/* Copyright (C) 2000 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* ======================================================================= NOTE: this library implements SQL standard "exact numeric" type and is not at all generic, but rather intentinally crippled to follow the standard :) ======================================================================= Quoting the standard (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) 4.4.2 Characteristics of numbers, page 27: An exact numeric type has a precision P and a scale S. P is a positive integer that determines the number of significant digits in a particular radix R, where R is either 2 or 10. S is a non-negative integer. Every value of an exact numeric type of scale S is of the form n*10^{-S}, where n is an integer such that ­-R^P <= n <= R^P. [...] If an assignment of some number would result in a loss of its most significant digit, an exception condition is raised. If least significant digits are lost, implementation-defined rounding or truncating occurs, with no exception condition being raised. [...] Whenever an exact or approximate numeric value is assigned to an exact numeric value site, an approximation of its value that preserves leading significant digits after rounding or truncating is represented in the declared type of the target. The value is converted to have the precision and scale of the target. The choice of whether to truncate or round is implementation-defined. [...] All numeric values between the smallest and the largest value, inclusive, in a given exact numeric type have an approximation obtained by rounding or truncation for that type; it is implementation-defined which other numeric values have such approximations. 5.3 , page 143 ::= [ [ ] ] | 6.1 , page 165: 19) The of an shall not be greater than the of the . 20) For the s DECIMAL and NUMERIC: a) The maximum value of is implementation-defined. shall not be greater than this value. b) The maximum value of is implementation-defined. shall not be greater than this maximum value. 21) NUMERIC specifies the data type exact numeric, with the decimal precision and scale specified by the and . 22) DECIMAL specifies the data type exact numeric, with the decimal scale specified by the and the implementation-defined decimal precision equal to or greater than the value of the specified . 6.26 , page 241: 1) If the declared type of both operands of a dyadic arithmetic operator is exact numeric, then the declared type of the result is an implementation-defined exact numeric type, with precision and scale determined as follows: a) Let S1 and S2 be the scale of the first and second operands respectively. b) The precision of the result of addition and subtraction is implementation-defined, and the scale is the maximum of S1 and S2. c) The precision of the result of multiplication is implementation-defined, and the scale is S1 + S2. d) The precision and scale of the result of division are implementation-defined. */ #include #include #include #include #include /* Internally decimal numbers are stored base 10^9 (see DIG_BASE below) So one variable of type decimal_digit_t is limited: 0 < decimal_digit <= DIG_MAX < DIG_BASE in the struct st_decimal_t: intg is the number of *decimal* digits (NOT number of decimal_digit_t's !) before the point frac - number of decimal digits after the point buf is an array of decimal_digit_t's len is the length of buf (length of allocated space) in decimal_digit_t's, not in bytes */ typedef decimal_digit_t dec1; typedef int64_t dec2; #define DIG_PER_DEC1 9 #define DIG_MASK 100000000 #define DIG_BASE 1000000000 #define DIG_MAX (DIG_BASE-1) #define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE) #define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1) static const dec1 powers10[DIG_PER_DEC1+1]={ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; static const dec1 frac_max[DIG_PER_DEC1-1]={ 900000000, 990000000, 999000000, 999900000, 999990000, 999999000, 999999900, 999999990 }; #ifdef HAVE_purify #define sanity(d) assert((d)->len > 0) #else #define sanity(d) assert((d)->len >0 && ((d)->buf[0] | \ (d)->buf[(d)->len-1] | 1)) #endif #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ do \ { \ if (unlikely(intg1+frac1 > (len))) \ { \ if (unlikely(intg1 > (len))) \ { \ intg1=(len); \ frac1=0; \ error=E_DEC_OVERFLOW; \ } \ else \ { \ frac1=(len)-intg1; \ error=E_DEC_TRUNCATED; \ } \ } \ else \ error=E_DEC_OK; \ } while(0) #define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ do \ { \ dec1 a=(from1)+(from2)+(carry); \ assert((carry) <= 1); \ if (((carry)= a >= DIG_BASE)) /* no division here! */ \ a-=DIG_BASE; \ (to)=a; \ } while(0) #define ADD2(to, from1, from2, carry) \ do \ { \ dec2 a=((dec2)(from1))+(from2)+(carry); \ if (((carry)= a >= DIG_BASE)) \ a-=DIG_BASE; \ if (unlikely(a >= DIG_BASE)) \ { \ a-=DIG_BASE; \ carry++; \ } \ (to)=(dec1) a; \ } while(0) #define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ (to)=a; \ } while(0) #define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ do \ { \ dec1 a=(from1)-(from2)-(carry); \ if (((carry)= a < 0)) \ a+=DIG_BASE; \ if (unlikely(a < 0)) \ { \ a+=DIG_BASE; \ carry++; \ } \ (to)=a; \ } while(0) /* Get maximum value for given precision and scale SYNOPSIS max_decimal() precision/scale - see decimal_bin_size() below to - decimal where where the result will be stored to->buf and to->len must be set. */ void max_decimal(int precision, int frac, decimal_t *to) { int intpart; dec1 *buf= to->buf; assert(precision && precision >= frac); to->sign= 0; if ((intpart= to->intg= (precision - frac))) { const int firstdigits= intpart % DIG_PER_DEC1; if (firstdigits) *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */ for(intpart/= DIG_PER_DEC1; intpart; intpart--) *buf++= DIG_MAX; } if ((to->frac= frac)) { const int lastdigits= frac % DIG_PER_DEC1; for(frac/= DIG_PER_DEC1; frac; frac--) *buf++= DIG_MAX; if (lastdigits) *buf= frac_max[lastdigits - 1]; } } static dec1 *remove_leading_zeroes(decimal_t *from, int *intg_result) { int intg= from->intg, i; dec1 *buf0= from->buf; i= ((intg - 1) % DIG_PER_DEC1) + 1; while (intg > 0 && *buf0 == 0) { intg-= i; i= DIG_PER_DEC1; buf0++; } if (intg > 0) { for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; assert(intg > 0); } else intg=0; *intg_result= intg; return buf0; } /* Count actual length of fraction part (without ending zeroes) SYNOPSIS decimal_actual_fraction() from number for processing */ int decimal_actual_fraction(decimal_t *from) { int frac= from->frac, i; dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1; if (frac == 0) return 0; i= ((frac - 1) % DIG_PER_DEC1 + 1); while (frac > 0 && *buf0 == 0) { frac-= i; i= DIG_PER_DEC1; buf0--; } if (frac > 0) { for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); *buf0 % powers10[i++] == 0; frac--) {}; } return frac; } /* Convert decimal to its printable string representation SYNOPSIS decimal2string() from - value to convert to - points to buffer where string representation should be stored *to_len - in: size of to buffer out: length of the actually written string fixed_precision - 0 if representation can be variable length and fixed_decimals will not be checked in this case. Put number as with fixed point position with this number of digits (sign counted and decimal point is counted) fixed_decimals - number digits after point. filler - character to fill gaps in case of fixed_precision > 0 RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int decimal2string(decimal_t *from, char *to, int *to_len, int fixed_precision, int fixed_decimals, char filler) { int len, intg, frac= from->frac, i, intg_len, frac_len, fill; /* number digits before decimal point */ int fixed_intg= (fixed_precision ? (fixed_precision - fixed_decimals) : 0); int error=E_DEC_OK; char *s=to; dec1 *buf, *buf0=from->buf, tmp; assert(*to_len >= 2+from->sign); /* removing leading zeroes */ buf0= remove_leading_zeroes(from, &intg); if (unlikely(intg+frac==0)) { intg=1; tmp=0; buf0=&tmp; } if (!