/****************************************************** Index page routines (c) 1994-1996 Innobase Oy Created 2/2/1994 Heikki Tuuri *******************************************************/ #define THIS_MODULE #include "page0page.h" #ifdef UNIV_NONINL #include "page0page.ic" #endif #undef THIS_MODULE #include "page0cur.h" #include "lock0lock.h" #include "fut0lst.h" #include "btr0sea.h" #include "buf0buf.h" #include "srv0srv.h" #include "btr0btr.h" /* THE INDEX PAGE ============== The index page consists of a page header which contains the page's id and other information. On top of it are the the index records in a heap linked into a one way linear list according to alphabetic order. Just below page end is an array of pointers which we call page directory, to about every sixth record in the list. The pointers are placed in the directory in the alphabetical order of the records pointed to, enabling us to make binary search using the array. Each slot n:o I in the directory points to a record, where a 4-bit field contains a count of those records which are in the linear list between pointer I and the pointer I - 1 in the directory, including the record pointed to by pointer I and not including the record pointed to by I - 1. We say that the record pointed to by slot I, or that slot I, owns these records. The count is always kept in the range 4 to 8, with the exception that it is 1 for the first slot, and 1--8 for the second slot. An essentially binary search can be performed in the list of index records, like we could do if we had pointer to every record in the page directory. The data structure is, however, more efficient when we are doing inserts, because most inserts are just pushed on a heap. Only every 8th insert requires block move in the directory pointer table, which itself is quite small. A record is deleted from the page by just taking it off the linear list and updating the number of owned records-field of the record which owns it, and updating the page directory, if necessary. A special case is the one when the record owns itself. Because the overhead of inserts is so small, we may also increase the page size from the projected default of 8 kB to 64 kB without too much loss of efficiency in inserts. Bigger page becomes actual when the disk transfer rate compared to seek and latency time rises. On the present system, the page size is set so that the page transfer time (3 ms) is 20 % of the disk random access time (15 ms). When the page is split, merged, or becomes full but contains deleted records, we have to reorganize the page. Assuming a page size of 8 kB, a typical index page of a secondary index contains 300 index entries, and the size of the page directory is 50 x 4 bytes = 200 bytes. */ /******************************************************************* Looks for the directory slot which owns the given record. */ ulint page_dir_find_owner_slot( /*=====================*/ /* out: the directory slot number */ rec_t* rec) /* in: the physical record */ { page_t* page; register uint16_t rec_offs_bytes; register page_dir_slot_t* slot; register const page_dir_slot_t* first_slot; register rec_t* r = rec; ut_ad(page_rec_check(rec)); page = buf_frame_align(rec); first_slot = page_dir_get_nth_slot(page, 0); slot = page_dir_get_nth_slot(page, page_dir_get_n_slots(page) - 1); if (page_is_comp(page)) { while (rec_get_n_owned(r, TRUE) == 0) { r = page + rec_get_next_offs(r, TRUE); ut_ad(r >= page + PAGE_NEW_SUPREMUM); ut_ad(r < page + (UNIV_PAGE_SIZE - PAGE_DIR)); } } else { while (rec_get_n_owned(r, FALSE) == 0) { r = page + rec_get_next_offs(r, FALSE); ut_ad(r >= page + PAGE_OLD_SUPREMUM); ut_ad(r < page + (UNIV_PAGE_SIZE - PAGE_DIR)); } } rec_offs_bytes = mach_encode_2(r - page); while (UNIV_LIKELY(*(uint16_t*) slot != rec_offs_bytes)) { if (UNIV_UNLIKELY(slot == first_slot)) { fprintf(stderr, "InnoDB: Probable data corruption on" " page %lu\n" "InnoDB: Original record ", (ulong) buf_frame_get_page_no(page)); if (page_is_comp(page)) { fputs("(compact record)", stderr); } else { rec_print_old(stderr, rec); } fputs("\n" "InnoDB: on that page.\n" "InnoDB: Cannot find the dir slot for record ", stderr); if (page_is_comp(page)) { fputs("(compact record)", stderr); } else { rec_print_old(stderr, page + mach_decode_2(rec_offs_bytes)); } fputs("\n" "InnoDB: on that page!\n", stderr); buf_page_print(page); ut_error; } slot += PAGE_DIR_SLOT_SIZE; } return(((ulint) (first_slot - slot)) / PAGE_DIR_SLOT_SIZE); } /****************************************************************** Used to check the consistency of a directory slot. */ static ibool page_dir_slot_check( /*================*/ /* out: TRUE if succeed */ page_dir_slot_t* slot) /* in: slot */ { page_t* page; ulint n_slots; ulint n_owned; ut_a(slot); page = buf_frame_align(slot); n_slots = page_dir_get_n_slots(page); ut_a(slot <= page_dir_get_nth_slot(page, 0)); ut_a(slot >= page_dir_get_nth_slot(page, n_slots - 1)); ut_a(page_rec_check(page_dir_slot_get_rec(slot))); n_owned = rec_get_n_owned(page_dir_slot_get_rec(slot), page_is_comp(page)); if (slot == page_dir_get_nth_slot(page, 0)) { ut_a(n_owned == 1); } else if (slot == page_dir_get_nth_slot(page, n_slots - 1)) { ut_a(n_owned >= 1); ut_a(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED); } else { ut_a(n_owned >= PAGE_DIR_SLOT_MIN_N_OWNED); ut_a(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED); } return(TRUE); } /***************************************************************** Sets the max trx id field value. */ void page_set_max_trx_id( /*================*/ page_t* page, /* in: page */ dulint trx_id) /* in: transaction id */ { buf_block_t* block; ut_ad(page); block = buf_block_align(page); if (block->is_hashed) { rw_lock_x_lock(&btr_search_latch); } /* It is not necessary to write this change to the redo log, as during a database recovery we assume that the max trx id of every page is the maximum trx id assigned before the crash. */ mach_write_to_8(page + PAGE_HEADER + PAGE_MAX_TRX_ID, trx_id); if (block->is_hashed) { rw_lock_x_unlock(&btr_search_latch); } } /***************************************************************** Calculates free space if a page is emptied. */ ulint page_get_free_space_of_empty_noninline( /*===================================*/ /* out: free space */ ulint comp) /* in: nonzero=compact page format */ { return(page_get_free_space_of_empty(comp)); } /**************************************************************** Allocates a block of memory from an index page. */ byte* page_mem_alloc( /*===========*/ /* out: pointer to start of allocated buffer, or NULL if allocation fails */ page_t* page, /* in: index page */ ulint need, /* in: number of bytes needed */ dict_index_t* index, /* in: record descriptor */ ulint* heap_no)/* out: this contains the heap number of the allocated record if allocation succeeds */ { rec_t* rec; byte* block; ulint avl_space; ulint garbage; ut_ad(page && heap_no); /* If there are records in the free list, look if the first is big enough */ rec = page_header_get_ptr(page, PAGE_FREE); if (rec) { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (rec_offs_size(offsets) >= need) { page_header_set_ptr(page, PAGE_FREE, page_rec_get_next(rec)); garbage = page_header_get_field(page, PAGE_GARBAGE); ut_ad(garbage >= need); page_header_set_field(page, PAGE_GARBAGE, garbage - need); *heap_no = rec_get_heap_no(rec, page_is_comp(page)); block = rec_get_start(rec, offsets); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(block); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /* Could not find space from the free list, try top of heap */ avl_space = page_get_max_insert_size(page, 1); if (avl_space >= need) { block = page_header_get_ptr(page, PAGE_HEAP_TOP); page_header_set_ptr(page, PAGE_HEAP_TOP, block + need); *heap_no = page_dir_get_n_heap(page); page_dir_set_n_heap(page, 1 + *heap_no); return(block); } return(NULL); } /************************************************************** Writes a log record of page creation. */ UNIV_INLINE void page_create_write_log( /*==================*/ buf_frame_t* frame, /* in: a buffer frame where the page is created */ mtr_t* mtr, /* in: mini-transaction handle */ ulint comp) /* in: nonzero=compact page format */ { mlog_write_initial_log_record(frame, comp ? MLOG_COMP_PAGE_CREATE : MLOG_PAGE_CREATE, mtr); } /*************************************************************** Parses a redo log record of creating a page. */ byte* page_parse_create( /*==============*/ /* out: end of log record or NULL */ byte* ptr, /* in: buffer */ byte* end_ptr __attribute__((unused)), /* in: buffer end */ ulint comp, /* in: nonzero=compact page format */ page_t* page, /* in: page or NULL */ mtr_t* mtr) /* in: mtr or NULL */ { ut_ad(ptr && end_ptr); /* The record is empty, except for the record initial part */ if (page) { page_create(page, mtr, comp); } return(ptr); } /************************************************************** The index page creation function. */ page_t* page_create( /*========*/ /* out: pointer to the page */ buf_frame_t* frame, /* in: a buffer frame where the page is created */ mtr_t* mtr, /* in: mini-transaction handle */ ulint comp) /* in: nonzero=compact page format */ { page_dir_slot_t* slot; mem_heap_t* heap; dtuple_t* tuple; dfield_t* field; byte* heap_top; rec_t* infimum_rec; rec_t* supremum_rec; page_t* page; dict_index_t* index; ulint* offsets; index = comp ? srv_sys->dummy_ind2 : srv_sys->dummy_ind1; ut_ad(frame && mtr); #if PAGE_BTR_IBUF_FREE_LIST + FLST_BASE_NODE_SIZE > PAGE_DATA # error "PAGE_BTR_IBUF_FREE_LIST + FLST_BASE_NODE_SIZE > PAGE_DATA" #endif #if PAGE_BTR_IBUF_FREE_LIST_NODE + FLST_NODE_SIZE > PAGE_DATA # error "PAGE_BTR_IBUF_FREE_LIST_NODE + FLST_NODE_SIZE > PAGE_DATA" #endif /* 1. INCREMENT MODIFY CLOCK */ buf_frame_modify_clock_inc(frame); /* 2. WRITE LOG INFORMATION */ page_create_write_log(frame, mtr, comp); page = frame; fil_page_set_type(page, FIL_PAGE_INDEX); heap = mem_heap_create(200); /* 3. CREATE THE INFIMUM AND SUPREMUM RECORDS */ /* Create first a data tuple for infimum record */ tuple = dtuple_create(heap, 1); dtuple_set_info_bits(tuple, REC_STATUS_INFIMUM); field = dtuple_get_nth_field(tuple, 0); dfield_set_data(field, "infimum", 8); dtype_set(dfield_get_type(field), DATA_VARCHAR, DATA_ENGLISH | DATA_NOT_NULL, 8); /* Set the corresponding physical record to its place in the page record heap */ heap_top = page + PAGE_DATA; infimum_rec = rec_convert_dtuple_to_rec(heap_top, index, tuple); ut_a(infimum_rec == page + (comp ? PAGE_NEW_INFIMUM : PAGE_OLD_INFIMUM)); rec_set_n_owned(infimum_rec, comp, 1); rec_set_heap_no(infimum_rec, comp, 0); offsets = rec_get_offsets(infimum_rec, index, NULL, ULINT_UNDEFINED, &heap); heap_top = rec_get_end(infimum_rec, offsets); /* Create then a tuple for supremum */ tuple = dtuple_create(heap, 1); dtuple_set_info_bits(tuple, REC_STATUS_SUPREMUM); field = dtuple_get_nth_field(tuple, 0); dfield_set_data(field, "supremum", comp ? 8 : 9); dtype_set(dfield_get_type(field), DATA_VARCHAR, DATA_ENGLISH | DATA_NOT_NULL, comp ? 8 : 9); supremum_rec = rec_convert_dtuple_to_rec(heap_top, index, tuple); ut_a(supremum_rec == page + (comp ? PAGE_NEW_SUPREMUM : PAGE_OLD_SUPREMUM)); rec_set_n_owned(supremum_rec, comp, 1); rec_set_heap_no(supremum_rec, comp, 1); offsets = rec_get_offsets(supremum_rec, index, offsets, ULINT_UNDEFINED, &heap); heap_top = rec_get_end(supremum_rec, offsets); ut_ad(heap_top == page + (comp ? PAGE_NEW_SUPREMUM_END : PAGE_OLD_SUPREMUM_END)); mem_heap_free(heap); /* 4. INITIALIZE THE PAGE */ page_header_set_field(page, PAGE_N_DIR_SLOTS, 2); page_header_set_ptr(page, PAGE_HEAP_TOP, heap_top); page_header_set_field(page, PAGE_N_HEAP, comp ? 