK TABLES happens when we are prelocking tables for execution of statement which uses stored routines. See description Session::prelocked_mode for more info.) */ DRIZZLE_LOCK *locked_tables; /* CREATE-SELECT keeps an extra lock for the table being created. This field is used to keep the extra lock available for lower level routines, which would otherwise miss that lock. */ DRIZZLE_LOCK *extra_lock; ulong version; uint32_t current_tablenr; enum enum_flags { BACKUPS_AVAIL = (1U << 0) /* There are backups available */ }; /* Flags with information about the open tables state. */ uint32_t state_flags; /* This constructor serves for creation of Open_tables_state instances which are used as backup storage. */ Open_tables_state() : state_flags(0U) { } Open_tables_state(ulong version_arg); void set_open_tables_state(Open_tables_state *state) { *this= *state; } void reset_open_tables_state() { open_tables= temporary_tables= handler_tables= derived_tables= 0; extra_lock= lock= locked_tables= 0; state_flags= 0U; } }; /* Flags for the Session::system_thread variable */ enum enum_thread_type { NON_SYSTEM_THREAD, SYSTEM_THREAD_SLAVE_IO, SYSTEM_THREAD_SLAVE_SQL }; /** This class represents the interface for internal error handlers. Internal error handlers are exception handlers used by the server implementation. */ class Internal_error_handler { protected: Internal_error_handler() {} virtual ~Internal_error_handler() {} public: /** Handle an error condition. This method can be implemented by a subclass to achieve any of the following: - mask an error internally, prevent exposing it to the user, - mask an error and throw another one instead. When this method returns true, the error condition is considered 'handled', and will not be propagated to upper layers. It is the responsability of the code installing an internal handler to then check for trapped conditions, and implement logic to recover from the anticipated conditions trapped during runtime. This mechanism is similar to C++ try/throw/catch: - 'try' correspond to Session::push_internal_handler(), - 'throw' correspond to my_error(), which invokes my_message_sql(), - 'catch' correspond to checking how/if an internal handler was invoked, before removing it from the exception stack with Session::pop_internal_handler(). @param sql_errno the error number @param level the error level @param session the calling thread @return true if the error is handled */ virtual bool handle_error(uint32_t sql_errno, const char *message, DRIZZLE_ERROR::enum_warning_level level, Session *session) = 0; }; /** Stores status of the currently executed statement. Cleared at the beginning of the statement, and then can hold either OK, ERROR, or EOF status. Can not be assigned twice per statement. */ class Diagnostics_area { public: enum enum_diagnostics_status { /** The area is cleared at start of a statement. */ DA_EMPTY= 0, /** Set whenever one calls my_ok(). */ DA_OK, /** Set whenever one calls my_eof(). */ DA_EOF, /** Set whenever one calls my_error() or my_message(). */ DA_ERROR, /** Set in case of a custom response, such as one from COM_STMT_PREPARE. */ DA_DISABLED }; /** True if status information is sent to the client. */ bool is_sent; /** Set to make set_error_status after set_{ok,eof}_status possible. */ bool can_overwrite_status; void set_ok_status(Session *session, ha_rows affected_rows_arg, uint64_t last_insert_id_arg, const char *message); void set_eof_status(Session *session); void set_error_status(Session *session, uint32_t sql_errno_arg, const char *message_arg); void disable_status(); void reset_diagnostics_area(); bool is_set() const { return m_status != DA_EMPTY; } bool is_error() const { return m_status == DA_ERROR; } bool is_eof() const { return m_status == DA_EOF; } bool is_ok() const { return m_status == DA_OK; } bool is_disabled() const { return m_status == DA_DISABLED; } enum_diagnostics_status status() const { return m_status; } const char *message() const { assert(m_status == DA_ERROR || m_status == DA_OK); return m_message; } uint32_t sql_errno() const { assert(m_status == DA_ERROR); return m_sql_errno; } uint32_t server_status() const { assert(m_status == DA_OK || m_status == DA_EOF); return m_server_status; } ha_rows affected_rows() const { assert(m_status == DA_OK); return m_affected_rows; } uint64_t last_insert_id() const { assert(m_status == DA_OK); return m_last_insert_id; } uint32_t total_warn_count() const { assert(m_status == DA_OK || m_status == DA_EOF); return m_total_warn_count; } Diagnostics_area() { reset_diagnostics_area(); } private: /** Message buffer. Can be used by OK or ERROR status. */ char m_message[DRIZZLE_ERRMSG_SIZE]; /** SQL error number. One of ER_ codes from share/errmsg.txt. Set by set_error_status. */ uint32_t m_sql_errno; /** Copied from session->server_status when the diagnostics area is assigned. We need this member as some places in the code use the following pattern: session->server_status|= ... my_eof(session); session->server_status&= ~... Assigned by OK, EOF or ERROR. */ uint32_t m_server_status; /** The number of rows affected by the last statement. This is semantically close to session->row_count_func, but has a different life cycle. session->row_count_func stores the value returned by function ROW_COUNT() and is cleared only by statements that update its value, such as INSERT, UPDATE, DELETE and few others. This member is cleared at the beginning of the next statement. We could possibly merge the two, but life cycle of session->row_count_func can not be changed. */ ha_rows m_affected_rows; /** Similarly to the previous member, this is a replacement of session->first_successful_insert_id_in_prev_stmt, which is used to implement LAST_INSERT_ID(). */ uint64_t m_last_insert_id; /** The total number of warnings. */ uint m_total_warn_count; enum_diagnostics_status m_status; /** @todo: the following Session members belong here: - warn_list, warn_count, */ }; /** Storage engine specific thread local data. */ struct Ha_data { /** Storage engine specific thread local