(intg_len= fixed_precision ? fixed_intg : intg)) intg_len= 1; frac_len= fixed_precision ? fixed_decimals : frac; len= from->sign + intg_len + test(frac) + frac_len; if (fixed_precision) { if (frac > fixed_decimals) { error= E_DEC_TRUNCATED; frac= fixed_decimals; } if (intg > fixed_intg) { error= E_DEC_OVERFLOW; intg= fixed_intg; } } else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ { int j= len-*to_len; error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; if (frac && j >= frac + 1) j--; if (j > frac) { intg-= j-frac; frac= 0; } else frac-=j; len= from->sign + intg_len + test(frac) + frac_len; } *to_len=len; s[len]=0; if (from->sign) *s++='-'; if (frac) { char *s1= s + intg_len; fill= frac_len - frac; buf=buf0+ROUND_UP(intg); *s1++='.'; for (; frac>0; frac-=DIG_PER_DEC1) { dec1 x=*buf++; for (i=min(frac, DIG_PER_DEC1); i; i--) { dec1 y=x/DIG_MASK; *s1++='0'+(uchar)y; x-=y*DIG_MASK; x*=10; } } for(; fill; fill--) *s1++=filler; } fill= intg_len - intg; if (intg == 0) fill--; /* symbol 0 before digital point */ for(; fill; fill--) *s++=filler; if (intg) { s+=intg; for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) { dec1 x=*--buf; for (i=min(intg, DIG_PER_DEC1); i; i--) { dec1 y=x/10; *--s='0'+(uchar)(x-y*10); x=y; } } } else *s= '0'; return error; } /* Return bounds of decimal digits in the number SYNOPSIS digits_bounds() from - decimal number for processing start_result - index (from 0 ) of first decimal digits will be written by this address end_result - index of position just after last decimal digit be written by this address */ static void digits_bounds(decimal_t *from, int *start_result, int *end_result) { int start, stop, i; dec1 *buf_beg= from->buf; dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac); dec1 *buf_end= end - 1; /* find non-zero digit from number begining */ while (buf_beg < end && *buf_beg == 0) buf_beg++; if (buf_beg >= end) { /* it is zero */ *start_result= *end_result= 0; return; } /* find non-zero decimal digit from number begining */ if (buf_beg == from->buf && from->intg) { start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1)); i--; } else { i= DIG_PER_DEC1 - 1; start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1); } if (buf_beg < end) for (; *buf_beg < powers10[i--]; start++) ; *start_result= start; /* index of first decimal digit (from 0) */ /* find non-zero digit at the end */ while (buf_end > buf_beg && *buf_end == 0) buf_end--; /* find non-zero decimal digit from the end */ if (buf_end == end - 1 && from->frac) { stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 + (i= ((from->frac - 1) % DIG_PER_DEC1 + 1)))); i= DIG_PER_DEC1 - i + 1; } else { stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1); i= 1; } for (; *buf_end % powers10[i++] == 0; stop--) {}; *end_result= stop; /* index of position after last decimal digit (from 0) */ } /* Left shift for alignment of data in buffer SYNOPSIS do_mini_left_shift() dec pointer to decimal number which have to be shifted shift number of decimal digits on which it should be shifted beg/end bounds of decimal digits (see digits_bounds()) NOTE Result fitting in the buffer should be garanted. 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) */ static void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) { dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1; dec1 *end= dec->buf + ROUND_UP(last) - 1; int c_shift= DIG_PER_DEC1 - shift; assert(from >= dec->buf); assert(end < dec->buf + dec->len); if (beg % DIG_PER_DEC1 < shift) *(from - 1)= (*from) / powers10[c_shift]; for(; from < end; from++) *from= ((*from % powers10[c_shift]) * powers10[shift] + (*(from + 1)) / powers10[c_shift]); *from= (*from % powers10[c_shift]) * powers10[shift]; } /* Right shift for alignment of data in buffer SYNOPSIS do_mini_left_shift() dec pointer to decimal number which have to be shifted shift number of decimal digits on which it should be shifted beg/end bounds of decimal digits (see digits_bounds()) NOTE Result fitting in the buffer should be garanted. 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) */ static void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) { dec1 *from= dec->buf + ROUND_UP(last) - 1; dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1; int c_shift= DIG_PER_DEC1 - shift; assert(from < dec->buf + dec->len); assert(end >= dec->buf); if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift) *(from + 1)= (*from % powers10[shift]) * powers10[c_shift]; for(; from > end; from--) *from= (*from / powers10[shift] + (*(from - 1) % powers10[shift]) * powers10[c_shift]); *from= *from / powers10[shift]; } /* Shift of decimal digits in given number (with rounding if it need) SYNOPSIS decimal_shift() dec number to be shifted shift number of decimal positions shift > 0 means shift to left shift shift < 0 meand right shift NOTE In fact it is multipling on 10^shift. RETURN E_DEC_OK OK E_DEC_OVERFLOW operation lead to overflow, number is untoched E_DEC_TRUNCATED number was rounded to fit into buffer */ static int decimal_shift(decimal_t *dec, int shift) { /* index of first non zero digit (all indexes from 0) */ int beg; /* index of position after last decimal digit */ int end; /* index of digit position just after point */ int point= ROUND_UP(dec->intg) * DIG_PER_DEC1; /* new point position */ int new_point= point + shift; /* number of digits in result */ int digits_int, digits_frac; /* length of result and new fraction in big digits*/ int new_len, new_frac_len; /* return code */ int err= E_DEC_OK; int new_front; if (shift == 0) return E_DEC_OK; digits_bounds(dec, &beg, &end); if (beg == end) { decimal_make_zero(dec); return E_DEC_OK; } digits_int= new_point - beg; set_if_bigger(digits_int, 0); digits_frac= end - new_point; set_if_bigger(digits_frac, 0); if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) > dec->len) { int lack= new_len - dec->len; int diff; if (new_frac_len < lack) return E_DEC_OVERFLOW; /* lack more then we have in fraction */ /* cat off fraction part to allow new number to fit in our buffer */ err= E_DEC_TRUNCATED; new_frac_len-= lack; diff= digits_frac - (new_frac_len * DIG_PER_DEC1); /* Make rounding method as parameter? */ decimal_round(dec, dec, end - point - diff, HALF_UP); end-= diff; digits_frac= new_frac_len * DIG_PER_DEC1; if (end <= beg) { /* we lost all digits (they will be shifted out of buffer), so we can just return 0 */ decimal_make_zero(dec); return E_DEC_TRUNCATED; } } if (shift % DIG_PER_DEC1) { int l_mini_shift, r_mini_shift, mini_shift; int do_left; /* Calculate left/right shift to align decimal digits inside our bug digits correctly */ if (shift > 0) { l_mini_shift= shift % DIG_PER_DEC1; r_mini_shift= DIG_PER_DEC1 - l_mini_shift; /* It is left shift so prefer left shift, but if we have not place from left, we have to have it from right, because we checked length of result */ do_left= l_mini_shift <= beg; assert(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); } else { r_mini_shift= (-shift) % DIG_PER_DEC1; l_mini_shift= DIG_PER_DEC1 - r_mini_shift; /* see comment above */ do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); assert(!do_left || l_mini_shift <= beg); } if (do_left) { do_mini_left_shift(dec, l_mini_shift, beg, end); mini_shift=- l_mini_shift; } else { do_mini_right_shift(dec, r_mini_shift, beg, end); mini_shift= r_mini_shift; } new_point+= mini_shift; /* If number is shifted and correctly aligned in buffer we can finish */ if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) { dec->intg= digits_int; dec->frac= digits_frac; return err; /* already shifted as it should be */ } beg+= mini_shift; end+= mini_shift; } /* if new 'decimal front' is in first digit, we do not need move digits */ if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 || new_front < 0) { /* need to move digits */ int d_shift; dec1 *to, *barier; if (new_front > 0) { /* move left */ d_shift= new_front / DIG_PER_DEC1; to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift); barier= dec->buf + (ROUND_UP(end) - 1 - d_shift); assert(to >= dec->buf); assert(barier + d_shift < dec->buf + dec->len); for(; to <= barier; to++) *to= *(to + d_shift); for(barier+= d_shift; to <= barier; to++) *to= 0; d_shift= -d_shift; } else { /* move right */ d_shift= (1 - new_front) / DIG_PER_DEC1; to= dec->buf + ROUND_UP(end) - 1 + d_shift; barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift; assert(to < dec->buf + dec->len); assert(barier - d_shift >= dec->buf); for(; to >= barier; to--) *to= *(to - d_shift); for(barier-= d_shift; to >= barier; to--) *to= 0; } d_shift*= DIG_PER_DEC1; beg+= d_shift; end+= d_shift; new_point+= d_shift; } /* If there are gaps then fill ren with 0. Only one of following 'for' loops will work becouse beg <= end */ beg= ROUND_UP(beg + 1) - 1; end= ROUND_UP(end) - 1; assert(new_point >= 0); /* We don't want negative new_point below */ if (new_point != 0) new_point= ROUND_UP(new_point) - 1; if (new_point > end) { do { dec->buf[new_point]=0; } while (--new_point > end); } else { for (; new_point < beg; new_point++) dec->buf[new_point]= 0; } dec->intg= digits_int; dec->frac= digits_frac; return err; } /* Convert string to decimal SYNOPSIS internal_str2decl() from - value to convert. Doesn't have to be \0 terminated! to - decimal where where the result will be stored to->buf and to->len must be set. end - Pointer to pointer to end of string. Will on return be set to the char after