/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=2:tabstop=2:smarttab: * * Copyright (C) 2008 Sun Microsystems * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** @file It is interface module to fixed precision decimals library. Most functions use 'uint32_t mask' as parameter, if during operation error which fit in this mask is detected then it will be processed automatically here. (errors are E_DEC_* constants, see include/decimal.h) Most function are just inline wrappers around library calls */ #ifndef my_decimal_h #define my_decimal_h #ifdef __cplusplus extern "C" { #endif #include #include #include #ifdef __cplusplus } #endif #define DECIMAL_LONGLONG_DIGITS 22 #define DECIMAL_LONG_DIGITS 10 #define DECIMAL_LONG3_DIGITS 8 /** maximum length of buffer in our big digits (uint32_t). */ #define DECIMAL_BUFF_LENGTH 9 /* the number of digits that my_decimal can possibly contain */ #define DECIMAL_MAX_POSSIBLE_PRECISION (DECIMAL_BUFF_LENGTH * 9) /** maximum guaranteed precision of number in decimal digits (number of our digits * number of decimal digits in one our big digit - number of decimal digits in one our big digit decreased by 1 (because we always put decimal point on the border of our big digits)) */ #define DECIMAL_MAX_PRECISION (DECIMAL_MAX_POSSIBLE_PRECISION - 8*2) #define DECIMAL_MAX_SCALE 30 #define DECIMAL_NOT_SPECIFIED 31 /** maximum length of string representation (number of maximum decimal digits + 1 position for sign + 1 position for decimal point) */ #define DECIMAL_MAX_STR_LENGTH (DECIMAL_MAX_POSSIBLE_PRECISION + 2) /** maximum size of packet length. */ #define DECIMAL_MAX_FIELD_SIZE DECIMAL_MAX_PRECISION inline uint32_t my_decimal_size(uint32_t precision, uint32_t scale) { /* Always allocate more space to allow library to put decimal point where it want */ return decimal_size(precision, scale) + 1; } inline int my_decimal_int_part(uint32_t precision, uint32_t decimals) { return precision - ((decimals == DECIMAL_NOT_SPECIFIED) ? 0 : decimals); } /** my_decimal class limits 'decimal_t' type to what we need in MySQL. It contains internally all necessary space needed by the instance so no extra memory is needed. One should call fix_buffer_pointer() function when he moves my_decimal objects in memory. */ class my_decimal :public decimal_t { decimal_digit_t buffer[DECIMAL_BUFF_LENGTH]; public: void init() { len= DECIMAL_BUFF_LENGTH; buf= buffer; #if !defined (HAVE_purify) /* Set buffer to 'random' value to find wrong buffer usage */ for (uint32_t i= 0; i < DECIMAL_BUFF_LENGTH; i++) buffer[i]= i; #endif } my_decimal() { init(); } void fix_buffer_pointer() { buf= buffer; } bool sign() const { return decimal_t::sign; } void sign(bool s) { decimal_t::sign= s; } uint32_t precision() const { return intg + frac; } }; int decimal_operation_results(int result); inline void max_my_decimal(my_decimal *to, int precision, int frac) { assert((precision <= DECIMAL_MAX_PRECISION)&& (frac <= DECIMAL_MAX_SCALE)); max_decimal(precision, frac, (decimal_t*) to); } inline void max_internal_decimal(my_decimal *to) { max_my_decimal(to, DECIMAL_MAX_PRECISION, 0); } inline int check_result(uint32_t mask, int result) { if (result & mask) decimal_operation_results(result); return result; } inline int check_result_and_overflow(uint32_t mask, int result, my_decimal *val) { if (check_result(mask, result) & E_DEC_OVERFLOW) { bool sign= val->sign(); val->fix_buffer_pointer(); max_internal_decimal(val); val->sign(sign); } return result; } inline uint32_t my_decimal_length_to_precision(uint32_t length, uint32_t scale, bool unsigned_flag) { return (uint32_t) (length - (scale>0 ? 1:0) - (unsigned_flag ? 0:1)); } inline uint32_t my_decimal_precision_to_length(uint32_t precision, uint8_t scale, bool unsigned_flag) { set_if_smaller(precision, DECIMAL_MAX_PRECISION); return (uint32_t)(precision + (scale>0 ? 1:0) + (unsigned_flag ? 