data. Lifetime: one user connection. */ void *ha_ptr; /** 0: Life time: one statement within a transaction. If @@autocommit is on, also represents the entire transaction. @sa trans_register_ha() 1: Life time: one transaction within a connection. If the storage engine does not participate in a transaction, this should not be used. @sa trans_register_ha() */ Ha_trx_info ha_info[2]; Ha_data() :ha_ptr(NULL) {} }; /** @class Session For each client connection we create a separate thread with Session serving as a thread/connection descriptor */ class Session :public Statement, public Open_tables_state { public: /* Used to execute base64 coded binlog events in MySQL server */ Relay_log_info* rli_fake; /* Constant for Session::where initialization in the beginning of every query. It's needed because we do not save/restore Session::where normally during primary (non subselect) query execution. */ static const char * const DEFAULT_WHERE; NET net; // client connection descriptor MEM_ROOT warn_root; // For warnings and errors Protocol *protocol; // Current protocol Protocol_text protocol_text; // Normal protocol HASH user_vars; // hash for user variables String packet; // dynamic buffer for network I/O String convert_buffer; // buffer for charset conversions struct rand_struct rand; // used for authentication struct system_variables variables; // Changeable local variables struct system_status_var status_var; // Per thread statistic vars struct system_status_var *initial_status_var; /* used by show status */ THR_LOCK_INFO lock_info; // Locking info of this thread THR_LOCK_OWNER main_lock_id; // To use for conventional queries THR_LOCK_OWNER *lock_id; // If not main_lock_id, points to // the lock_id of a cursor. pthread_mutex_t LOCK_delete; // Locked before session is deleted /* A pointer to the stack frame of handle_one_connection(), which is called first in the thread for handling a client */ char *thread_stack; /** Currently selected catalog. */ char *catalog; /** @note Some members of Session (currently 'Statement::db', 'catalog' and 'query') are set and alloced by the slave SQL thread (for the Session of that thread); that thread is (and must remain, for now) the only responsible for freeing these 3 members. If you add members here, and you add code to set them in replication, don't forget to free_them_and_set_them_to_0 in replication properly. For details see the 'err:' label of the handle_slave_sql() in sql/slave.cc. @see handle_slave_sql */ Security_context security_ctx; /* Points to info-string that we show in SHOW PROCESSLIST You are supposed to call Session_SET_PROC_INFO only if you have coded a time-consuming piece that MySQL can get stuck in for a long time. Set it using the session_proc_info(Session *thread, const char *message) macro/function. */ void set_proc_info(const char *info) { proc_info= info; } const char* get_proc_info() const { return proc_info; } /* Used in error messages to tell user in what part of MySQL we found an error. E. g. when where= "having clause", if fix_fields() fails, user will know that the error was in having clause. */ const char *where; double tmp_double_value; /* Used in set_var.cc */ ulong client_capabilities; /* What the client supports */ ulong max_client_packet_length; HASH handler_tables_hash; /* One thread can hold up to one named user-level lock. This variable points to a lock object if the lock is present. See item_func.cc and chapter 'Miscellaneous functions', for functions GET_LOCK, RELEASE_LOCK. */ uint32_t dbug_sentry; // watch out for memory corruption struct st_my_thread_var *mysys_var; /* Type of current query: COM_STMT_PREPARE, COM_QUERY, etc. Set from first byte of the packet in do_command() */ enum enum_server_command command; uint32_t server_id; uint32_t file_id; // for LOAD DATA INFILE /* remote (peer) port */ uint16_t peer_port; time_t start_time, user_time; uint64_t connect_utime, thr_create_utime; // track down slow pthread_create uint64_t start_utime, utime_after_lock; thr_lock_type update_lock_default; /* Both of the following container points in session will be converted to an API. */ /* container for handler's private per-connection data */ Ha_data ha_data[MAX_HA]; /* container for replication data */ void *replication_data; inline void setReplicationData (void *data) { replication_data= data; } inline void *getReplicationData () { return replication_data; } /* Place to store various things */ void *session_marker; void set_server_id(uint32_t sid) { server_id = sid; } public: struct st_transactions { SAVEPOINT *savepoints; Session_TRANS all; // Trans since BEGIN WORK Session_TRANS stmt; // Trans for current statement bool on; // see ha_enable_transaction() XID_STATE xid_state; Rows_log_event *m_pending_rows_event; /* Tables changed in transaction (that must be invalidated in query cache). List contain only transactional tables, that not invalidated in query cache (instead of full list of changed in transaction tables). */ CHANGED_TableList* changed_tables; MEM_ROOT mem_root; // Transaction-life memory allocation pool void cleanup() { changed_tables= 0; savepoints= 0; free_root(&mem_root,MYF(MY_KEEP_PREALLOC)); } st_transactions() { memset(this, 0, sizeof(*this)); xid_state.xid.null(); init_sql_alloc(&mem_root, ALLOC_ROOT_MIN_BLOCK_SIZE, 0); } } transaction; Field *dup_field; sigset_t signals; /* This is to track items changed during execution of a prepared statement/stored procedure. It's created by register_item_tree_change() in memory root of Session, and freed in rollback_item_tree_changes(). For conventional execution it's always empty. */ Item_change_list change_list; /* Tells if LAST_INSERT_ID(#) was called for the current statement */ bool arg_of_last_insert_id_function; /* ALL OVER THIS FILE, "insert_id" means "*automatically generated* value for insertion into an auto_increment column". */ /* This is the first autogenerated insert id which was *successfully* inserted by the previous statement (exactly, if the previous statement didn't successfully insert an autogenerated insert