0x8002 : 2); page_header_set_ptr(page, PAGE_FREE, NULL); page_header_set_field(page, PAGE_GARBAGE, 0); page_header_set_ptr(page, PAGE_LAST_INSERT, NULL); page_header_set_field(page, PAGE_DIRECTION, PAGE_NO_DIRECTION); page_header_set_field(page, PAGE_N_DIRECTION, 0); page_header_set_field(page, PAGE_N_RECS, 0); page_set_max_trx_id(page, ut_dulint_zero); memset(heap_top, 0, UNIV_PAGE_SIZE - PAGE_EMPTY_DIR_START - (heap_top - page)); /* 5. SET POINTERS IN RECORDS AND DIR SLOTS */ /* Set the slots to point to infimum and supremum. */ slot = page_dir_get_nth_slot(page, 0); page_dir_slot_set_rec(slot, infimum_rec); slot = page_dir_get_nth_slot(page, 1); page_dir_slot_set_rec(slot, supremum_rec); /* Set the next pointers in infimum and supremum */ rec_set_next_offs(infimum_rec, comp, (ulint)(supremum_rec - page)); rec_set_next_offs(supremum_rec, comp, 0); return(page); } /***************************************************************** Differs from page_copy_rec_list_end, because this function does not touch the lock table and max trx id on page. */ void page_copy_rec_list_end_no_locks( /*============================*/ page_t* new_page, /* in: index page to copy to */ page_t* page, /* in: index page */ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { page_cur_t cur1; page_cur_t cur2; rec_t* sup; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; page_cur_position(rec, &cur1); if (page_cur_is_before_first(&cur1)) { page_cur_move_to_next(&cur1); } ut_a((ibool)!!page_is_comp(new_page) == dict_table_is_comp(index->table)); ut_a(page_is_comp(new_page) == page_is_comp(page)); ut_a(mach_read_from_2(new_page + UNIV_PAGE_SIZE - 10) == (ulint) (page_is_comp(new_page) ? PAGE_NEW_INFIMUM : PAGE_OLD_INFIMUM)); page_cur_set_before_first(new_page, &cur2); /* Copy records from the original page to the new page */ sup = page_get_supremum_rec(page); for (;;) { rec_t* cur1_rec = page_cur_get_rec(&cur1); if (cur1_rec == sup) { break; } offsets = rec_get_offsets(cur1_rec, index, offsets, ULINT_UNDEFINED, &heap); if (UNIV_UNLIKELY(!page_cur_rec_insert(&cur2, cur1_rec, index, offsets, mtr))) { /* Track an assertion failure reported on the mailing list on June 18th, 2003 */ buf_page_print(new_page); buf_page_print(page); ut_print_timestamp(stderr); fprintf(stderr, "InnoDB: rec offset %lu, cur1 offset %lu," " cur2 offset %lu\n", (ulong)(rec - page), (ulong)(page_cur_get_rec(&cur1) - page), (ulong)(page_cur_get_rec(&cur2) - new_page)); ut_error; } page_cur_move_to_next(&cur1); page_cur_move_to_next(&cur2); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***************************************************************** Copies records from page to new_page, from a given record onward, including that record. Infimum and supremum records are not copied. The records are copied to the start of the record list on new_page. */ void page_copy_rec_list_end( /*===================*/ page_t* new_page, /* in: index page to copy to */ page_t* page, /* in: index page */ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { if (page_dir_get_n_heap(new_page) == 2) { page_copy_rec_list_end_to_created_page(new_page, page, rec, index, mtr); } else { page_copy_rec_list_end_no_locks(new_page, page, rec, index, mtr); } /* Update the lock table, MAX_TRX_ID, and possible hash index */ lock_move_rec_list_end(new_page, page, rec); page_update_max_trx_id(new_page, page_get_max_trx_id(page)); btr_search_move_or_delete_hash_entries(new_page, page, index); } /***************************************************************** Copies records from page to new_page, up to the given record, NOT including that record. Infimum and supremum records are not copied. The records are copied to the end of the record list on new_page. */ void page_copy_rec_list_start( /*=====================*/ page_t* new_page, /* in: index page to copy to */ page_t* page, /* in: index page */ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { page_cur_t cur1; page_cur_t cur2; rec_t* old_end; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; page_cur_set_before_first(page, &cur1); if (rec == page_cur_get_rec(&cur1)) { return; } page_cur_move_to_next(&cur1); page_cur_set_after_last(new_page, &cur2); page_cur_move_to_prev(&cur2); old_end = page_cur_get_rec(&cur2); /* Copy records from the original page to the new page */ while (page_cur_get_rec(&cur1) != rec) { rec_t* ins_rec; rec_t* cur1_rec = page_cur_get_rec(&cur1); offsets = rec_get_offsets(cur1_rec, index, offsets, ULINT_UNDEFINED, &heap); ins_rec = page_cur_rec_insert(&cur2, cur1_rec, index, offsets, mtr); ut_a(ins_rec); page_cur_move_to_next(&cur1); page_cur_move_to_next(&cur2); } /* Update the lock table, MAX_TRX_ID, and possible hash index */ lock_move_rec_list_start(new_page, page, rec, old_end); page_update_max_trx_id(new_page, page_get_max_trx_id(page)); btr_search_move_or_delete_hash_entries(new_page, page, index); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /************************************************************** Writes a log record of a record list end or start deletion. */ UNIV_INLINE void page_delete_rec_list_write_log( /*===========================*/ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ byte type, /* in: operation type: MLOG_LIST_END_DELETE, ... */ mtr_t* mtr) /* in: mtr */ { byte* log_ptr; ut_ad(type == MLOG_LIST_END_DELETE || type == MLOG_LIST_START_DELETE || type == MLOG_COMP_LIST_END_DELETE || type == MLOG_COMP_LIST_START_DELETE); log_ptr = mlog_open_and_write_index(mtr, rec, index, type, 2); if (log_ptr) { /* Write the parameter as a 2-byte ulint */ mach_write_to_2(log_ptr, page_offset(rec)); mlog_close(mtr, log_ptr + 2); } } /************************************************************** Parses a log record of a record list end or start deletion. */ byte* page_parse_delete_rec_list( /*=======================*/ /* out: end of log record or NULL */ byte type, /* in: MLOG_LIST_END_DELETE, MLOG_LIST_START_DELETE, MLOG_COMP_LIST_END_DELETE or MLOG_COMP_LIST_START_DELETE */ byte* ptr, /* in: buffer */ byte* end_ptr,/* in: buffer end */ dict_index_t* index, /* in: record descriptor */ page_t* page, /* in: page or NULL */ mtr_t* mtr) /* in: mtr or NULL */ { ulint offset; ut_ad(type == MLOG_LIST_END_DELETE || type == MLOG_LIST_START_DELETE || type == MLOG_COMP_LIST_END_DELETE || type == MLOG_COMP_LIST_START_DELETE); /* Read the record offset as a 2-byte ulint */ if (end_ptr < ptr + 2) { return(NULL); } offset = mach_read_from_2(ptr); ptr += 2; if (!page) { return(ptr); } ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); if (type == MLOG_LIST_END_DELETE || type == MLOG_COMP_LIST_END_DELETE) { page_delete_rec_list_end(page, page + offset, index, ULINT_UNDEFINED, ULINT_UNDEFINED, mtr); } else { page_delete_rec_list_start(page, page + offset, index, mtr); } return(ptr); } /***************************************************************** Deletes records from a page from a given record onward, including that record. The infimum and supremum records are not deleted. */ void page_delete_rec_list_end( /*=====================*/ page_t* page, /* in: index page */ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ ulint n_recs, /* in: number of records to delete, or ULINT_UNDEFINED if not known */ ulint size, /* in: the sum of the sizes of the records in the end of the chain to delete, or ULINT_UNDEFINED if not known */ mtr_t* mtr) /* in: mtr */ { page_dir_slot_t* slot; ulint slot_index; rec_t* last_rec; rec_t* prev_rec; rec_t* free; rec_t* rec2; ulint count; ulint n_owned; rec_t* sup; ulint comp; /* Reset the last insert info in the page header and increment the modify clock for the frame */ ut_ad(size == ULINT_UNDEFINED || size < UNIV_PAGE_SIZE); page_header_set_ptr(page, PAGE_LAST_INSERT, NULL); /* The page gets invalid for optimistic searches: increment the frame modify clock */ buf_frame_modify_clock_inc(page); sup = page_get_supremum_rec(page); comp = page_is_comp(page); if (page_rec_is_infimum_low(rec - page)) { rec = page_rec_get_next(rec); } page_delete_rec_list_write_log(rec, index, comp ? MLOG_COMP_LIST_END_DELETE : MLOG_LIST_END_DELETE, mtr); if (rec == sup) { return; } prev_rec = page_rec_get_prev(rec); last_rec = page_rec_get_prev(sup); if ((size == ULINT_UNDEFINED) || (n_recs == ULINT_UNDEFINED)) { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; /* Calculate the sum of sizes and the number of records */ size = 0; n_recs = 0; rec2 = rec; while (rec2 != sup) { ulint s; offsets = rec_get_offsets(rec2, index, offsets, ULINT_UNDEFINED, &heap); s = rec_offs_size(offsets); ut_ad(rec2 - page + s - rec_offs_extra_size(offsets) < UNIV_PAGE_SIZE); ut_ad(size + s < UNIV_PAGE_SIZE); size += s; n_recs++; rec2 = page_rec_get_next(rec2); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } ut_ad(size < UNIV_PAGE_SIZE); /* Update the page directory; there is no need to balance the number of the records owned by the supremum record, as it is allowed to be less than PAGE_DIR_SLOT_MIN_N_OWNED */ rec2 = rec; count = 0; while (rec_get_n_owned(rec2, comp) == 0) { count++; rec2 = page_rec_get_next(rec2); } ut_ad(rec_get_n_owned(rec2, comp) - count > 0); n_owned = rec_get_n_owned(rec2, comp) - count; slot_index = page_dir_find_owner_slot(rec2); slot = page_dir_get_nth_slot(page, slot_index); page_dir_slot_set_rec(slot, sup); page_dir_slot_set_n_owned(slot, n_owned); page_dir_set_n_slots(page, slot_index + 1); /* Remove the record chain segment from the record chain */ page_rec_set_next(prev_rec, page_get_supremum_rec(page)); /* Catenate the deleted chain segment to the page free list */ free = page_header_get_ptr(page, PAGE_FREE); page_rec_set_next(last_rec, free); page_header_set_ptr(page, PAGE_FREE, rec); page_header_set_field(page, PAGE_GARBAGE, size + page_header_get_field(page, PAGE_GARBAGE)); page_header_set_field(page, PAGE_N_RECS, (ulint)(page_get_n_recs(page) - n_recs)); } /***************************************************************** Deletes records from page, up to the given record, NOT including that record. Infimum and supremum records are not deleted. */ void page_delete_rec_list_start( /*=======================*/ page_t* page, /* in: index page */ rec_t* rec, /* in: record on page */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { page_cur_t cur1; ulint log_mode; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; mem_heap_t* heap = NULL; byte type; *offsets_ = (sizeof offsets_) / sizeof *offsets_; ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); if (page_is_comp(page)) { type = MLOG_COMP_LIST_START_DELETE; } else { type = MLOG_LIST_START_DELETE; } page_delete_rec_list_write_log(rec, index, type, mtr); page_cur_set_before_first(page, &cur1); if (rec == page_cur_get_rec(&cur1)) { return; } page_cur_move_to_next(&cur1); /* Individual deletes are not logged */ log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE); while (page_cur_get_rec(&cur1) != rec) { offsets = rec_get_offsets(page_cur_get_rec(&cur1), index, offsets, ULINT_UNDEFINED, &heap); page_cur_delete_rec(&cur1, index, offsets, mtr); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } /* Restore log mode */ mtr_set_log_mode(mtr, log_mode); } /***************************************************************** Moves record list end to another page. Moved records include split_rec. */ void page_move_rec_list_end( /*===================*/ page_t* new_page, /* in: index page where to move */ page_t* page, /* in: index page */ rec_t* split_rec, /* in: first record to move */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { ulint old_data_size; ulint new_data_size; ulint old_n_recs; ulint new_n_recs; old_data_size = page_get_data_size(new_page); old_n_recs = page_get_n_recs(new_page); page_copy_rec_list_end(new_page, page, split_rec, index, mtr); new_data_size = page_get_data_size(new_page); new_n_recs = page_get_n_recs(new_page); ut_ad(new_data_size >= old_data_size); page_delete_rec_list_end(page, split_rec, index, new_n_recs - old_n_recs, new_data_size - old_data_size, mtr); } /***************************************************************** Moves record list start to another page. Moved records do not include split_rec. */ void page_move_rec_list_start( /*=====================*/ page_t* new_page, /* in: index page where to move */ page_t* page, /* in: index page */ rec_t* split_rec, /* in: first record not to move */ dict_index_t* index, /* in: record descriptor */ mtr_t* mtr) /* in: mtr */ { page_copy_rec_list_start(new_page, page, split_rec, index, mtr); page_delete_rec_list_start(page, split_rec, index, mtr); } /*************************************************************************** This is a low-level operation which is used in a database index creation to update the page number of a created B-tree to a data dictionary record. */ void page_rec_write_index_page_no( /*=========================*/ rec_t* rec, /* in: record to update */ ulint i, /* in: index of the field to update */ ulint page_no,/* in: value to write */ mtr_t* mtr) /* in: mtr */ { byte* data; ulint len; data = rec_get_nth_field_old(rec, i, &len); ut_ad(len == 4); mlog_write_ulint(data, page_no, MLOG_4BYTES, mtr); } /****************************************************************** Used to delete n slots from the directory. This function updates also n_owned fields in the records, so that the first slot after the deleted ones inherits the records of the deleted slots. */ UNIV_INLINE void page_dir_delete_slots( /*==================*/ page_t* page, /* in: the index page */ ulint start, /* in: first slot to be deleted */ ulint n) /* in: number of slots to delete (currently only n == 1 allowed) */ { page_dir_slot_t* slot; ulint i; ulint sum_owned = 0; ulint n_slots; rec_t* rec; ut_ad(n == 1); ut_ad(start > 0); ut_ad(start + n < page_dir_get_n_slots(page)); n_slots = page_dir_get_n_slots(page); /* 1. Reset the n_owned fields of the slots to be deleted */ for (i = start; i < start + n; i++) { slot = page_dir_get_nth_slot(page, i); sum_owned += page_dir_slot_get_n_owned(slot); page_dir_slot_set_n_owned(slot, 0); } /* 2. Update the n_owned value of the first non-deleted slot */ slot = page_dir_get_nth_slot(page, start + n); page_dir_slot_set_n_owned(slot, sum_owned + page_dir_slot_get_n_owned(slot)); /* 3. Destroy start and other slots by copying slots */ for (i = start + n; i < n_slots; i++) { slot = page_dir_get_nth_slot(page, i); rec = page_dir_slot_get_rec(slot); slot = page_dir_get_nth_slot(page, i - n); page_dir_slot_set_rec(slot, rec); } /* 4. Update the page header */ page_header_set_field(page, PAGE_N_DIR_SLOTS, n_slots - n); } /****************************************************************** Used to add n slots to the directory. Does not set the record pointers in the added slots or update n_owned values: this is the responsibility of the caller. */ UNIV_INLINE void page_dir_add_slots( /*===============*/ page_t* page, /* in: the index page */ ulint start, /* in: the slot above which the new slots are added */ ulint n) /* in: number of slots to add (currently only n == 1 allowed) */ { page_dir_slot_t* slot; ulint n_slots; ulint i; rec_t* rec; ut_ad(n == 1); n_slots = page_dir_get_n_slots(page); ut_ad(start < n_slots - 1); /* Update the page header */ page_dir_set_n_slots(page, n_slots + n); /* Move slots up */ for (i = n_slots - 1; i > start; i--) { slot = page_dir_get_nth_slot(page, i); rec = page_dir_slot_get_rec(slot); slot = page_dir_get_nth_slot(page, i + n); page_dir_slot_set_rec(slot, rec); } } /******************************************************************** Splits a directory slot which owns too many records. */ void page_dir_split_slot( /*================*/ page_t* page, /* in: the index page in question */ ulint slot_no) /* in: the directory slot */ { rec_t* rec; page_dir_slot_t* new_slot; page_dir_slot_t* prev_slot; page_dir_slot_t* slot; ulint i; ulint n_owned; ut_ad(page); ut_ad(slot_no > 0); slot = page_dir_get_nth_slot(page, slot_no); n_owned = page_dir_slot_get_n_owned(slot); ut_ad(n_owned == PAGE_DIR_SLOT_MAX_N_OWNED + 1); /* 1. We loop to find a record approximately in the middle of the records owned by the slot. */ prev_slot = page_dir_get_nth_slot(page, slot_no - 1); rec = page_dir_slot_get_rec(prev_slot); for (i = 0; i < n_owned / 2; i++) { rec = page_rec_get_next(rec); } ut_ad(n_owned / 2 >= PAGE_DIR_SLOT_MIN_N_OWNED); /* 2. We add one directory slot immediately below the slot to be split. */ page_dir_add_slots(page, slot_no - 1, 1); /* The added slot is now number slot_no, and the old slot is now number slot_no + 1 */ new_slot = page_dir_get_nth_slot(page, slot_no); slot = page_dir_get_nth_slot(page, slot_no + 1); /* 3. We store the appropriate values to the new slot. */ page_dir_slot_set_rec(new_slot, rec); page_dir_slot_set_n_owned(new_slot, n_owned / 2); /* 4. Finally, we update the number of records field of the original slot */ page_dir_slot_set_n_owned(slot, n_owned - (n_owned / 2)); } /***************************************************************** Tries to balance the given directory slot with too few records with the upper neighbor, so that there are at least the minimum number of records owned by the slot; this may result in the merging of two slots. */ void page_dir_balance_slot( /*==================*/ page_t* page, /* in: index page */ ulint slot_no) /* in: the directory slot */ { page_dir_slot_t* slot; page_dir_slot_t* up_slot; ulint n_owned; ulint up_n_owned; rec_t* old_rec; rec_t* new_rec; ut_ad(page); ut_ad(slot_no > 0); slot = page_dir_get_nth_slot(page, slot_no); /* The last directory slot cannot be balanced with the upper neighbor, as there is none. */ if (slot_no == page_dir_get_n_slots(page) - 1) { return; } up_slot = page_dir_get_nth_slot(page, slot_no + 1); n_owned = page_dir_slot_get_n_owned(slot); up_n_owned = page_dir_slot_get_n_owned(up_slot); ut_ad(n_owned == PAGE_DIR_SLOT_MIN_N_OWNED - 1); /* If the upper slot has the minimum value of n_owned, we will merge the two slots, therefore we assert: */ ut_ad(2 * PAGE_DIR_SLOT_MIN_N_OWNED - 1 <= PAGE_DIR_SLOT_MAX_N_OWNED); if (up_n_owned > PAGE_DIR_SLOT_MIN_N_OWNED) { /* In this case we can just transfer one record owned by the upper slot to the property of the lower slot */ old_rec = page_dir_slot_get_rec(slot); new_rec = page_rec_get_next(old_rec); rec_set_n_owned(old_rec, page_is_comp(page), 0); rec_set_n_owned(new_rec, page_is_comp(page), n_owned + 1); page_dir_slot_set_rec(slot, new_rec); page_dir_slot_set_n_owned(up_slot, up_n_owned -1); } else { /* In this case we may merge the two slots */ page_dir_delete_slots(page, slot_no, 1); } } /**************************************************************** Returns the middle record of the record list. If there are an even number of records in the list, returns the first record of the upper half-list. */ rec_t* page_get_middle_rec( /*================*/ /* out: middle record */ page_t* page) /* in: page */ { page_dir_slot_t* slot; ulint middle; ulint i; ulint n_owned; ulint count; rec_t* rec; /* This many records we must leave behind */ middle = (page_get_n_recs(page) + 2) / 2; count = 0; for (i = 0;; i++) { slot = page_dir_get_nth_slot(page, i); n_owned = page_dir_slot_get_n_owned(slot); if (count + n_owned > middle) { break; } else { count += n_owned; } } ut_ad(i > 0); slot = page_dir_get_nth_slot(page, i - 1); rec = page_dir_slot_get_rec(slot); rec = page_rec_get_next(rec); /* There are now count records behind rec */ for (i = 0; i < middle - count; i++) { rec = page_rec_get_next(rec); } return(rec); } /******************************************************************* Returns the number of records before the given record in chain. The number includes infimum and supremum records. */ ulint page_rec_get_n_recs_before( /*=======================*/ /* out: number of records */ rec_t* rec) /* in: the physical record */ { page_dir_slot_t* slot; rec_t* slot_rec; page_t* page; ulint i; ulint comp; lint n = 0; ut_ad(page_rec_check(rec)); page = buf_frame_align(rec); comp = page_is_comp(page); while (rec_get_n_owned(rec, comp) == 0) { rec = page_rec_get_next(rec); n--; } for (i = 0; ; i++) { slot = page_dir_get_nth_slot(page, i); slot_rec = page_dir_slot_get_rec(slot); n += rec_get_n_owned(slot_rec, comp); if (rec == slot_rec) { break; } } n--; ut_ad(n >= 0); return((ulint) n); } /**************************************************************** Prints record contents including the data relevant only in the index page context. */ void page_rec_print( /*===========*/ rec_t* rec, /* in: physical record */ const ulint* offsets)/* in: record descriptor */ { ulint comp = page_is_comp(buf_frame_align(rec)); ut_a(!comp == !rec_offs_comp(offsets)); rec_print_new(stderr, rec, offsets); fprintf(stderr, " n_owned: %lu; heap_no: %lu; next rec: %lu\n", (ulong) rec_get_n_owned(rec, comp), (ulong) rec_get_heap_no(rec, comp), (ulong) rec_get_next_offs(rec, comp)); page_rec_check(rec); rec_validate(rec, offsets); } /******************************************************************* This is used to print the contents of the directory for debugging purposes. */ void page_dir_print( /*===========*/ page_t* page, /* in: index page */ ulint pr_n) /* in: print n first and n last entries */ { ulint n; ulint i; page_dir_slot_t* slot; n = page_dir_get_n_slots(page); fprintf(stderr, "--------------------------------\n" "PAGE DIRECTORY\n" "Page address %p\n" "Directory stack top at offs: %lu; number of slots: %lu\n", page, (ulong)(page_dir_get_nth_slot(page, n - 1) - page), (ulong) n); for (i = 0; i < n; i++) { slot = page_dir_get_nth_slot(page, i); if ((i == pr_n) && (i < n - pr_n)) { fputs(" ... \n", stderr); } if ((i < pr_n) || (i >= n - pr_n)) { fprintf(stderr, "Contents of slot: %lu: n_owned: %lu," " rec offs: %lu\n", (ulong) i, (ulong) page_dir_slot_get_n_owned(slot), (ulong)(page_dir_slot_get_rec(slot) - page)); } } fprintf(stderr, "Total of %lu records\n" "--------------------------------\n", (ulong) (2 + page_get_n_recs(page))); } /******************************************************************* This is used to print the contents of the page record list for debugging purposes. */ void page_print_list( /*============*/ page_t* page, /* in: index page */ dict_index_t* index, /* in: dictionary index of the page */ ulint pr_n) /* in: print n first and n last entries */ { page_cur_t cur; ulint count; ulint n_recs; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; *offsets_ = (sizeof offsets_) / sizeof *offsets_; ut_a((ibool)!!page_is_comp(page) == dict_table_is_comp(index->table)); fprintf(stderr, "--------------------------------\n" "PAGE RECORD LIST\n" "Page address %p\n", page); n_recs = page_get_n_recs(page); page_cur_set_before_first(page, &cur); count = 0; for (;;) { offsets = rec_get_offsets(cur.rec, index, offsets, ULINT_UNDEFINED, &heap); page_rec_print(cur.rec, offsets); if (count == pr_n) { break; } if (page_cur_is_after_last(&cur)) { break; } page_cur_move_to_next(&cur); count++; } if (n_recs > 2 * pr_n) { fputs(" ... \n", stderr); } while (!page_cur_is_after_last(&cur)) { page_cur_move_to_next(&cur); if (count + pr_n >= n_recs) { offsets = rec_get_offsets(cur.rec, index, offsets, ULINT_UNDEFINED, &heap); page_rec_print(cur.rec, offsets); } count++; } fprintf(stderr, "Total of %lu records \n" "--------------------------------\n", (ulong) (count + 1)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /******************************************************************* Prints the info in a page header. */ void page_header_print( /*==============*/ page_t* page) { fprintf(stderr, "--------------------------------\n" "PAGE HEADER INFO\n" "Page address %p, n records %lu (%s)\n" "n dir slots %lu, heap top %lu\n" "Page n heap %lu, free %lu, garbage %lu\n" "Page last insert %lu, direction %lu, n direction %lu\n", page, (ulong) page_header_get_field(page, PAGE_N_RECS), page_is_comp(page) ? "compact format" : "original format", (ulong) page_header_get_field(page, PAGE_N_DIR_SLOTS), (ulong) page_header_get_field(page, PAGE_HEAP_TOP), (ulong) page_dir_get_n_heap(page), (ulong) page_header_get_field(page, PAGE_FREE), (ulong) page_header_get_field(page, PAGE_GARBAGE), (ulong) page_header_get_field(page, PAGE_LAST_INSERT), (ulong) page_header_get_field(page, PAGE_DIRECTION), (ulong) page_header_get_field(page, PAGE_N_DIRECTION)); } /******************************************************************* This is used to print the contents of the page for debugging purposes. */ void page_print( /*=======*/ page_t* page, /* in: index page */ dict_index_t* index, /* in: dictionary index of the page */ ulint dn, /* in: print dn first and last entries in directory */ ulint rn) /* in: print rn first and last records in directory */ { page_header_print(page); page_dir_print(page, dn); page_print_list(page, index, rn); } /******************************************************************* The following is used to validate a record on a page. This function differs from rec_validate as it can also check the n_owned field and the heap_no field. */ ibool page_rec_validate( /*==============*/ /* out: TRUE if ok */ rec_t* rec, /* in: physical record */ const ulint* offsets)/* in: array returned by rec_get_offsets() */ { ulint n_owned; ulint heap_no; page_t* page; ulint comp; page = buf_frame_align(rec); comp = page_is_comp(page); ut_a(!comp == !rec_offs_comp(offsets)); page_rec_check(rec); rec_validate(rec, offsets); n_owned = rec_get_n_owned(rec, comp); heap_no = rec_get_heap_no(rec, comp); if (!(n_owned <= PAGE_DIR_SLOT_MAX_N_OWNED)) { fprintf(stderr, "InnoDB: Dir slot of rec %lu, n owned too big %lu\n", (ulong)(rec - page), (ulong) n_owned); return(FALSE); } if (!(heap_no < page_dir_get_n_heap(page))) { fprintf(stderr, "InnoDB: Heap no of rec %lu too big %lu %lu\n", (ulong)(rec - page), (ulong) heap_no, (ulong) page_dir_get_n_heap(page)); return(FALSE); } return(TRUE); } /******************************************************************* Checks that the first directory slot points to the infimum record and the last to the supremum. This function is intended to track if the bug fixed in 4.0.14 has caused corruption to users' databases. */ void page_check_dir( /*===========*/ page_t* page) /* in: index page */ { ulint n_slots; n_slots = page_dir_get_n_slots(page); if (page_dir_slot_get_rec(page_dir_get_nth_slot(page, 0)) != page_get_infimum_rec(page)) { fprintf(stderr, "InnoDB: Page directory corruption:" " infimum not pointed to\n"); buf_page_print(page); } if (page_dir_slot_get_rec(page_dir_get_nth_slot(page, n_slots - 1)) != page_get_supremum_rec(page)) { fprintf(stderr, "InnoDB: Page directory corruption:" " supremum not pointed to\n"); buf_page_print(page); } } /******************************************************************* This function checks the consistency of an index page when we do not know the index. This is also resilient so that this should never crash even if the page is total garbage. */ ibool page_simple_validate( /*=================*/ /* out: TRUE if ok */ page_t* page) /* in: index page */ { page_cur_t cur; page_dir_slot_t* slot; ulint slot_no; ulint n_slots; rec_t* rec; byte* rec_heap_top; ulint count; ulint own_count; ibool ret = FALSE; ulint comp = page_is_comp(page); /* Check first that the record heap and the directory do not overlap. */ n_slots = page_dir_get_n_slots(page); if (n_slots > UNIV_PAGE_SIZE / 4) { fprintf(stderr, "InnoDB: Nonsensical number %lu of page dir slots\n", (ulong) n_slots); goto func_exit; } rec_heap_top = page_header_get_ptr(page, PAGE_HEAP_TOP); if (rec_heap_top > page_dir_get_nth_slot(page, n_slots - 1)) { fprintf(stderr, "InnoDB: Record heap and dir overlap on a page," " heap top %lu, dir %lu\n", (ulong) (page_header_get_ptr(page, PAGE_HEAP_TOP) - page), (ulong) (page_dir_get_nth_slot(page, n_slots - 1) - page)); goto func_exit; } /* Validate the record list in a loop checking also that it is consistent with the page record directory. */ count = 0; own_count = 1; slot_no = 0; slot = page_dir_get_nth_slot(page, slot_no); page_cur_set_before_first(page, &cur); for (;;) { rec = (&cur)->rec; if (rec > rec_heap_top) { fprintf(stderr, "InnoDB: Record %lu is above" " rec heap top %lu\n", (ulong)(rec - page), (ulong)(rec_heap_top - page)); goto func_exit; } if (rec_get_n_owned(rec, comp) != 0) { /* This is a record pointed to by a dir slot */ if (rec_get_n_owned(rec, comp) != own_count) { fprintf(stderr, "InnoDB: Wrong owned count %lu, %lu," " rec %lu\n", (ulong) rec_get_n_owned(rec, comp), (ulong) own_count, (ulong)(rec - page)); goto func_exit; } if (page_dir_slot_get_rec(slot) != rec) { fprintf(stderr, "InnoDB: Dir slot does not point" " to right rec %lu\n", (ulong)(rec - page)); goto func_exit; } own_count = 0; if (!page_cur_is_after_last(&cur)) { slot_no++; slot = page_dir_get_nth_slot(page, slot_no); } } if (page_cur_is_after_last(&cur)) { break; } if (rec_get_next_offs(rec, comp) < FIL_PAGE_DATA || rec_get_next_offs(rec, comp) >= UNIV_PAGE_SIZE) { fprintf(stderr, "InnoDB: Next record offset" " nonsensical %lu for rec %lu\n", (ulong) rec_get_next_offs(rec, comp), (ulong)(rec - page)); goto func_exit; } count++; if (count > UNIV_PAGE_SIZE) { fprintf(stderr, "InnoDB: Page record list appears" " to be circular %lu\n", (ulong) count); goto func_exit; } page_cur_move_to_next(&cur); own_count++; } if (rec_get_n_owned(rec, comp) == 0) { fprintf(stderr, "InnoDB: n owned is zero in a supremum rec\n"); goto func_exit; } if (slot_no != n_slots - 1) { fprintf(stderr, "InnoDB: n slots wrong %lu, %lu\n", (ulong) slot_no, (ulong) (n_slots - 1)); goto func_exit; } if (page_header_get_field(page, PAGE_N_RECS) + 2 != count + 1) { fprintf(stderr, "InnoDB: n recs wrong %lu %lu\n", (ulong) page_header_get_field(page, PAGE_N_RECS) + 2, (ulong) (count + 1)); goto func_exit; } /* Check then the free list */ rec = page_header_get_ptr(page, PAGE_FREE); while (rec != NULL) { if (rec < page + FIL_PAGE_DATA || rec >= page + UNIV_PAGE_SIZE) { fprintf(stderr, "InnoDB: Free list record has" " a nonsensical offset %lu\n", (ulong) (rec - page)); goto func_exit; } if (rec > rec_heap_top) { fprintf(stderr, "InnoDB: Free list record %lu" " is above rec heap top %lu\n", (ulong) (rec - page), (ulong) (rec_heap_top - page)); goto func_exit; } count++; if (count > UNIV_PAGE_SIZE) { fprintf(stderr, "InnoDB: Page free list appears" " to be circular %lu\n", (ulong) count); goto func_exit; } rec = page_rec_get_next(rec); } if (page_dir_get_n_heap(page) != count + 1) { fprintf(stderr, "InnoDB: N heap is wrong %lu, %lu\n", (ulong) page_dir_get_n_heap(page), (ulong) (count + 