the last used character fixed - use to->intg, to->frac as limits for input number NOTE to->intg and to->frac can be modified even when fixed=1 (but only decreased, in this case) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM In case of E_DEC_FATAL_ERROR *to is set to decimal zero (to make error handling easier) */ int internal_str2dec(char *from, decimal_t *to, char **end, bool fixed) { char *s= from, *s1; char *end_of_string = *end; char *endp; int i, intg, frac, error, intg1, frac1; dec1 x,*buf; sanity(to); error= E_DEC_BAD_NUM; /* In case of bad number */ while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) s++; if (s == end_of_string) goto fatal_error; if ((to->sign= (*s == '-'))) s++; else if (*s == '+') s++; s1=s; while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) s++; intg= (int) (s-s1); if (s < end_of_string && *s=='.') { endp= s+1; while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp)) endp++; frac= (int) (endp - s - 1); } else { frac= 0; endp= s; } *end= endp; if (frac+intg == 0) goto fatal_error; error= 0; if (fixed) { if (frac > to->frac) { error=E_DEC_TRUNCATED; frac=to->frac; } if (intg > to->intg) { error=E_DEC_OVERFLOW; intg=to->intg; } intg1=ROUND_UP(intg); frac1=ROUND_UP(frac); if (intg1+frac1 > to->len) { error= E_DEC_OOM; goto fatal_error; } } else { intg1=ROUND_UP(intg); frac1=ROUND_UP(frac); FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); if (unlikely(error)) { frac=frac1*DIG_PER_DEC1; if (error == E_DEC_OVERFLOW) intg=intg1*DIG_PER_DEC1; } } /* Error is guranteed to be set here */ to->intg=intg; to->frac=frac; buf=to->buf+intg1; s1=s; for (x=0, i=0; intg; intg--) { x+= (*--s - '0')*powers10[i]; if (unlikely(++i == DIG_PER_DEC1)) { *--buf=x; x=0; i=0; } } if (i) *--buf=x; buf=to->buf+intg1; for (x=0, i=0; frac; frac--) { x= (*++s1 - '0') + x*10; if (unlikely(++i == DIG_PER_DEC1)) { *buf++=x; x=0; i=0; } } if (i) *buf=x*powers10[DIG_PER_DEC1-i]; /* Handle exponent */ if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E')) { int str_error; const int64_t exponent= my_strtoll10(endp+1, (char**) &end_of_string, &str_error); if (end_of_string != endp +1) /* If at least one digit */ { *end= (char*) end_of_string; if (str_error > 0) { error= E_DEC_BAD_NUM; goto fatal_error; } if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0)) { error= E_DEC_OVERFLOW; goto fatal_error; } if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW) { error= E_DEC_TRUNCATED; goto fatal_error; } if (error != E_DEC_OVERFLOW) error= decimal_shift(to, (int) exponent); } } return error; fatal_error: decimal_make_zero(to); return error; } /* Convert decimal to double SYNOPSIS decimal2double() from - value to convert to - result will be stored there RETURN VALUE E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED */ int decimal2double(decimal_t *from, double *to) { char strbuf[FLOATING_POINT_BUFFER], *end; int len= sizeof(strbuf); int rc, error; rc = decimal2string(from, strbuf, &len, 0, 0, 0); end= strbuf + len; *to= my_strtod(strbuf, &end, &error); return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK); } /* Convert double to decimal SYNOPSIS double2decimal() from - value to convert to - result will be stored there RETURN VALUE E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED */ int double2decimal(double from, decimal_t *to) { char buff[FLOATING_POINT_BUFFER], *end; int res; end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL); res= string2decimal(buff, to, &end); return(res); } static int ull2dec(uint64_t from, decimal_t *to) { int intg1, error=E_DEC_OK; uint64_t x=from; dec1 *buf; sanity(to); for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {}; if (unlikely(intg1 > to->len)) { intg1=to->len; error=E_DEC_OVERFLOW; } to->frac=0; to->intg=intg1*DIG_PER_DEC1; for (buf=to->buf+intg1; intg1; intg1--) { uint64_t y=x/DIG_BASE; *--buf=(dec1)(x-y*DIG_BASE); x=y; } return error; } int uint64_t2decimal(uint64_t from, decimal_t *to) { to->sign=0; return ull2dec(from, to); } int int64_t2decimal(int64_t from, decimal_t *to) { if ((to->sign= from < 0)) return ull2dec(-from, to); return ull2dec(from, to); } int decimal2uint64_t(decimal_t *from, uint64_t *to) { dec1 *buf=from->buf; uint64_t x=0; int intg, frac; if (from->sign) { *to= 0ULL; return E_DEC_OVERFLOW; } for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) { uint64_t y=x; x=x*DIG_BASE + *buf++; if (unlikely(y > ((uint64_t) UINT64_MAX/DIG_BASE) || x < y)) { *to=UINT64_MAX; return E_DEC_OVERFLOW; } } *to=x; for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) if (*buf++) return E_DEC_TRUNCATED; return E_DEC_OK; } int decimal2int64_t(decimal_t *from, int64_t *to) { dec1 *buf=from->buf; int64_t x=0; int intg, frac; for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) { int64_t y=x; /* Attention: trick! we're calculating -|from| instead of |from| here because |INT64_MIN| > INT64_MAX so we can convert -9223372036854775808 correctly */ x=x*DIG_BASE - *buf++; if (unlikely(y < (INT64_MIN/DIG_BASE) || x > y)) { /* the decimal is bigger than any possible integer return border integer depending on the sign */ *to= from->sign ? INT64_MIN : INT64_MAX; return E_DEC_OVERFLOW; } } /* boundary case: 9223372036854775808 */ if (unlikely(from->sign==0 && x == INT64_MIN)) { *to= INT64_MAX; return E_DEC_OVERFLOW; } *to=from->sign ? x : -x; for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) if (*buf++) return E_DEC_TRUNCATED; return E_DEC_OK; } /* Convert decimal to its binary fixed-length representation two representations of the same length can be compared with memcmp with the correct -1/0/+1 result SYNOPSIS decimal2bin() from - value to convert to - points to buffer where string representation should be stored precision/scale - see decimal_bin_size() below NOTE the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW DESCRIPTION for storage decimal numbers are converted to the "binary" format. This format has the following properties: 1. length of the binary representation depends on the {precision, scale} as provided by the caller and NOT on the intg/frac of the decimal to convert. 2. binary representations of the same {precision, scale} can be compared with memcmp - with the same result as decimal_cmp() of the original decimals (not taking into account possible precision loss during conversion). This binary format is as follows: 1. First the number is converted to have a requested precision and scale. 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes as is 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced number of bytes (enough bytes to store this number of digits - see dig2bytes) 4. same for frac - full decimal_digit_t's are stored as is, the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes. 5. If the number is negative - every byte is inversed. 5. The very first bit of the resulting byte array is inverted (because memcmp compares unsigned bytes, see property 2 above) Example: 1234567890.1234 internally is represented as 3 decimal_digit_t's 1 234567890 123400000 (assuming we want a binary representation with precision=14, scale=4) in hex it's 00-00-00-01 0D-FB-38-D2 07-5A-EF-40 now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes into binary representation as is: ........... 0D-FB-38-D2 ............ First decimal_digit_t has only one decimal digit. We can store one digit in one byte, no need to waste four: 01 0D-FB-38-D2 ............ now, last digit. It's 123400000. We can store 1234 in two bytes: 01 0D-FB-38-D2 04-D2 So, we've packed 12 bytes number in 7 bytes. And now we invert the highest bit to get the final result: 81 0D FB 38 D2 04 D2 And for -1234567890.1234 it would be 7E F2 04 37 2D FB 2D */ int decimal2bin(decimal_t *from, uchar *to, int precision, int frac) { dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; int error=E_DEC_OK, intg=precision-frac, isize1, intg1, intg1x, from_intg, intg0=intg/DIG_PER_DEC1, frac0=frac/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=frac-frac0*DIG_PER_DEC1, frac1=from->frac/DIG_PER_DEC1, frac1x=from->frac-frac1*DIG_PER_DEC1, isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; const int orig_isize0= isize0; const int orig_fsize0= fsize0; uchar *orig_to= to; buf1= remove_leading_zeroes(from, &from_intg); if (unlikely(from_intg+fsize1==0)) { mask=0; /* just in case */ intg=1; buf1=&mask; } intg1=from_intg/DIG_PER_DEC1; intg1x=from_intg-intg1*DIG_PER_DEC1; isize1=intg1*sizeof(dec1)+dig2bytes[intg1x]; if (intg < from_intg) { buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); intg1=intg0; intg1x=intg0x; error=E_DEC_OVERFLOW; } else if (isize0 > isize1) { while (isize0-- > isize1) *to++= (char)mask; } if (fsize0 < fsize1) { frac1=frac0; frac1x=frac0x; error=E_DEC_TRUNCATED; } else