id, then it's the one of the statement before, etc). It can also be set by SET LAST_INSERT_ID=# or SELECT LAST_INSERT_ID(#). It is returned by LAST_INSERT_ID(). */ uint64_t first_successful_insert_id_in_prev_stmt; /* This is the first autogenerated insert id which was *successfully* inserted by the current statement. It is maintained only to set first_successful_insert_id_in_prev_stmt when statement ends. */ uint64_t first_successful_insert_id_in_cur_stmt; /* We follow this logic: - when stmt starts, first_successful_insert_id_in_prev_stmt contains the first insert id successfully inserted by the previous stmt. - as stmt makes progress, handler::insert_id_for_cur_row changes; every time get_auto_increment() is called, auto_inc_intervals_in_cur_stmt_for_binlog is augmented with the reserved interval (if statement-based binlogging). - at first successful insertion of an autogenerated value, first_successful_insert_id_in_cur_stmt is set to handler::insert_id_for_cur_row. - when stmt goes to binlog, auto_inc_intervals_in_cur_stmt_for_binlog is binlogged if non-empty. - when stmt ends, first_successful_insert_id_in_prev_stmt is set to first_successful_insert_id_in_cur_stmt. */ /* List of auto_increment intervals reserved by the thread so far, for storage in the statement-based binlog. Note that its minimum is not first_successful_insert_id_in_cur_stmt: assuming a table with an autoinc column, and this happens: INSERT INTO ... VALUES(3); SET INSERT_ID=3; INSERT IGNORE ... VALUES (NULL); then the latter INSERT will insert no rows (first_successful_insert_id_in_cur_stmt == 0), but storing "INSERT_ID=3" in the binlog is still needed; the list's minimum will contain 3. */ Discrete_intervals_list auto_inc_intervals_in_cur_stmt_for_binlog; /* Used by replication and SET INSERT_ID */ Discrete_intervals_list auto_inc_intervals_forced; /* There is BUG#19630 where statement-based replication of stored functions/triggers with two auto_increment columns breaks. We however ensure that it works when there is 0 or 1 auto_increment column; our rules are a) on master, while executing a top statement involving substatements, first top- or sub- statement to generate auto_increment values wins the exclusive right to see its values be written to binlog (the write will be done by the statement or its caller), and the losers won't see their values be written to binlog. b) on slave, while replicating a top statement involving substatements, first top- or sub- statement to need to read auto_increment values from the master's binlog wins the exclusive right to read them (so the losers won't read their values from binlog but instead generate on their own). a) implies that we mustn't backup/restore auto_inc_intervals_in_cur_stmt_for_binlog. b) implies that we mustn't backup/restore auto_inc_intervals_forced. If there are more than 1 auto_increment columns, then intervals for different columns may mix into the auto_inc_intervals_in_cur_stmt_for_binlog list, which is logically wrong, but there is no point in preventing this mixing by preventing intervals from the secondly inserted column to come into the list, as such prevention would be wrong too. What will happen in the case of INSERT INTO t1 (auto_inc) VALUES(NULL); where t1 has a trigger which inserts into an auto_inc column of t2, is that in binlog we'll store the interval of t1 and the interval of t2 (when we store intervals, soon), then in slave, t1 will use both intervals, t2 will use none; if t1 inserts the same number of rows as on master, normally the 2nd interval will not be used by t1, which is fine. t2's values will be wrong if t2's internal auto_increment counter is different from what it was on master (which is likely). In 5.1, in mixed binlogging mode, row-based binlogging is used for such cases where two auto_increment columns are inserted. */ inline void record_first_successful_insert_id_in_cur_stmt(uint64_t id_arg) { if (first_successful_insert_id_in_cur_stmt == 0) first_successful_insert_id_in_cur_stmt= id_arg; } inline uint64_t read_first_successful_insert_id_in_prev_stmt(void) { return first_successful_insert_id_in_prev_stmt; } /* Used by Intvar_log_event::do_apply_event() and by "SET INSERT_ID=#" (mysqlbinlog). We'll soon add a variant which can take many intervals in argument. */ inline void force_one_auto_inc_interval(uint64_t next_id) { auto_inc_intervals_forced.empty(); // in case of multiple SET INSERT_ID auto_inc_intervals_forced.append(next_id, UINT64_MAX, 0); } uint64_t limit_found_rows; uint64_t options; /* Bitmap of states */ int64_t row_count_func; /* For the ROW_COUNT() function */ ha_rows cuted_fields; /* number of rows we actually sent to the client, including "synthetic" rows in ROLLUP etc. */ ha_rows sent_row_count; /* number of rows we read, sent or not, including in create_sort_index() */ ha_rows examined_row_count; /* The set of those tables whose fields are referenced in all subqueries of the query. TODO: possibly this it is incorrect to have used tables in Session because with more than one subquery, it is not clear what does the field mean. */ table_map used_tables; USER_CONN *user_connect; const CHARSET_INFO *db_charset; /* FIXME: this, and some other variables like 'count_cuted_fields' maybe should be statement/cursor local, that is, moved to Statement class. With current implementation warnings produced in each prepared statement/cursor settle here. */ List warn_list; uint warn_count[(uint) DRIZZLE_ERROR::WARN_LEVEL_END]; uint total_warn_count; Diagnostics_area main_da; /* Id of current query. Statement can be reused to execute several queries query_id is global in context of the whole MySQL server. ID is automatically generated from mutex-protected counter. It's used in handler code for various purposes: to check which columns from table are necessary for this select, to check if it's necessary to update auto-updatable fields (like auto_increment and timestamp). */ query_id_t query_id, warn_id; ulong col_access; #ifdef ERROR_INJECT_SUPPORT ulong error_inject_value; #endif /* Statement