0:1)); } inline int my_decimal_string_length(const my_decimal *d) { return decimal_string_size(d); } inline int my_decimal_max_length(const my_decimal *d) { /* -1 because we do not count \0 */ return decimal_string_size(d) - 1; } inline int my_decimal_get_binary_size(uint32_t precision, uint32_t scale) { return decimal_bin_size((int)precision, (int)scale); } inline void my_decimal2decimal(const my_decimal *from, my_decimal *to) { *to= *from; to->fix_buffer_pointer(); } int my_decimal2binary(uint32_t mask, const my_decimal *d, unsigned char *bin, int prec, int scale); inline int binary2my_decimal(uint32_t mask, const unsigned char *bin, my_decimal *d, int prec, int scale) { return check_result(mask, bin2decimal(bin, (decimal_t*) d, prec, scale)); } inline int my_decimal_set_zero(my_decimal *d) { decimal_make_zero(((decimal_t*) d)); return 0; } inline bool my_decimal_is_zero(const my_decimal *decimal_value) { return decimal_is_zero((decimal_t*) decimal_value); } inline int my_decimal_round(uint32_t mask, const my_decimal *from, int scale, bool truncate, my_decimal *to) { return check_result(mask, decimal_round((decimal_t*) from, to, scale, (truncate ? TRUNCATE : HALF_UP))); } inline int my_decimal_floor(uint32_t mask, const my_decimal *from, my_decimal *to) { return check_result(mask, decimal_round((decimal_t*) from, to, 0, FLOOR)); } inline int my_decimal_ceiling(uint32_t mask, const my_decimal *from, my_decimal *to) { return check_result(mask, decimal_round((decimal_t*) from, to, 0, CEILING)); } int my_decimal2string(uint32_t mask, const my_decimal *d, uint32_t fixed_prec, uint32_t fixed_dec, char filler, String *str); inline int my_decimal2int(uint32_t mask, const my_decimal *d, bool unsigned_flag, int64_t *l) { my_decimal rounded; /* decimal_round can return only E_DEC_TRUNCATED */ decimal_round((decimal_t*)d, &rounded, 0, HALF_UP); return check_result(mask, (unsigned_flag ? decimal2uint64_t(&rounded, (uint64_t *)l) : decimal2int64_t(&rounded, l))); } inline int my_decimal2double(uint32_t, const my_decimal *d, double *result) { /* No need to call check_result as this will always succeed */ return decimal2double((decimal_t*) d, result); } inline int str2my_decimal(uint32_t mask, char *str, my_decimal *d, char **end) { return check_result_and_overflow(mask, string2decimal(str,(decimal_t*)d,end), d); } int str2my_decimal(uint32_t mask, const char *from, uint32_t length, const CHARSET_INFO * charset, my_decimal *decimal_value); inline int string2my_decimal(uint32_t mask, const String *str, my_decimal *d) { return str2my_decimal(mask, str->ptr(), str->length(), str->charset(), d); } my_decimal *date2my_decimal(DRIZZLE_TIME *ltime, my_decimal *dec); inline int double2my_decimal(uint32_t mask, double val, my_decimal *d) { return check_result_and_overflow(mask, double2decimal(val, (decimal_t*)d), d); } inline int int2my_decimal(uint32_t mask, int64_t i, bool unsigned_flag, my_decimal *d) { return check_result(mask, (unsigned_flag ? uint64_t2decimal((uint64_t)i, d) : int64_t2decimal(i, d))); } inline void my_decimal_neg(decimal_t *arg) { if (decimal_is_zero(arg)) { arg->sign= 0; return; } decimal_neg(arg); } inline int my_decimal_add(uint32_t mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_add((decimal_t*)a,(decimal_t*)b,res), res); } inline int my_decimal_sub(uint32_t mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_sub((decimal_t*)a,(decimal_t*)b,res), res); } inline int my_decimal_mul(uint32_t mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_mul((decimal_t*)a,(decimal_t*)b,res), res); } inline int my_decimal_div(uint32_t mask, my_decimal *res, const my_decimal *a, const my_decimal *b, int div_scale_inc) { return check_result_and_overflow(mask, decimal_div((decimal_t*)a,(decimal_t*)b,res, div_scale_inc), res); } inline int my_decimal_mod(uint32_t mask, my_decimal *res, const my_decimal *a, const my_decimal *b) { return check_result_and_overflow(mask, decimal_mod((decimal_t*)a,(decimal_t*)b,res), res); } /** @return -1 if ab and 0 if a==b */ inline int my_decimal_cmp(const my_decimal *a, const my_decimal *b) { return decimal_cmp((decimal_t*) a, (decimal_t*) b); } inline int my_decimal_intg(const my_decimal *a) { return decimal_intg((decimal_t*) a); } void my_decimal_trim(uint32_t *precision, uint32_t *scale); #endif /*my_decimal_h*/