if (fsize0 > fsize1 && frac1x) { if (frac0 == frac1) { frac1x=frac0x; fsize0= fsize1; } else { frac1++; frac1x=0; } } /* intg1x part */ if (intg1x) { int i=dig2bytes[intg1x]; dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; switch (i) { case 1: mi_int1store(to, x); break; case 2: mi_int2store(to, x); break; case 3: mi_int3store(to, x); break; case 4: mi_int4store(to, x); break; default: assert(0); } to+=i; } /* intg1+frac1 part */ for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) { dec1 x=*buf1++ ^ mask; assert(sizeof(dec1) == 4); mi_int4store(to, x); } /* frac1x part */ if (frac1x) { dec1 x; int i=dig2bytes[frac1x], lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x); while (frac1x < lim && dig2bytes[frac1x] == i) frac1x++; x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; switch (i) { case 1: mi_int1store(to, x); break; case 2: mi_int2store(to, x); break; case 3: mi_int3store(to, x); break; case 4: mi_int4store(to, x); break; default: assert(0); } to+=i; } if (fsize0 > fsize1) { uchar *to_end= orig_to + orig_fsize0 + orig_isize0; while (fsize0-- > fsize1 && to < to_end) *to++= (uchar)mask; } orig_to[0]^= 0x80; /* Check that we have written the whole decimal and nothing more */ assert(to == orig_to + orig_fsize0 + orig_isize0); return error; } /* Restores decimal from its binary fixed-length representation SYNOPSIS bin2decimal() from - value to convert to - result precision/scale - see decimal_bin_size() below NOTE see decimal2bin() the buffer is assumed to be of the size decimal_bin_size(precision, scale) RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW */ int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale) { int error=E_DEC_OK, intg=precision-scale, intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1; const uchar *stop; uchar *d_copy; int bin_size= decimal_bin_size(precision, scale); sanity(to); d_copy= (uchar*) alloca(bin_size); memcpy(d_copy, from, bin_size); d_copy[0]^= 0x80; from= d_copy; FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); if (unlikely(error)) { if (intg1 < intg0+(intg0x>0)) { from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); frac0=frac0x=intg0x=0; intg0=intg1; } else { frac0x=0; frac0=frac1; } } to->sign=(mask != 0); to->intg=intg0*DIG_PER_DEC1+intg0x; to->frac=frac0*DIG_PER_DEC1+frac0x; if (intg0x) { int i=dig2bytes[intg0x]; dec1 x= 0; switch (i) { case 1: x=mi_sint1korr(from); break; case 2: x=mi_sint2korr(from); break; case 3: x=mi_sint3korr(from); break; case 4: x=mi_sint4korr(from); break; default: assert(0); } from+=i; *buf=x ^ mask; if (((uint64_t)*buf) >= (uint64_t) powers10[intg0x+1]) goto err; if (buf > to->buf || *buf != 0) buf++; else to->intg-=intg0x; } for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { assert(sizeof(dec1) == 4); *buf=mi_sint4korr(from) ^ mask; if (((uint32_t)*buf) > DIG_MAX) goto err; if (buf > to->buf || *buf != 0) buf++; else to->intg-=DIG_PER_DEC1; } assert(to->intg >=0); for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) { assert(sizeof(dec1) == 4); *buf=mi_sint4korr(from) ^ mask; if (((uint32_t)*buf) > DIG_MAX) goto err; buf++; } if (frac0x) { int i=dig2bytes[frac0x]; dec1 x= 0; switch (i) { case 1: x=mi_sint1korr(from); break; case 2: x=mi_sint2korr(from); break; case 3: x=mi_sint3korr(from); break; case 4: x=mi_sint4korr(from); break; default: assert(0); } *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; if (((uint32_t)*buf) > DIG_MAX) goto err; buf++; } return error; err: decimal_make_zero(((decimal_t*) to)); return(E_DEC_BAD_NUM); } /* Returns the size of array to hold a decimal with given precision and scale RETURN VALUE size in dec1 (multiply by sizeof(dec1) to get the size if bytes) */ int decimal_size(int precision, int scale) { assert(scale >= 0 && precision > 0 && scale <= precision); return ROUND_UP(precision-scale)+ROUND_UP(scale); } /* Returns the size of array to hold a binary representation of a decimal RETURN VALUE size in bytes */ int decimal_bin_size(int precision, int scale) { int intg=precision-scale, intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; assert(scale >= 0 && precision > 0 && scale <= precision); return intg0*sizeof(dec1)+dig2bytes[intg0x]+ frac0*sizeof(dec1)+dig2bytes[frac0x]; } /* Rounds the decimal to "scale" digits SYNOPSIS decimal_round() from - decimal to round, to - result buffer. from==to is allowed scale - to what position to round. can be negative! mode - round to nearest even or truncate NOTES scale can be negative ! one TRUNCATED error (line XXX below) isn't treated very logical :( RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED */ int decimal_round(decimal_t *from, decimal_t *to, int scale, decimal_round_mode mode) { int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1, frac1=ROUND_UP(from->frac), round_digit= 0, intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len, intg1=ROUND_UP(from->intg + (((intg0 + frac0)>0) && (from->buf[0] == DIG_MAX))); dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; int first_dig; sanity(to); switch (mode) { case HALF_UP: case HALF_EVEN: round_digit=5; break; case CEILING: round_digit= from->sign ? 10 : 0; break; case FLOOR: round_digit= from->sign ? 0 : 10; break; case TRUNCATE: round_digit=10; break; default: assert(0); } if (unlikely(frac0+intg0 > len)) { frac0=len-intg0; scale=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; } if (scale+from->intg < 0) { decimal_make_zero(to); return E_DEC_OK; } if (to != from || intg1>intg0) { dec1 *p0= buf0+intg0+max(frac1, frac0); dec1 *p1= buf1+intg1+max(frac1, frac0); while (buf0 < p0) *(--p1) = *(--p0); if (unlikely(intg1 > intg0)) to->buf[0]= 0; intg0= intg1; buf0=to->buf; buf1=to->buf; to->sign=from->sign; to->intg=min(intg0, len)*DIG_PER_DEC1; } if (frac0 > frac1) { buf1+=intg0+frac1; while (frac0-- > frac1) *buf1++=0; goto done; } if (scale >= from->frac) goto done; /* nothing to do */ buf0+=intg0+frac0-1; buf1+=intg0+frac0-1; if (scale == frac0*DIG_PER_DEC1) { int do_inc= false; assert(frac0+intg0 >= 0); switch (round_digit) { case 0: { dec1 *p0= buf0 + (frac1-frac0); for (; p0 > buf0; p0--) { if (*p0) { do_inc= true; break; } } break; } case 5: { x= buf0[1]/DIG_MASK; do_inc= (x>5) || ((x == 5) && (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1))); break; } default: break; } if (do_inc) { if (frac0+intg0>0) (*buf1)++; else *(++buf1)=DIG_BASE; } else if (frac0+intg0==0) { decimal_make_zero(to); return E_DEC_OK; } } else { /* TODO - fix this code as it won't work for CEILING mode */ int pos=frac0*DIG_PER_DEC1-scale-1; assert(frac0+intg0 > 0); x=*buf1 / powers10[pos]; y=x % 10; if (y > round_digit || (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1))) x+=10; *buf1=powers10[pos]*(x-y); } /* In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside the buffer are as follows. Before <1, 5e8> After <2, 5e8> Hence we need to set the 2nd field to 0. The same holds if we round 1.5e-9 to 2e-9. */ if (frac0 < frac1) { dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0); dec1 *end= to->buf + len; while (buf < end) *buf++=0; } if (*buf1 >= DIG_BASE) { carry=1; *buf1-=DIG_BASE; while (carry && --buf1 >= to->buf) ADD(*buf1, *buf1, 0, carry); if (unlikely(carry)) { /* shifting the number to create space for new digit */ if (frac0+intg0 >= len) { frac0--; scale=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; /* XXX */ } for (buf1=to->buf+intg0+max(frac0,0); buf1 > to->buf; buf1--) { buf1[0]=buf1[-1]; } *buf1=1; to->intg++; } } else { for (;;) { if (likely(*buf1)) break; if (buf1-- == to->buf) { /* making 'zero' with the proper scale */ dec1 *p0= to->buf + frac0 + 1; to->intg=1; to->frac= max(scale, 0); to->sign= 0; for (buf1= to->buf; buf1 1000 case when we need to increase intg */ first_dig= to->intg % DIG_PER_DEC1; if (first_dig && (*buf1 >= powers10[first_dig])) to->intg++; if (scale<0) scale=0; done: to->frac=scale; return error; } /* Returns the size of the result of the operation SYNOPSIS decimal_result_size() from1 - operand of the unary operation or first operand of the binary operation from2 - second operand of the binary operation op - operation. one char '+', '-', '*', '/' are allowed others may be added later param - extra param to the operation. unused for '+', '-', '*' scale increment for '/' NOTE returned valued may be larger than the actual buffer requred in the operation, as decimal_result_size, by design, operates on precision/scale values only and not on the actual decimal number RETURN VALUE size of to->buf array in dec1 elements. to get size in bytes multiply by sizeof(dec1) */ int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param) { switch (op) { case '-': return ROUND_UP(max(from1->intg, from2->intg)) + ROUND_UP(max(from1->frac, from2->frac)); case '+': return ROUND_UP(max(from1->intg, from2->intg)+1) + ROUND_UP(max(from1->frac, from2->frac)); case '*': return ROUND_UP(from1->intg+from2->intg)+ ROUND_UP(from1->frac)+ROUND_UP(from2->frac); case '/': return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); default: assert(0); } return -1; /* shut up the warning */ } static int do_add(decimal_t *from1, decimal_t *from2, decimal_t *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), frac0=max(frac1, frac2), intg0=max(intg1, intg2), error; dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; sanity(to); /* is there a need for extra word because of carry ? */ x=intg1 > intg2 ? from1->buf[0] : intg2 > intg1 ? from2->buf[0] : from1->buf[0] + from2->buf[0] ; if (unlikely(x > DIG_MAX-1)) /* yes, there is */ { intg0++; to->buf[0]=0; /* safety */ } FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); if (unlikely(error == E_DEC_OVERFLOW)) { max_decimal(to->len * DIG_PER_DEC1, 0, to); return error; } buf0=to->buf+intg0+frac0; to->sign=from1->sign; to->frac=max(from1->frac, from2->frac); to->intg=intg0*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(frac1, frac0); set_if_smaller(frac2, frac0); set_if_smaller(intg1, intg0); set_if_smaller(intg2, intg0); } /* part 1 - max(frac) ... min (frac) */ if (frac1 > frac2) { buf1=from1->buf+intg1+frac1; stop=from1->buf+intg1+frac2; buf2=from2->buf+intg2+frac2; stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); } else { buf1=from2->buf+intg2+frac2; stop=from2->buf+intg2+frac1; buf2=from1->buf+intg1+frac1; stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); } while (buf1 > stop) *--buf0=*--buf1; /* part 2 - min(frac) ... min(intg) */ carry=0; while (buf1 > stop2) { ADD(*--buf0, *--buf1, *--buf2, carry); } /* part 3 - min(intg) ... max(intg) */ buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : ((stop=from2->buf)+intg2-intg1) ; while (buf1 > stop) { ADD(*--buf0, *--buf1, 0, carry); } if (unlikely(carry)) *--buf0=1; assert(buf0 == to->buf || buf0 == to->buf+1); return error; } /* to=from1-from2. if to==0, return -1/0/+1 - the result of the comparison */ static int do_sub(decimal_t *from1, decimal_t *from2, decimal_t *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); int frac0=max(frac1, frac2), error; dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0; /* let carry:=1 if from2 > from1 */ start1=buf1=from1->buf; stop1=buf1+intg1; start2=buf2=from2->buf; stop2=buf2+intg2; if (unlikely(*buf1 == 0)) { while (buf1 < stop1 && *buf1 == 0) buf1++; start1=buf1; intg1= (int) (stop1-buf1); } if (unlikely(*buf2 == 0)) { while (buf2 < stop2 && *buf2 == 0) buf2++; start2=buf2; intg2= (int) (stop2-buf2); } if (intg2 > intg1) carry=1; else if (intg2 == intg1) { dec1 *end1= stop1 + (frac1 - 1); dec1 *end2= stop2 + (frac2 - 1); while (unlikely((buf1 <= end1) && (*end1 == 0))) end1--; while (unlikely((buf2 <= end2) && (*end2 == 0))) end2--; frac1= (int) (end1 - stop1) + 1; frac2= (int) (end2 - stop2) + 1; while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2) buf1++, buf2++; if (buf1 <= end1) { if (buf2 <= end2) carry= *buf2 > *buf1; else carry= 0; } else { if (buf2 <= end2) carry=1; else /* short-circuit everything: from1 == from2 */ { if (to == 0) /* decimal_cmp() */ return 0; decimal_make_zero(to); return E_DEC_OK; } } } if (to == 0) /* decimal_cmp() */ return carry == from1->sign ? 1 : -1; sanity(to); to->sign=from1->sign; /* ensure that always from1 > from2 (and intg1 >= intg2) */ if (carry) { swap_variables(decimal_t *,from1,from1); swap_variables(dec1 *,start1, start2); swap_variables(int,intg1,intg2); swap_variables(int,frac1,frac2); to->sign= 1 - to->sign; } FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); buf0=to->buf+intg1+frac0; to->frac=max(from1->frac, from2->frac); to->intg=intg1*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(frac1, frac0); set_if_smaller(frac2, frac0); set_if_smaller(intg2, intg1); } carry=0; /* part 1 - max(frac) ... min (frac) */ if (frac1 > frac2) { buf1=start1+intg1+frac1; stop1=start1+intg1+frac2; buf2=start2+intg2+frac2; while (frac0-- > frac1) *--buf0=0; while (buf1 > stop1) *--buf0=*--buf1; } else { buf1=start1+intg1+frac1; buf2=start2+intg2+frac2; stop2=start2+intg2+frac1; while (frac0-- > frac2) *--buf0=0; while (buf2 > stop2) { SUB(*--buf0, 0, *--buf2, carry); } } /* part 2 - min(frac) ... intg2 */ while (buf2 > start2) { SUB(*--buf0, *--buf1, *--buf2, carry); } /* part 3 - intg2 ... intg1 */ while (carry && buf1 > start1) { SUB(*--buf0, *--buf1, 0, carry); } while (buf1 > start1) *--buf0=*--buf1; while (buf0 > to->buf) *--buf0=0; return error; } int decimal_intg(decimal_t *from) { int res; dec1 *tmp_res; tmp_res= remove_leading_zeroes(from, &res); return res; } int decimal_add(decimal_t *from1, decimal_t *from2, decimal_t *to) { if (likely(from1->sign == from2->sign)) return do_add(from1, from2, to); return do_sub(from1, from2, to); } int decimal_sub(decimal_t *from1, decimal_t *from2, decimal_t *to) { if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, to); return do_add(from1, from2, to); } int decimal_cmp(decimal_t *from1, decimal_t *from2) { if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, 0); return from1->sign > from2->sign ? -1 : 1; } int decimal_is_zero(decimal_t *from) { dec1 *buf1=from->buf, *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac); while (buf1 < end) if (*buf1++) return 0; return 1; } /* multiply two decimals SYNOPSIS decimal_mul() from1, from2 - factors to - product RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; NOTES in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, and 63-digit number will take only 7 dec1 words (basically a 7-digit "base 999999999" number). Thus there's no need in fast multiplication algorithms, 7-digit numbers can be multiplied with a naive O(n*n) method. XXX if this library is to be used with huge numbers of thousands of digits, fast multiplication must be implemented. */ int decimal_mul(decimal_t *from1, decimal_t *from2, decimal_t *to) { int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), intg0=ROUND_UP(from1->intg+from2->intg), frac0=frac1+frac2, error, i, j, d_to_move; dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, *start2, *stop2, *stop1, *start0, carry; sanity(to); i=intg0; j=frac0; FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); to->sign=from1->sign != from2->sign; to->frac=from1->frac+from2->frac; to->intg=intg0*DIG_PER_DEC1; if (unlikely(error)) { set_if_smaller(to->frac, frac0*DIG_PER_DEC1); set_if_smaller(to->intg, intg0*DIG_PER_DEC1); if (unlikely(i > intg0)) { i-=intg0; j=i >> 1; intg1-= j; intg2-=i-j; frac1=frac2=0; /* frac0 is already 0 here */ } else { j-=frac0; i=j >> 1; frac1-= i; frac2-=j-i; } } start0=to->buf+intg0+frac0-1; start2=buf2+frac2-1; stop1=buf1-intg1; stop2=buf2-intg2; memset(to->buf, 0, (intg0+frac0)*sizeof(dec1)); for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) { carry=0; for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) { dec1 hi, lo; dec2 p= ((dec2)*buf1) * ((dec2)*buf2); hi=(dec1)(p/DIG_BASE); lo=(dec1)(p-((dec2)hi)*DIG_BASE); ADD2(*buf0, *buf0, lo, carry); carry+=hi; } if (carry) { if (buf0 < to->buf) return E_DEC_OVERFLOW; ADD2(*buf0, *buf0, 0, carry); } for (buf0--; carry; buf0--) { if (buf0 < to->buf) return E_DEC_OVERFLOW; ADD(*buf0, *buf0, 0, carry); } } /* Now we have to check for -0.000 case */ if (to->sign) { dec1 *buf= to->buf; dec1 *end= to->buf + intg0 + frac0; assert(buf != end); for (;;) { if (*buf) break; if (++buf == end) { /* We got decimal zero */ decimal_make_zero(to); break; } } } buf1= to->buf; d_to_move= intg0 + ROUND_UP(to->frac); while (!