1)); goto func_exit; } ret = TRUE; func_exit: return(ret); } /******************************************************************* This function checks the consistency of an index page. */ ibool page_validate( /*==========*/ /* out: TRUE if ok */ page_t* page, /* in: index page */ dict_index_t* index) /* in: data dictionary index containing the page record type definition */ { page_dir_slot_t* slot; mem_heap_t* heap; page_cur_t cur; byte* buf; ulint count; ulint own_count; ulint slot_no; ulint data_size; rec_t* rec; rec_t* old_rec = NULL; ulint offs; ulint n_slots; ibool ret = FALSE; ulint i; ulint comp = page_is_comp(page); ulint* offsets = NULL; ulint* old_offsets = NULL; if ((ibool)!!comp != dict_table_is_comp(index->table)) { fputs("InnoDB: 'compact format' flag mismatch\n", stderr); goto func_exit2; } if (!page_simple_validate(page)) { goto func_exit2; } heap = mem_heap_create(UNIV_PAGE_SIZE + 200); /* The following buffer is used to check that the records in the page record heap do not overlap */ buf = mem_heap_alloc(heap, UNIV_PAGE_SIZE); memset(buf, 0, UNIV_PAGE_SIZE); /* Check first that the record heap and the directory do not overlap. */ n_slots = page_dir_get_n_slots(page); if (!(page_header_get_ptr(page, PAGE_HEAP_TOP) <= page_dir_get_nth_slot(page, n_slots - 1))) { fputs("InnoDB: Record heap and dir overlap on a page ", stderr); dict_index_name_print(stderr, NULL, index); fprintf(stderr, ", %p, %p\n", page_header_get_ptr(page, PAGE_HEAP_TOP), page_dir_get_nth_slot(page, n_slots - 1)); goto func_exit; } /* Validate the record list in a loop checking also that it is consistent with the directory. */ count = 0; data_size = 0; own_count = 1; slot_no = 0; slot = page_dir_get_nth_slot(page, slot_no); page_cur_set_before_first(page, &cur); for (;;) { rec = cur.rec; offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (comp && page_rec_is_user_rec(rec) && rec_get_node_ptr_flag(rec) != (ibool) (btr_page_get_level_low(page) != 0)) { fputs("InnoDB: node_ptr flag mismatch\n", stderr); goto func_exit; } if (!page_rec_validate(rec, offsets)) { goto func_exit; } /* Check that the records are in the ascending order */ if ((count >= 2) && (!page_cur_is_after_last(&cur))) { if (!(1 == cmp_rec_rec(rec, old_rec, offsets, old_offsets, index))) { fprintf(stderr, "InnoDB: Records in wrong order" " on page %lu ", (ulong) buf_frame_get_page_no(page)); dict_index_name_print(stderr, NULL, index); fputs("\nInnoDB: previous record ", stderr); rec_print_new(stderr, old_rec, old_offsets); fputs("\nInnoDB: record ", stderr); rec_print_new(stderr, rec, offsets); putc('\n', stderr); goto func_exit; } } if (page_rec_is_user_rec(rec)) { data_size += rec_offs_size(offsets); } offs = rec_get_start(rec, offsets) - page; for (i = 0; i < rec_offs_size(offsets); i++) { if (!buf[offs + i] == 0) { /* No other record may overlap this */ fputs("InnoDB: Record overlaps another\n", stderr); goto func_exit; } buf[offs + i] = 1; } if (rec_get_n_owned(rec, comp) != 0) { /* This is a record pointed to by a dir slot */ if (rec_get_n_owned(rec, comp) != own_count) { fprintf(stderr, "InnoDB: Wrong owned count %lu, %lu\n", (ulong) rec_get_n_owned(rec, comp), (ulong) own_count); goto func_exit; } if (page_dir_slot_get_rec(slot) != rec) { fputs("InnoDB: Dir slot does not" " point to right rec\n", stderr); goto func_exit; } page_dir_slot_check(slot); own_count = 0; if (!page_cur_is_after_last(&cur)) { slot_no++; slot = page_dir_get_nth_slot(page, slot_no); } } if (page_cur_is_after_last(&cur)) { break; } if (rec_get_next_offs(rec, comp) < FIL_PAGE_DATA || rec_get_next_offs(rec, comp) >= UNIV_PAGE_SIZE) { fprintf(stderr, "InnoDB: Next record offset wrong %lu\n", (ulong) rec_get_next_offs(rec, comp)); goto func_exit; } count++; page_cur_move_to_next(&cur); own_count++; old_rec = rec; /* set old_offsets to offsets; recycle offsets */ { ulint* offs = old_offsets; old_offsets = offsets; offsets = offs; } } if (rec_get_n_owned(rec, comp) == 0) { fputs("InnoDB: n owned is zero\n", stderr); goto func_exit; } if (slot_no != n_slots - 1) { fprintf(stderr, "InnoDB: n slots wrong %lu %lu\n", (ulong) slot_no, (ulong) (n_slots - 1)); goto func_exit; } if (page_header_get_field(page, PAGE_N_RECS) + 2 != count + 1) { fprintf(stderr, "InnoDB: n recs wrong %lu %lu\n", (ulong) page_header_get_field(page, PAGE_N_RECS) + 2, (ulong) (count + 1)); goto func_exit; } if (data_size != page_get_data_size(page)) { fprintf(stderr, "InnoDB: Summed data size %lu, returned by func %lu\n", (ulong) data_size, (ulong) page_get_data_size(page)); goto func_exit; } /* Check then the free list */ rec = page_header_get_ptr(page, PAGE_FREE); while (rec != NULL) { offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (!page_rec_validate(rec, offsets)) { goto func_exit; } count++; offs = rec_get_start(rec, offsets) - page; for (i = 0; i < rec_offs_size(offsets); i++) { if (buf[offs + i] != 0) { fputs("InnoDB: Record overlaps another" " in free list\n", stderr); goto func_exit; } buf[offs + i] = 1; } rec = page_rec_get_next(rec); } if (page_dir_get_n_heap(page) != count + 1) { fprintf(stderr, "InnoDB: N heap is wrong %lu %lu\n", (ulong) page_dir_get_n_heap(page), (ulong) count + 1); goto func_exit; } ret = TRUE; func_exit: mem_heap_free(heap); if (ret == FALSE) { func_exit2: fprintf(stderr, "InnoDB: Apparent corruption in page %lu in ", (ulong) buf_frame_get_page_no(page)); dict_index_name_print(stderr, NULL, index); putc('\n', stderr); buf_page_print(page); } return(ret); } /******************************************************************* Looks in the page record list for a record with the given heap number. */ rec_t* page_find_rec_with_heap_no( /*=======================*/ /* out: record, NULL if not found */ page_t* page, /* in: index page */ ulint heap_no)/* in: heap number */ { page_cur_t cur; page_cur_set_before_first(page, &cur); for (;;) { if (rec_get_heap_no(cur.rec, page_is_comp(page)) == heap_no) { return(cur.rec); } if (page_cur_is_after_last(&cur)) { return(NULL); } page_cur_move_to_next(&cur); } }