id is thread-wide. This counter is used to generate ids */ ulong statement_id_counter; ulong rand_saved_seed1, rand_saved_seed2; /* Row counter, mainly for errors and warnings. Not increased in create_sort_index(); may differ from examined_row_count. */ ulong row_count; pthread_t real_id; /* For debugging */ my_thread_id thread_id; uint tmp_table, global_read_lock; uint server_status,open_options; enum enum_thread_type system_thread; uint32_t select_number; //number of select (used for EXPLAIN) /* variables.transaction_isolation is reset to this after each commit */ enum_tx_isolation session_tx_isolation; enum_check_fields count_cuted_fields; DYNAMIC_ARRAY user_var_events; /* For user variables replication */ MEM_ROOT *user_var_events_alloc; /* Allocate above array elements here */ enum killed_state { NOT_KILLED, KILL_BAD_DATA, KILL_CONNECTION, KILL_QUERY, KILLED_NO_VALUE /* means neither of the states */ }; killed_state volatile killed; /* scramble - random string sent to client on handshake */ char scramble[SCRAMBLE_LENGTH+1]; bool slave_thread; bool some_tables_deleted; bool last_cuted_field; bool no_errors, password; /** Set to true if execution of the current compound statement can not continue. In particular, disables activation of CONTINUE or EXIT handlers of stored routines. Reset in the end of processing of the current user request, in @see mysql_reset_session_for_next_command(). */ bool is_fatal_error; /** Set by a storage engine to request the entire transaction (that possibly spans multiple engines) to rollback. Reset in ha_rollback. */ bool transaction_rollback_request; /** true if we are in a sub-statement and the current error can not be safely recovered until we left the sub-statement mode. In particular, disables activation of CONTINUE and EXIT handlers inside sub-statements. E.g. if it is a deadlock error and requires a transaction-wide rollback, this flag is raised (traditionally, MySQL first has to close all the reads via @see handler::ha_index_or_rnd_end() and only then perform the rollback). Reset to false when we leave the sub-statement mode. */ bool is_fatal_sub_stmt_error; /* for IS NULL => = last_insert_id() fix in remove_eq_conds() */ bool substitute_null_with_insert_id; bool in_lock_tables; /** True if a slave error. Causes the slave to stop. Not the same as the statement execution error (is_error()), since a statement may be expected to return an error, e.g. because it returned an error on master, and this is OK on the slave. */ bool is_slave_error; bool cleanup_done; /** is set if some thread specific value(s) used in a statement. */ bool thread_specific_used; bool charset_is_system_charset, charset_is_collation_connection; bool charset_is_character_set_filesystem; bool abort_on_warning; bool got_warning; /* Set on call to push_warning() */ bool no_warnings_for_error; /* no warnings on call to my_error() */ /* set during loop of derived table processing */ bool derived_tables_processing; bool tablespace_op; /* This is true in DISCARD/IMPORT TABLESPACE */ /* If we do a purge of binary logs, log index info of the threads that are currently reading it needs to be adjusted. To do that each thread that is using LOG_INFO needs to adjust the pointer to it */ LOG_INFO* current_linfo; NET* slave_net; // network connection from slave -> m. /* Used by the sys_var class to store temporary values */ union { bool bool_value; long long_value; ulong ulong_value; uint64_t uint64_t_value; } sys_var_tmp; struct { /* If true, drizzle_bin_log::write(Log_event) call will not write events to binlog, and maintain 2 below variables instead (use drizzle_bin_log.start_union_events to turn this on) */ bool do_union; /* If true, at least one drizzle_bin_log::write(Log_event) call has been made after last drizzle_bin_log.start_union_events() call. */ bool unioned_events; /* If true, at least one drizzle_bin_log::write(Log_event e), where e.cache_stmt == true call has been made after last drizzle_bin_log.start_union_events() call. */ bool unioned_events_trans; /* 'queries' (actually SP statements) that run under inside this binlog union have session->query_id >= first_query_id. */ query_id_t first_query_id; } binlog_evt_union; /** Character input stream consumed by the lexical analyser, used during parsing. Note that since the parser is not re-entrant, we keep only one input stream here. This member is valid only when executing code during parsing, and may point to invalid memory after that. */ Lex_input_stream *m_lip; Session(); ~Session(); void init(void); /* Initialize memory roots necessary for query processing and (!) pre-allocate memory for it. We can't do that in Session constructor because there are use cases (acl_init, watcher threads, killing mysqld) where it's vital to not allocate excessive and not used memory. Note, that we still don't return error from init_for_queries(): if preallocation fails, we should notice that at the first call to alloc_root. */ void init_for_queries(); void cleanup(void); void cleanup_after_query(); bool store_globals(); void awake(Session::killed_state state_to_set); /* For enter_cond() / exit_cond() to work the mutex must be got before enter_cond(); this mutex is then released by exit_cond(). Usage must be: lock mutex; enter_cond(); your code; exit_cond(). */ inline const char* enter_cond(pthread_cond_t *cond, pthread_mutex_t* mutex, const char* msg) { const char* old_msg = get_proc_info(); safe_mutex_assert_owner(mutex); mysys_var->current_mutex = mutex; mysys_var->current_cond = cond; this->set_proc_info(msg); return old_msg; } inline void exit_cond(const char* old_msg) { /* Putting the mutex unlock in exit_cond() ensures that mysys_var->current_mutex is always unlocked _before_ mysys_var->mutex is locked (if that would not be the case, you'll get a deadlock if someone does a Session::awake() on you). */ pthread_mutex_unlock(mysys_var->current_mutex); pthread_mutex_lock(&mysys_var->mutex); mysys_var->current_mutex = 0; mysys_var->current_cond = 0; this->set_proc_info(old_msg); pthread_mutex_unlock(&mysys_var->mutex); } inline