*buf1 && (to->intg > DIG_PER_DEC1)) { buf1++; to->intg-= DIG_PER_DEC1; d_to_move--; } if (to->buf < buf1) { dec1 *cur_d= to->buf; for (; d_to_move--; cur_d++, buf1++) *cur_d= *buf1; } return error; } /* naive division algorithm (Knuth's Algorithm D in 4.3.1) - it's ok for short numbers also we're using alloca() to allocate a temporary buffer XXX if this library is to be used with huge numbers of thousands of digits, fast division must be implemented and alloca should be changed to malloc (or at least fallback to malloc if alloca() fails) but then, decimal_mul() should be rewritten too :( */ static int do_div_mod(decimal_t *from1, decimal_t *from2, decimal_t *to, decimal_t *mod, int scale_incr) { int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, error= 0, i, intg0, frac0, len1, len2, dintg, div_mod=(!mod); dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry; dec2 norm_factor, x, guess, y; if (mod) to=mod; sanity(to); /* removing all the leading zeroes */ i= ((prec2 - 1) % DIG_PER_DEC1) + 1; while (prec2 > 0 && *buf2 == 0) { prec2-= i; i= DIG_PER_DEC1; buf2++; } if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ return E_DEC_DIV_ZERO; for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; assert(prec2 > 0); i=((prec1-1) % DIG_PER_DEC1)+1; while (prec1 > 0 && *buf1 == 0) { prec1-=i; i=DIG_PER_DEC1; buf1++; } if (prec1 <= 0) { /* short-circuit everything: from1 == 0 */ decimal_make_zero(to); return E_DEC_OK; } for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; assert(prec1 > 0); /* let's fix scale_incr, taking into account frac1,frac2 increase */ if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) scale_incr=0; dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); if (dintg < 0) { dintg/=DIG_PER_DEC1; intg0=0; } else intg0=ROUND_UP(dintg); if (mod) { /* we're calculating N1 % N2. The result will have frac=max(frac1, frac2), as for subtraction intg=intg2 */ to->sign=from1->sign; to->frac=max(from1->frac, from2->frac); frac0=0; } else { /* we're calculating N1/N2. N1 is in the buf1, has prec1 digits N2 is in the buf2, has prec2 digits. Scales are frac1 and frac2 accordingly. Thus, the result will have frac = ROUND_UP(frac1+frac2+scale_incr) and intg = (prec1-frac1) - (prec2-frac2) + 1 prec = intg+frac */ frac0=ROUND_UP(frac1+frac2+scale_incr); FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); to->sign=from1->sign != from2->sign; to->intg=intg0*DIG_PER_DEC1; to->frac=frac0*DIG_PER_DEC1; } buf0=to->buf; stop0=buf0+intg0+frac0; if (likely(div_mod)) while (dintg++ < 0) *buf0++=0; len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1; set_if_bigger(len1, 3); if (!(tmp1=(dec1 *)alloca(len1*sizeof(dec1)))) return E_DEC_OOM; memcpy(tmp1, buf1, i*sizeof(dec1)); memset(tmp1+i, 0, (len1-i)*sizeof(dec1)); start1=tmp1; stop1=start1+len1; start2=buf2; stop2=buf2+ROUND_UP(prec2)-1; /* removing end zeroes */ while (*stop2 == 0 && stop2 >= start2) stop2--; len2= (int) (stop2++ - start2); /* calculating norm2 (normalized *start2) - we need *start2 to be large (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to normalize input numbers (as we don't make a copy of the divisor). Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 on the fly for the purpose of guesstimation only. It's also faster, as we're saving on normalization of buf2 */ norm_factor=DIG_BASE/(*start2+1); norm2=(dec1)(norm_factor*start2[0]); if (likely(len2>0)) norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); if (*start1 < *start2) dcarry=*start1++; else dcarry=0; /* main loop */ for (; buf0 < stop0; buf0++) { /* short-circuit, if possible */ if (unlikely(dcarry == 0 && *start1 < *start2)) guess=0; else { /* D3: make a guess */ x=start1[0]+((dec2)dcarry)*DIG_BASE; y=start1[1]; guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; if (unlikely(guess >= DIG_BASE)) guess=DIG_BASE-1; if (likely(len2>0)) { /* hmm, this is a suspicious trick - I removed normalization here */ if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) guess--; if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) guess--; assert(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); } /* D4: multiply and subtract */ buf2=stop2; buf1=start1+len2; assert(buf1 < stop1); for (carry=0; buf2 > start2; buf1--) { dec1 hi, lo; x=guess * (*--buf2); hi=(dec1)(x/DIG_BASE); lo=(dec1)(x-((dec2)hi)*DIG_BASE); SUB2(*buf1, *buf1, lo, carry); carry+=hi; } carry= dcarry < carry; /* D5: check the remainder */ if (unlikely(carry)) { /* D6: correct the guess */ guess--; buf2=stop2; buf1=start1+len2; for (carry=0; buf2 > start2; buf1--) { ADD(*buf1, *buf1, *--buf2, carry); } } } if (likely(div_mod)) *buf0=(dec1)guess; dcarry= *start1; start1++; } if (mod) { /* now the result is in tmp1, it has intg=prec1-frac1 frac=max(frac1, frac2)=to->frac */ if (dcarry) *--start1=dcarry; buf0=to->buf; intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1)); frac0=ROUND_UP(to->frac); error=E_DEC_OK; if (unlikely(frac0==0 && intg0==0)) { decimal_make_zero(to); goto done; } if (intg0<=0) { if (unlikely(-intg0 >= to->len)) { decimal_make_zero(to); error=E_DEC_TRUNCATED; goto done; } stop1=start1+frac0; frac0+=intg0; to->intg=0; while (intg0++ < 0) *buf0++=0; } else { if (unlikely(intg0 > to->len)) { frac0=0; intg0=to->len; error=E_DEC_OVERFLOW; goto done; } assert(intg0 <= ROUND_UP(from2->intg)); stop1=start1+frac0+intg0; to->intg=min(intg0*DIG_PER_DEC1, from2->intg); } if (unlikely(intg0+frac0 > to->len)) { stop1-=frac0+intg0-to->len; frac0=to->len-intg0; to->frac=frac0*DIG_PER_DEC1; error=E_DEC_TRUNCATED; } assert(buf0 + (stop1 - start1) <= to->buf + to->len); while (start1 < stop1) *buf0++=*start1++; } done: return error; } /* division of two decimals SYNOPSIS decimal_div() from1 - dividend from2 - divisor to - quotient RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; NOTES see do_div_mod() */ int decimal_div(decimal_t *from1, decimal_t *from2, decimal_t *to, int scale_incr) { return do_div_mod(from1, from2, to, 0, scale_incr); } /* modulus SYNOPSIS decimal_mod() from1 - dividend from2 - divisor to - modulus RETURN VALUE E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; NOTES see do_div_mod() DESCRIPTION the modulus R in R = M mod N is defined as 0 <= |R| < |M| sign R == sign M R = M - k*N, where k is integer thus, there's no requirement for M or N to be integers */ int decimal_mod(decimal_t *from1, decimal_t *from2, decimal_t *to) { return do_div_mod(from1, from2, 0, to, 0); } #ifdef MAIN int full= 0; decimal_t a, b, c; char buf1[100], buf2[100], buf3[100]; void dump_decimal(decimal_t *d) { int i; printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign); for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) printf("%09d, ", d->buf[i]); printf("%09d} */ ", d->buf[i]); } void check_result_code(int actual, int want) { if (actual != want) { printf("\n^^^^^^^^^^^^^ must return %d\n", want); exit(1); } } void print_decimal(decimal_t *d, const char *orig, int actual, int want) { char s[100]; int slen=sizeof(s); if (full) dump_decimal(d); decimal2string(d, s, &slen, 0, 0, 0); printf("'%s'", s); check_result_code(actual, want); if (orig && strcmp(orig, s)) { printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); exit(1); } } void test_d2s() { char s[100]; int slen, res; /***********************************/ printf("==== decimal2string ====\n"); a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; slen=sizeof(s); res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.buf[1]=987000000; a.frac=3; slen=sizeof(s); res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.sign=1; slen=sizeof(s); res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); slen=8; res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); slen=5; res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); a.buf[0]=987000000; a.frac=3; a.intg=0; slen=sizeof(s); res=decimal2string(&a, s, &slen, 0, 0, 0); dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); } void test_s2d(const char *s, const char *orig, int ex) { char s1[100], *end; int res; sprintf(s1, "'%s'", s); end= strend(s); printf("len=%2d %-30s => res=%d ", a.len, s1, (res= string2decimal(s, &a, &end))); print_decimal(&a, orig, res, ex); printf("\n"); } void test_d2f(const char *s, int ex) { char s1[100], *end; double x; int res; sprintf(s1, "'%s'", s); end= strend(s); string2decimal(s, &a, &end); res=decimal2double(&a, &x); if (full) dump_decimal(&a); printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x); check_result_code(res, ex); } void test_d2b2d(const char *str, int p, int s, const char *orig, int ex) { char s1[100], buf[100], *end; int res, i, size=decimal_bin_size(p, s); sprintf(s1, "'%s'", str); end= strend(str); string2decimal(str, &a, &end); res=decimal2bin(&a, buf, p, s); printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size); if (full) { printf("0x"); for (i=0; i < size; i++) printf("%02x", ((uchar *)buf)[i]); } res=bin2decimal(buf, &a, p, s); printf(" => res=%d ", res); print_decimal(&a, orig, res, ex); printf("\n"); } void test_f2d(double from, int ex) { int res; res=double2decimal(from, &a); printf("%-40.*f => res=%d ", DBL_DIG-2, from, res); print_decimal(&a, 0, res, ex); printf("\n"); } void test_ull2d(uint64_t from, const char *orig, int ex) { char s[100]; int res; res=uint64_t2decimal(from, &a); int64_t10_to_str(from,s,10); printf("%-40s => res=%d ", s, res); print_decimal(&a, orig, res, ex); printf("\n"); } void test_ll2d(int64_t from, const char *orig, int ex) { char s[100]; int res; res=int64_t2decimal(from, &a); int64_t10_to_str(from,s,-10); printf("%-40s => res=%d ", s, res); print_decimal(&a, orig, res, ex); printf("\n"); } void test_d2ull(const char *s, const char *orig, int ex) { char s1[100], *end; uint64_t x; int res; end= strend(s); string2decimal(s, &a, &end); res=decimal2uint64_t(&a, &x); if (full) dump_decimal(&a); int64_t10_to_str(x,s1,10); printf("%-40s => res=%d %s\n", s, res, s1); check_result_code(res, ex); if (orig && strcmp(orig, s1)) { printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); exit(1); } } void test_d2ll(const char *s, const char *orig, int ex) { char s1[100], *end; int64_t x; int res; end= strend(s); string2decimal(s, &a, &end); res=decimal2int64_t(&a, &x); if (full) dump_decimal(&a); int64_t10_to_str(x,s1,-10); printf("%-40s => res=%d %s\n", s, res, s1); check_result_code(res, ex); if (orig && strcmp(orig, s1)) { printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); exit(1); } } void test_da(const char *s1, const char *s2, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' + '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_add(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c, orig, res, ex); printf("\n"); } void test_ds(const char *s1, const char *s2, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' - '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_sub(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c, orig, res, ex); printf("\n"); } void test_dc(const char *s1, const char *s2, int orig) { char s[100], *end; int res; sprintf(s, "'%s' <=> '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_cmp(&a, &b); printf("%-40s => res=%d\n", s, res); if (orig != res) { printf("\n^^^^^^^^^^^^^ must've been %d\n", orig); exit(1); } } void test_dm(const char *s1, const char *s2, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' * '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_mul(&a, &b, &c); printf("%-40s => res=%d ", s, res); print_decimal(&c, orig, res, ex); printf("\n"); } void test_dv(const char *s1, const char *s2, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' / '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_div(&a, &b, &c, 5); printf("%-40s => res=%d ", s, res); check_result_code(res, ex); if (res == E_DEC_DIV_ZERO) printf("E_DEC_DIV_ZERO"); else print_decimal(&c, orig, res, ex); printf("\n"); } void test_md(const char *s1, const char *s2, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' %% '%s'", s1, s2); end= strend(s1); string2decimal(s1, &a, &end); end= strend(s2); string2decimal(s2, &b, &end); res=decimal_mod(&a, &b, &c); printf("%-40s => res=%d ", s, res); check_result_code(res, ex); if (res == E_DEC_DIV_ZERO) printf("E_DEC_DIV_ZERO"); else print_decimal(&c, orig, res, ex); printf("\n"); } const char *round_mode[]= {"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"}; void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]); end= strend(s1); string2decimal(s1, &a, &end); res=decimal_round(&a, &b, n, mode); printf("%-40s => res=%d ", s, res); print_decimal(&b, orig, res, ex); printf("\n"); } void test_mx(int precision, int frac, const char *orig) { char s[100]; sprintf(s, "%d, %d", precision, frac); max_decimal(precision, frac, &a); printf("%-40s => ", s); print_decimal(&a, orig, 0, 0); printf("\n"); } void test_pr(const char *s1, int prec, int dec, char filler, const char *orig, int ex) { char s[100], *end; char s2[100]; int slen= sizeof(s2); int res; sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'", s1, prec, dec, filler); end= strend(s1); string2decimal(s1, &a, &end); res= decimal2string(&a, s2, &slen, prec, dec, filler); printf("%-40s => res=%d '%s'", s, res, s2); check_result_code(res, ex); if (orig && strcmp(orig, s2)) { printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); exit(1); } printf("\n"); } void test_sh(const char *s1, int shift, const char *orig, int ex) { char s[100], *end; int res; sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift)); end= strend(s1); string2decimal(s1, &a, &end); res= decimal_shift(&a, shift); printf("%-40s => res=%d ", s, res); print_decimal(&a, orig, res, ex); printf("\n"); } void test_fr(const char *s1, const char *orig) { char s[100], *end; sprintf(s, "'%s'", s1); printf("%-40s => ", s); end= strend(s1); string2decimal(s1, &a, &end); a.frac= decimal_actual_fraction(&a); print_decimal(&a, orig, 0, 0); printf("\n"); } int main() { a.buf=(void*)buf1; a.len=sizeof(buf1)/sizeof(dec1); b.buf=(void*)buf2; b.len=sizeof(buf2)/sizeof(dec1); c.buf=(void*)buf3; c.len=sizeof(buf3)/sizeof(dec1); if (full) test_d2s(); printf("==== string2decimal ====\n"); test_s2d("12345", "12345", 0); test_s2d("12345.", "12345", 0); test_s2d("123.45", "123.45", 0); test_s2d("-123.45", "-123.45", 0); test_s2d(".00012345000098765", "0.00012345000098765", 0); test_s2d(".12345000098765", "0.12345000098765", 0); test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0); test_s2d("1234500009876.5", "1234500009876.5", 0); a.len=1; test_s2d("123450000098765", "98765", 2); test_s2d("123450.000098765", "123450", 1); a.len=sizeof(buf1)/sizeof(dec1); test_s2d("123E5", "12300000", 0); test_s2d("123E-2", "1.23", 0); printf("==== decimal2double ====\n"); test_d2f("12345", 0); test_d2f("123.45", 0); test_d2f("-123.45", 0); test_d2f("0.00012345000098765", 0); test_d2f("1234500009876.5", 0); printf("==== double2decimal ====\n"); test_f2d(12345, 0); test_f2d(1.0/3, 0); test_f2d(-123.45, 0); test_f2d(0.00012345000098765, 0); test_f2d(1234500009876.5, 0); printf("==== uint64_t2decimal ====\n"); test_ull2d(12345ULL, "12345", 0); test_ull2d(0ULL, "0", 0); test_ull2d(18446744073709551615ULL, "18446744073709551615", 0); printf("==== decimal2uint64_t ====\n"); test_d2ull("12345", "12345", 0); test_d2ull("0", "0", 0); test_d2ull("18446744073709551615", "18446744073709551615", 0); test_d2ull("18446744073709551616", "18446744073", 2); test_d2ull("-1", "0", 2); test_d2ull("1.23", "1", 1); test_d2ull("9999999999999999999999999.000", "9999999999999999", 2); printf("==== int64_t2decimal ====\n"); test_ll2d(12345LL, "-12345", 0); test_ll2d(1LL, "-1", 0); test_ll2d(9223372036854775807LL, "-9223372036854775807", 0); test_ll2d(9223372036854775808ULL, "-9223372036854775808", 0); printf("==== decimal2int64_t ====\n"); test_d2ll("18446744073709551615", "18446744073", 2); test_d2ll("-1", "-1", 0); test_d2ll("-1.23", "-1", 1); test_d2ll("-9223372036854775807", "-9223372036854775807", 0); test_d2ll("-9223372036854775808", "-9223372036854775808", 0); test_d2ll("9223372036854775808", "9223372036854775807", 2); printf("==== do_add ====\n"); test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0); test_da(".1" ,".45", "0.55", 0); test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0); test_da("9999909999999.5" ,".555", "9999910000000.055", 0); test_da("99999999" ,"1", "100000000", 0); test_da("989999999" ,"1", "990000000", 0); test_da("999999999" ,"1", "1000000000", 0); test_da("12345" ,"123.45", "12468.45", 0); test_da("-12345" ,"-123.45", "-12468.45", 0); test_ds("-12345" ,"123.45", "-12468.45", 0); test_ds("12345" ,"-123.45", "12468.45", 0); printf("==== do_sub ====\n"); test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0); test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0); test_ds("9999900000000.5", ".555","9999899999999.945", 0); test_ds("1111.5551", "1111.555","0.0001", 0); test_ds(".555", ".555","0", 0); test_ds("10000000", "1","9999999", 0); test_ds("1000001000", ".1","1000000999.9", 0); test_ds("1000000000", ".1","999999999.9", 0); test_ds("12345", "123.45","12221.55", 0); test_ds("-12345", "-123.45","-12221.55", 0); test_da("-12345", "123.45","-12221.55", 0); test_da("12345", "-123.45","12221.55", 0); test_ds("123.45", "12345","-12221.55", 0); test_ds("-123.45", "-12345","12221.55", 0); test_da("123.45", "-12345","-12221.55", 0); test_da("-123.45", "12345","12221.55", 0); test_da("5", "-6.0","-1.0", 0); printf("==== decimal_mul ====\n"); test_dm("12", "10","120", 0); test_dm("-123.456", "98765.4321","-12193185.1853376", 0); test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0); test_dm("123456", "987654321","121931851853376", 0); test_dm("123456", "9876543210","1219318518533760", 0); test_dm("123", "0.01","1.23", 0); test_dm("123", "0","0", 0); printf("==== decimal_div ====\n"); test_dv("120", "10","12.000000000", 0); test_dv("123", "0.01","12300.000000000", 0); test_dv("120", "100000000000.00000","0.000000001200000000", 0); test_dv("123", "0","", 4); test_dv("0", "0", "", 4); test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0); test_dv("121931851853376", "987654321","123456.000000000", 0); test_dv("0", "987","0", 0); test_dv("1", "3","0.333333333", 0); test_dv("1.000000000000", "3","0.333333333333333333", 0); test_dv("1", "1","1.000000000", 0); test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0); test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0); test_dv("10.000000000060", "2","5.000000000030000000", 0); printf("==== decimal_mod ====\n"); test_md("234","10","4", 