time_t query_start() { return start_time; } inline void set_time() { if (user_time) { start_time= user_time; start_utime= utime_after_lock= my_micro_time(); } else start_utime= utime_after_lock= my_micro_time_and_time(&start_time); } inline void set_current_time() { start_time= time(NULL); } inline void set_time(time_t t) { start_time= user_time= t; start_utime= utime_after_lock= my_micro_time(); } void set_time_after_lock() { utime_after_lock= my_micro_time(); } uint64_t current_utime() { return my_micro_time(); } inline uint64_t found_rows(void) { return limit_found_rows; } inline bool active_transaction() { return server_status & SERVER_STATUS_IN_TRANS; } inline bool fill_derived_tables() { return !lex->only_view_structure(); } inline void* trans_alloc(unsigned int size) { return alloc_root(&transaction.mem_root,size); } LEX_STRING *make_lex_string(LEX_STRING *lex_str, const char* str, uint32_t length, bool allocate_lex_string); bool convert_string(LEX_STRING *to, const CHARSET_INFO * const to_cs, const char *from, uint32_t from_length, const CHARSET_INFO * const from_cs); bool convert_string(String *s, const CHARSET_INFO * const from_cs, const CHARSET_INFO * const to_cs); void add_changed_table(Table *table); void add_changed_table(const char *key, long key_length); CHANGED_TableList * changed_table_dup(const char *key, long key_length); int send_explain_fields(select_result *result); /** Clear the current error, if any. We do not clear is_fatal_error or is_fatal_sub_stmt_error since we assume this is never called if the fatal error is set. @todo: To silence an error, one should use Internal_error_handler mechanism. In future this function will be removed. */ inline void clear_error() { if (main_da.is_error()) main_da.reset_diagnostics_area(); is_slave_error= 0; return; } inline bool vio_ok() const { return net.vio != 0; } /** Mark the current error as fatal. Warning: this does not set any error, it sets a property of the error, so must be followed or prefixed with my_error(). */ inline void fatal_error() { assert(main_da.is_error()); is_fatal_error= 1; } /** true if there is an error in the error stack. Please use this method instead of direct access to net.report_error. If true, the current (sub)-statement should be aborted. The main difference between this member and is_fatal_error is that a fatal error can not be handled by a stored procedure continue handler, whereas a normal error can. To raise this flag, use my_error(). */ inline bool is_error() const { return main_da.is_error(); } inline const CHARSET_INFO *charset() { return default_charset_info; } void update_charset(); void change_item_tree(Item **place, Item *new_value) { *place= new_value; } void nocheck_register_item_tree_change(Item **place, Item *old_value, MEM_ROOT *runtime_memroot); void rollback_item_tree_changes(); /* Cleanup statement parse state (parse tree, lex) and execution state after execution of a non-prepared SQL statement. */ void end_statement(); inline int killed_errno() const { killed_state killed_val; /* to cache the volatile 'killed' */ return (killed_val= killed) != KILL_BAD_DATA ? killed_val : 0; } void send_kill_message() const; /* return true if we will abort query if we make a warning now */ inline bool really_abort_on_warning() { return (abort_on_warning); } void set_status_var_init(); void reset_n_backup_open_tables_state(Open_tables_state *backup); void restore_backup_open_tables_state(Open_tables_state *backup); /** Set the current database; use deep copy of C-string. @param new_db a pointer to the new database name. @param new_db_len length of the new database name. Initialize the current database from a NULL-terminated string with length. If we run out of memory, we free the current database and return true. This way the user will notice the error as there will be no current database selected (in addition to the error message set by malloc). @note This operation just sets {db, db_length}. Switching the current database usually involves other actions, like switching other database attributes including security context. In the future, this operation will be made private and more convenient interface will be provided. @return Operation status @retval false Success @retval true Out-of-memory error */ bool set_db(const char *new_db, size_t new_db_len); /** Set the current database; use shallow copy of C-string. @param new_db a pointer to the new database name. @param new_db_len length of the new database name. @note This operation just sets {db, db_length}. Switching the current database usually involves other actions, like switching other database attributes including security context. In the future, this operation will be made private and more convenient interface will be provided. */ void reset_db(char *new_db, size_t new_db_len) { db= new_db; db_length= new_db_len; } /* Copy the current database to the argument. Use the current arena to allocate memory for a deep copy: current database may be freed after a statement is parsed but before it's executed. */ bool copy_db_to(char **p_db, size_t *p_db_length); session_scheduler scheduler; public: /** Add an internal error handler to the thread execution context. @param handler the exception handler to add */ void push_internal_handler(Internal_error_handler *handler); /** Handle an error condition. @param sql_errno the error number @param level the error level @return true if the error is handled */ virtual bool handle_error(uint32_t sql_errno, const char *message, DRIZZLE_ERROR::enum_warning_level level); /** Remove the error handler last pushed. */ void pop_internal_handler(); /** Reset object after executing commands. */ void reset_for_next_command(); /** Close the current connection. */ void close_connection(uint32_t errcode, bool lock); void close_temporary_tables(); private: const char *proc_info; /** The current internal error handler for this thread, or NULL. */ Internal_error_handler *m_internal_handler; /** The lex to hold the parsed tree of conventional (non-prepared) queries. Whereas for prepared and stored procedure statements we use an own lex instance for each new query, for conventional statements we reuse the same lex. (@see mysql_parse for details). */ LEX main_lex; /** This memory root is used for two purposes: - for conventional queries, to allocate structures stored in main_lex during parsing, and allocate runtime data (execution plan, etc.) during execution. - for prepared queries, only to allocate runtime data. The parsed tree itself is reused between executions and thus is stored elsewhere. */ MEM_ROOT main_mem_root; }; /** A short cut for session->main_da.set_ok_status(). */ inline void my_ok(Session *session, ha_rows affected_rows= 0, uint64_t id= 0, const char *message= NULL) { session->main_da.set_ok_status(session, affected_rows, id, message); } /** A short cut for session->main_da.set_eof_status(). */ inline void my_eof(Session *session) { session->main_da.set_eof_status(session); } #define tmp_disable_binlog(A) \ {uint64_t tmp_disable_binlog__save_options= (A)->options; \ (A)->options&= ~OPTION_BIN_LOG #define reenable_binlog(A) (A)->options= tmp_disable_binlog__save_options;} /* Used to hold information about file and file structure in exchange via non-DB file (...INTO OUTFILE..., ...LOAD DATA...) XXX: We never call destructor for objects of this class. */ class sql_exchange :public Sql_alloc { public: enum enum_filetype filetype; /* load XML, Added by Arnold & Erik */ char *file_name; String *field_term,*enclosed,*line_term,*line_start,*escaped; bool opt_enclosed; bool dumpfile; ulong skip_lines; const CHARSET_INFO *cs; sql_exchange(char *name, bool dumpfile_flag, enum_filetype filetype_arg= FILETYPE_CSV); }; #include "log_event.h" /* This is used to get result from a select */ class JOIN; class select_result :public Sql_alloc { protected: Session *session; SELECT_LEX_UNIT *unit; public: select_result(); virtual ~select_result() {}; virtual int prepare(List &, SELECT_LEX_UNIT *u) { unit= u; return 0; } virtual int prepare2(void) { return 0; } /* Because of peculiarities of prepared statements protocol we need to know number of columns in the result set (if there is a result set) apart from sending columns metadata. */ virtual uint32_t field_count(List &fields) const { return fields.elements; } virtual bool send_fields(List &list, uint32_t flags)=0; virtual bool send_data(List &items)=0; virtual bool initialize_tables (JOIN *) { return 0; } virtual void send_error(uint32_t errcode,const char *err); virtual bool send_eof()=0; virtual void abort() {} /* Cleanup instance of this class for next execution of a prepared statement/stored procedure. */ virtual void cleanup(); void set_session(Session *session_arg) { session= session_arg; } void begin_dataset() {} }; /* Base class for select_result descendands which intercept and transform result set rows. As the rows are not sent to the client, sending of result set metadata should be suppressed as well. */ class select_result_interceptor: public select_result { public: select_result_interceptor() {} /* Remove gcc warning */ uint32_t field_count(List &) const { return 0; } bool send_fields(List &, uint32_t) { return false; } }; class select_send :public select_result { /** True if we have sent result set metadata to the client. In this case the client always expects us to end the result set with an eof or error packet */ bool is_result_set_started; public: select_send() :is_result_set_started(false) {} bool send_fields(List &list, uint32_t flags); bool send_data(List &items); bool send_eof(); void abort(); virtual void cleanup(); }; class select_to_file :public select_result_interceptor { protected: sql_exchange *exchange; File file; IO_CACHE cache; ha_rows row_count; char path[FN_REFLEN]; public: select_to_file(sql_exchange *ex) :exchange(ex), file(-1),row_count(0L) { path[0]=0; } ~select_to_file(); void send_error(uint32_t errcode,const char *err); bool send_eof(); void cleanup(); }; #define ESCAPE_CHARS "ntrb0ZN" // keep synchronous with READ_INFO::unescape /* List of all possible characters of a numeric value text representation. */ #define NUMERIC_CHARS ".0123456789e+-" class select_export :public select_to_file { uint32_t field_term_length; int field_sep_char,escape_char,line_sep_char; int field_term_char; // first char of FIELDS TERMINATED BY or MAX_INT /* The is_ambiguous_field_sep field is true if a value of the field_sep_char field is one of the 'n', 't', 'r' etc characters (see the READ_INFO::unescape method and the ESCAPE_CHARS constant value). */ bool is_ambiguous_field_sep; /* The is_ambiguous_field_term is true if field_sep_char contains the first char of the FIELDS TERMINATED BY (ENCLOSED BY is empty), and items can contain this character. */ bool is_ambiguous_field_term; /* The is_unsafe_field_sep field is true if a value of the field_sep_char field is one of the '0'..'9', '+', '-', '.' and 'e' characters (see the NUMERIC_CHARS constant value). */ bool is_unsafe_field_sep; bool fixed_row_size; public: select_export(sql_exchange *ex) :select_to_file(ex) {} ~select_export(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); }; class select_dump :public select_to_file { public: select_dump(sql_exchange *ex) :select_to_file(ex) {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); }; class select_insert :public select_result_interceptor { public: TableList *table_list; Table *table; List *fields; uint64_t autoinc_value_of_last_inserted_row; // autogenerated or not COPY_INFO info; bool insert_into_view; select_insert(TableList *table_list_par, Table *table_par, List *fields_par, List *update_fields, List *update_values, enum_duplicates duplic, bool ignore); ~select_insert(); int prepare(List &list, SELECT_LEX_UNIT *u); virtual int prepare2(void); bool send_data(List &items); virtual void store_values(List &values); virtual bool can_rollback_data() { return 0; } void send_error(uint32_t errcode,const char *err); bool send_eof(); void abort(); /* not implemented: select_insert is never re-used in prepared statements */ void cleanup(); }; class select_create: public select_insert { order_st *group; TableList *create_table; HA_CREATE_INFO *create_info; TableList *select_tables; Alter_info *alter_info; Field **field; /* lock data for tmp table */ DRIZZLE_LOCK *m_lock; /* m_lock or session->extra_lock */ DRIZZLE_LOCK **m_plock; public: select_create (TableList *table_arg, HA_CREATE_INFO *create_info_par, Alter_info *alter_info_arg, List &select_fields,enum_duplicates duplic, bool ignore, TableList *select_tables_arg) :select_insert (NULL, NULL, &select_fields, 0, 0, duplic, ignore), create_table(table_arg), create_info(create_info_par), select_tables(select_tables_arg), alter_info(alter_info_arg), m_plock(NULL) {} int prepare(List &list, SELECT_LEX_UNIT *u); void binlog_show_create_table(Table **tables, uint32_t count); void store_values(List &values); void send_error(uint32_t errcode,const char *err); bool send_eof(); void abort(); virtual bool can_rollback_data() { return 1; } // Needed for access from local class MY_HOOKS in prepare(), since session is proteted. const Session *get_session(void) { return session; } const HA_CREATE_INFO *get_create_info() { return create_info; }; int prepare2(void) { return 0; } }; #include /* Param to create temporary tables when doing SELECT:s NOTE This structure is copied using memcpy as a part of JOIN. */ class TMP_TABLE_PARAM :public Sql_alloc { private: /* Prevent use of these (not safe because of lists and copy_field) */ TMP_TABLE_PARAM(const TMP_TABLE_PARAM &); void operator=(TMP_TABLE_PARAM &); public: List copy_funcs; List save_copy_funcs; Copy_field *copy_field, *copy_field_end; Copy_field *save_copy_field, *save_copy_field_end; unsigned char *group_buff; Item **items_to_copy; /* Fields in tmp table */ MI_COLUMNDEF *recinfo,*start_recinfo; KEY *keyinfo; ha_rows end_write_records; uint field_count,sum_func_count,func_count; uint32_t hidden_field_count; uint group_parts,group_length,group_null_parts; uint quick_group; bool using_indirect_summary_function; /* If >0 convert all blob fields to varchar(convert_blob_length) */ uint32_t convert_blob_length; const CHARSET_INFO *table_charset; bool schema_table; /* True if GROUP BY and its aggregate functions are already computed by a table access method (e.g. by loose index scan). In this case query execution should not perform aggregation and should treat aggregate functions as normal functions. */ bool precomputed_group_by; bool force_copy_fields; /* If true, create_tmp_field called from create_tmp_table will convert all BIT fields to 64-bit longs. This is a workaround the limitation that MEMORY tables cannot index BIT columns. */ bool bit_fields_as_long; TMP_TABLE_PARAM() :copy_field(0), group_parts(0), group_length(0), group_null_parts(0), convert_blob_length(0), schema_table(0), precomputed_group_by(0), force_copy_fields(0), bit_fields_as_long(0) {} ~TMP_TABLE_PARAM() { cleanup(); } void init(void); void cleanup(void); }; class select_union :public select_result_interceptor { TMP_TABLE_PARAM tmp_table_param; public: Table *table; select_union() :table(0) {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool send_eof(); bool flush(); void cleanup(); bool create_result_table(Session *session, List *column_types, bool is_distinct, uint64_t options, const char *alias, bool bit_fields_as_long); }; /* Base subselect interface class */ class select_subselect :public select_result_interceptor { protected: Item_subselect *item; public: select_subselect(Item_subselect *item); bool send_data(List &items)=0; bool send_eof() { return 0; }; }; /* Single value subselect interface class */ class select_singlerow_subselect :public select_subselect { public: select_singlerow_subselect(Item_subselect *item_arg) :select_subselect(item_arg) {} bool send_data(List &items); }; /* used in independent ALL/ANY optimisation */ class select_max_min_finder_subselect :public select_subselect { Item_cache *cache; bool (select_max_min_finder_subselect::*op)(); bool fmax; public: select_max_min_finder_subselect(Item_subselect *item_arg, bool mx) :select_subselect(item_arg), cache(0), fmax(mx) {} void cleanup(); bool send_data(List &items); bool cmp_real(); bool cmp_int(); bool cmp_decimal(); bool cmp_str(); }; /* EXISTS subselect interface class */ class select_exists_subselect :public select_subselect { public: select_exists_subselect(Item_subselect *item_arg) :select_subselect(item_arg){} bool send_data(List &items); }; /* Structs used when sorting */ typedef struct st_sort_field { Field *field; /* Field to sort */ Item *item; /* Item if not sorting fields */ uint length; /* Length of sort field */ uint32_t suffix_length; /* Length suffix (0-4) */ Item_result result_type; /* Type of item */ bool reverse; /* if descending sort */ bool need_strxnfrm; /* If we have to use strxnfrm() */ } SORT_FIELD; typedef struct st_sort_buffer { uint32_t index; /* 0 or 1 */ uint32_t sort_orders; uint32_t change_pos; /* If sort-fields changed */ char **buff; SORT_FIELD *sortorder; } SORT_BUFFER; /* Structure for db & table in sql_yacc */ class Table_ident :public Sql_alloc { public: LEX_STRING db; LEX_STRING table; SELECT_LEX_UNIT *sel; inline Table_ident(Session *session, LEX_STRING db_arg, LEX_STRING table_arg, bool force) :table(table_arg), sel((SELECT_LEX_UNIT *)0) { if (!force && (session->client_capabilities & CLIENT_NO_SCHEMA)) db.str=0; else db= db_arg; } inline Table_ident(LEX_STRING table_arg) :table(table_arg), sel((SELECT_LEX_UNIT *)0) { db.str=0; } /* This constructor is used only for the case when we create a derived table. A derived table has no name and doesn't belong to any database. Later, if there was an alias specified for the table, it will be set by add_table_to_list. */ inline Table_ident(SELECT_LEX_UNIT *s) : sel(s) { /* We must have a table name here as this is used with add_table_to_list */ db.str= empty_c_string; /* a subject to casedn_str */ db.length= 0; table.str= internal_table_name; table.length=1; } bool is_derived_table() const { return test(sel); } inline void change_db(char *db_name) { db.str= db_name; db.length= (uint) strlen(db_name); } }; // this is needed for user_vars hash class user_var_entry { public: user_var_entry() {} /* Remove gcc warning */ LEX_STRING name; char *value; ulong length; query_id_t update_query_id, used_query_id; Item_result type; bool unsigned_flag; double val_real(bool *null_value); int64_t val_int(bool *null_value) const; String *val_str(bool *null_value, String *str, uint32_t decimals); my_decimal *val_decimal(bool *null_value, my_decimal *result); DTCollation collation; }; /* Unique -- class for unique (removing of duplicates). Puts all values to the TREE. If the tree becomes too big, it's dumped to the file. User can request sorted values, or just iterate through them. In the last case tree merging is performed in memory simultaneously with iteration, so it should be ~2-3x faster. */ class Unique :public Sql_alloc { DYNAMIC_ARRAY file_ptrs; ulong max_elements; size_t max_in_memory_size; IO_CACHE file; TREE tree; unsigned char *record_pointers; bool flush(); uint32_t size; public: ulong elements; Unique(qsort_cmp2 comp_func, void *comp_func_fixed_arg, uint32_t size_arg, size_t max_in_memory_size_arg); ~Unique(); ulong elements_in_tree() { return tree.elements_in_tree; } inline bool unique_add(void *ptr) { if (tree.elements_in_tree > max_elements && flush()) return(1); return(!tree_insert(&tree, ptr, 0, tree.custom_arg)); } bool get(Table *table); static double get_use_cost(uint32_t *buffer, uint32_t nkeys, uint32_t key_size, size_t max_in_memory_size); inline static int get_cost_calc_buff_size(ulong nkeys, uint32_t key_size, size_t max_in_memory_size) { register size_t max_elems_in_tree= (1 + max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT)+key_size)); return (int) (sizeof(uint)*(1 + nkeys/max_elems_in_tree)); } void reset(); bool walk(tree_walk_action action, void *walk_action_arg); friend int unique_write_to_file(unsigned char* key, element_count count, Unique *unique); friend int unique_write_to_ptrs(unsigned char* key, element_count count, Unique *unique); }; class multi_delete :public select_result_interceptor { TableList *delete_tables, *table_being_deleted; Unique **tempfiles; ha_rows deleted, found; uint32_t num_of_tables; int error; bool do_delete; /* True if at least one table we delete from is transactional */ bool transactional_tables; /* True if at least one table we delete from is not transactional */ bool normal_tables; bool delete_while_scanning; /* error handling (rollback and binlogging) can happen in send_eof() so that afterward send_error() needs to find out that. */ bool error_handled; public: multi_delete(TableList *dt, uint32_t num_of_tables); ~multi_delete(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool initialize_tables (JOIN *join); void send_error(uint32_t errcode,const char *err); int do_deletes(); bool send_eof(); virtual void abort(); }; class multi_update :public select_result_interceptor { TableList *all_tables; /* query/update command tables */ TableList *leaves; /* list of leves of join table tree */ TableList *update_tables, *table_being_updated; Table **tmp_tables, *main_table, *table_to_update; TMP_TABLE_PARAM *tmp_table_param; ha_rows updated, found; List *fields, *values; List **fields_for_table, **values_for_table; uint32_t table_count; /* List of tables referenced in the CHECK OPTION condition of the updated view excluding the updated table. */ List unupdated_check_opt_tables; Copy_field *copy_field; enum enum_duplicates handle_duplicates; bool do_update, trans_safe; /* True if the update operation has made a change in a transactional table */ bool transactional_tables; bool ignore; /* error handling (rollback and binlogging) can happen in send_eof() so that afterward send_error() needs to find out that. */ bool error_handled; public: multi_update(TableList *ut, TableList *leaves_list, List *fields, List *values, enum_duplicates handle_duplicates, bool ignore); ~multi_update(); int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool initialize_tables (JOIN *join); void send_error(uint32_t errcode,const char *err); int do_updates(); bool send_eof(); virtual void abort(); }; class my_var : public Sql_alloc { public: LEX_STRING s; bool local; uint32_t offset; enum_field_types type; my_var (LEX_STRING& j, bool i, uint32_t o, enum_field_types t) :s(j), local(i), offset(o), type(t) {} ~my_var() {} }; class select_dumpvar :public select_result_interceptor { ha_rows row_count; public: List var_list; select_dumpvar() { var_list.empty(); row_count= 0;} ~select_dumpvar() {} int prepare(List &list, SELECT_LEX_UNIT *u); bool send_data(List &items); bool send_eof(); void cleanup(); }; /* Bits in sql_command_flags */ enum sql_command_flag_bits { CF_BIT_CHANGES_DATA, CF_BIT_HAS_ROW_COUNT, CF_BIT_STATUS_COMMAND, CF_BIT_SHOW_TABLE_COMMAND, CF_BIT_WRITE_LOGS_COMMAND, CF_BIT_SIZE }; static const std::bitset CF_CHANGES_DATA(1 << CF_BIT_CHANGES_DATA); static const std::bitset CF_HAS_ROW_COUNT(1 << CF_BIT_HAS_ROW_COUNT); static const std::bitset CF_STATUS_COMMAND(1 << CF_BIT_STATUS_COMMAND); static const std::bitset CF_SHOW_TABLE_COMMAND(1 << CF_BIT_SHOW_TABLE_COMMAND); static const std::bitset CF_WRITE_LOGS_COMMAND(1 << CF_BIT_WRITE_LOGS_COMMAND); /* Functions in sql_class.cc */ void add_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var); void add_diff_to_status(STATUS_VAR *to_var, STATUS_VAR *from_var, STATUS_VAR *dec_var); /* Some inline functions for more speed */ inline bool add_item_to_list(Session *session, Item *item) { return session->lex->current_select->add_item_to_list(session, item); } inline bool add_value_to_list(Session *session, Item *value) { return session->lex->value_list.push_back(value); } inline bool add_order_to_list(Session *session, Item *item, bool asc) { return session->lex->current_select->add_order_to_list(session, item, asc); } inline bool add_group_to_list(Session *session, Item *item, bool asc) { return session->lex->current_select->add_group_to_list(session, item, asc); } #endif /* DRIZZLED_SQL_CLASS_H */