0); test_md("234.567","10.555","2.357", 0); test_md("-234.567","10.555","-2.357", 0); test_md("234.567","-10.555","2.357", 0); c.buf[1]=0x3ABECA; test_md("99999999999999999999999999999999999999","3","0", 0); if (c.buf[1] != 0x3ABECA) { printf("%X - overflow\n", c.buf[1]); exit(1); } printf("==== decimal2bin/bin2decimal ====\n"); test_d2b2d("-10.55", 4, 2,"-10.55", 0); test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0); test_d2b2d("12345", 5, 0,"12345", 0); test_d2b2d("12345", 10, 3,"12345.000", 0); test_d2b2d("123.45", 10, 3,"123.450", 0); test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0); test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0); test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0); test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0); test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0); test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0); test_d2b2d("111111111.11", 10, 2,"11111111.11", 0); test_d2b2d("000000000.01", 7, 3,"0.010", 0); test_d2b2d("123.4", 10, 2, "123.40", 0); printf("==== decimal_cmp ====\n"); test_dc("12","13",-1); test_dc("13","12",1); test_dc("-10","10",-1); test_dc("10","-10",1); test_dc("-12","-13",1); test_dc("0","12",-1); test_dc("-10","0",-1); test_dc("4","4",0); printf("==== decimal_round ====\n"); test_ro("5678.123451",-4,TRUNCATE,"0", 0); test_ro("5678.123451",-3,TRUNCATE,"5000", 0); test_ro("5678.123451",-2,TRUNCATE,"5600", 0); test_ro("5678.123451",-1,TRUNCATE,"5670", 0); test_ro("5678.123451",0,TRUNCATE,"5678", 0); test_ro("5678.123451",1,TRUNCATE,"5678.1", 0); test_ro("5678.123451",2,TRUNCATE,"5678.12", 0); test_ro("5678.123451",3,TRUNCATE,"5678.123", 0); test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0); test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0); test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0); test_ro("-5678.123451",-4,TRUNCATE,"0", 0); memset(buf2, 33, sizeof(buf2)); test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0); test_ro("15.1",0,HALF_UP,"15", 0); test_ro("15.5",0,HALF_UP,"16", 0); test_ro("15.9",0,HALF_UP,"16", 0); test_ro("-15.1",0,HALF_UP,"-15", 0); test_ro("-15.5",0,HALF_UP,"-16", 0); test_ro("-15.9",0,HALF_UP,"-16", 0); test_ro("15.1",1,HALF_UP,"15.1", 0); test_ro("-15.1",1,HALF_UP,"-15.1", 0); test_ro("15.17",1,HALF_UP,"15.2", 0); test_ro("15.4",-1,HALF_UP,"20", 0); test_ro("-15.4",-1,HALF_UP,"-20", 0); test_ro("5.4",-1,HALF_UP,"10", 0); test_ro(".999", 0, HALF_UP, "1", 0); memset(buf2, 33, sizeof(buf2)); test_ro("999999999", -9, HALF_UP, "1000000000", 0); test_ro("15.1",0,HALF_EVEN,"15", 0); test_ro("15.5",0,HALF_EVEN,"16", 0); test_ro("14.5",0,HALF_EVEN,"14", 0); test_ro("15.9",0,HALF_EVEN,"16", 0); test_ro("15.1",0,CEILING,"16", 0); test_ro("-15.1",0,CEILING,"-15", 0); test_ro("15.1",0,FLOOR,"15", 0); test_ro("-15.1",0,FLOOR,"-16", 0); test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0); test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0); b.buf[0]=DIG_BASE+1; b.buf++; test_ro(".3", 0, HALF_UP, "0", 0); b.buf--; if (b.buf[0] != DIG_BASE+1) { printf("%d - underflow\n", b.buf[0]); exit(1); } printf("==== max_decimal ====\n"); test_mx(1,1,"0.9"); test_mx(1,0,"9"); test_mx(2,1,"9.9"); test_mx(4,2,"99.99"); test_mx(6,3,"999.999"); test_mx(8,4,"9999.9999"); test_mx(10,5,"99999.99999"); test_mx(12,6,"999999.999999"); test_mx(14,7,"9999999.9999999"); test_mx(16,8,"99999999.99999999"); test_mx(18,9,"999999999.999999999"); test_mx(20,10,"9999999999.9999999999"); test_mx(20,20,"0.99999999999999999999"); test_mx(20,0,"99999999999999999999"); test_mx(40,20,"99999999999999999999.99999999999999999999"); printf("==== decimal2string ====\n"); test_pr("123.123", 0, 0, 0, "123.123", 0); test_pr("123.123", 7, 3, '0', "123.123", 0); test_pr("123.123", 9, 3, '0', "00123.123", 0); test_pr("123.123", 9, 4, '0', "0123.1230", 0); test_pr("123.123", 9, 5, '0', "123.12300", 0); test_pr("123.123", 9, 2, '0', "000123.12", 1); test_pr("123.123", 9, 6, '0', "23.123000", 2); printf("==== decimal_shift ====\n"); test_sh("123.123", 1, "1231.23", 0); test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0); test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0); test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0); test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0); test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0); test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0); test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0); test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0); test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); test_sh("123", 1, "1230", 0); test_sh("123", 10, "1230000000000", 0); test_sh(".123", 1, "1.23", 0); test_sh(".123", 10, "1230000000", 0); test_sh(".123", 14, "12300000000000", 0); test_sh("000.000", 1000, "0", 0); test_sh("000.", 1000, "0", 0); test_sh(".000", 1000, "0", 0); test_sh("1", 1000, "1", 2); test_sh("123.123", -1, "12.3123", 0); test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0); test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0); test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0); test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0); test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0); test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0); test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0); test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0); test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0); test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0); test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0); a.len= 2; test_sh("123.123", -2, "1.23123", 0); test_sh("123.123", -3, "0.123123", 0); test_sh("123.123", -6, "0.000123123", 0); test_sh("123.123", -7, "0.0000123123", 0); test_sh("123.123", -15, "0.000000000000123123", 0); test_sh("123.123", -16, "0.000000000000012312", 1); test_sh("123.123", -17, "0.000000000000001231", 1); test_sh("123.123", -18, "0.000000000000000123", 1); test_sh("123.123", -19, "0.000000000000000012", 1); test_sh("123.123", -20, "0.000000000000000001", 1); test_sh("123.123", -21, "0", 1); test_sh(".000000000123", -1, "0.0000000000123", 0); test_sh(".000000000123", -6, "0.000000000000000123", 0); test_sh(".000000000123", -7, "0.000000000000000012", 1); test_sh(".000000000123", -8, "0.000000000000000001", 1); test_sh(".000000000123", -9, "0", 1); test_sh(".000000000123", 1, "0.00000000123", 0); test_sh(".000000000123", 8, "0.0123", 0); test_sh(".000000000123", 9, "0.123", 0); test_sh(".000000000123", 10, "1.23", 0); test_sh(".000000000123", 17, "12300000", 0); test_sh(".000000000123", 18, "123000000", 0); test_sh(".000000000123", 19, "1230000000", 0); test_sh(".000000000123", 20, "12300000000", 0); test_sh(".000000000123", 21, "123000000000", 0); test_sh(".000000000123", 22, "1230000000000", 0); test_sh(".000000000123", 23, "12300000000000", 0); test_sh(".000000000123", 24, "123000000000000", 0); test_sh(".000000000123", 25, "1230000000000000", 0); test_sh(".000000000123", 26, "12300000000000000", 0); test_sh(".000000000123", 27, "123000000000000000", 0); test_sh(".000000000123", 28, "0.000000000123", 2); test_sh("123456789.987654321", -1, "12345678.998765432", 1); test_sh("123456789.987654321", -2, "1234567.899876543", 1); test_sh("123456789.987654321", -8, "1.234567900", 1); test_sh("123456789.987654321", -9, "0.123456789987654321", 0); test_sh("123456789.987654321", -10, "0.012345678998765432", 1); test_sh("123456789.987654321", -17, "0.000000001234567900", 1); test_sh("123456789.987654321", -18, "0.000000000123456790", 1); test_sh("123456789.987654321", -19, "0.000000000012345679", 1); test_sh("123456789.987654321", -26, "0.000000000000000001", 1); test_sh("123456789.987654321", -27, "0", 1); test_sh("123456789.987654321", 1, "1234567900", 1); test_sh("123456789.987654321", 2, "12345678999", 1); test_sh("123456789.987654321", 4, "1234567899877", 1); test_sh("123456789.987654321", 8, "12345678998765432", 1); test_sh("123456789.987654321", 9, "123456789987654321", 0); test_sh("123456789.987654321", 10, "123456789.987654321", 2); test_sh("123456789.987654321", 0, "123456789.987654321", 0); a.len= sizeof(buf1)/sizeof(dec1); printf("==== decimal_actual_fraction ====\n"); test_fr("1.123456789000000000", "1.123456789"); test_fr("1.12345678000000000", "1.12345678"); test_fr("1.1234567000000000", "1.1234567"); test_fr("1.123456000000000", "1.123456"); test_fr("1.12345000000000", "1.12345"); test_fr("1.1234000000000", "1.1234"); test_fr("1.123000000000", "1.123"); test_fr("1.12000000000", "1.12"); test_fr("1.1000000000", "1.1"); test_fr("1.000000000", "1"); test_fr("1.0", "1"); test_fr("10000000000000000000.0", "10000000000000000000"); return 0; } #endif