/************************************************************************ The lowest-level memory management (c) 1997 Innobase Oy Created 5/12/1997 Heikki Tuuri *************************************************************************/ #include "mem0pool.h" #ifdef UNIV_NONINL #include "mem0pool.ic" #endif #include "sync0sync.h" #include "ut0mem.h" #include "ut0lst.h" #include "ut0byte.h" #include "mem0mem.h" /* We would like to use also the buffer frames to allocate memory. This would be desirable, because then the memory consumption of the database would be fixed, and we might even lock the buffer pool to the main memory. The problem here is that the buffer management routines can themselves call memory allocation, while the buffer pool mutex is reserved. The main components of the memory consumption are: 1. buffer pool, 2. parsed and optimized SQL statements, 3. data dictionary cache, 4. log buffer, 5. locks for each transaction, 6. hash table for the adaptive index, 7. state and buffers for each SQL query currently being executed, 8. session for each user, and 9. stack for each OS thread. Items 1 and 2 are managed by an LRU algorithm. Items 5 and 6 can potentially consume very much memory. Items 7 and 8 should consume quite little memory, and the OS should take care of item 9, which too should consume little memory. A solution to the memory management: 1. the buffer pool size is set separately; 2. log buffer size is set separately; 3. the common pool size for all the other entries, except 8, is set separately. Problems: we may waste memory if the common pool is set too big. Another problem is the locks, which may take very much space in big transactions. Then the shared pool size should be set very big. We can allow locks to take space from the buffer pool, but the SQL optimizer is then unaware of the usable size of the buffer pool. We could also combine the objects in the common pool and the buffers in the buffer pool into a single LRU list and manage it uniformly, but this approach does not take into account the parsing and other costs unique to SQL statements. The locks for a transaction can be seen as a part of the state of the transaction. Hence, they should be stored in the common pool. We still have the problem of a very big update transaction, for example, which will set very many x-locks on rows, and the locks will consume a lot of memory, say, half of the buffer pool size. Another problem is what to do if we are not able to malloc a requested block of memory from the common pool. Then we can request memory from the operating system. If it does not help, a system error results. Because 5 and 6 may potentially consume very much memory, we let them grow into the buffer pool. We may let the locks of a transaction take frames from the buffer pool, when the corresponding memory heap block has grown to the size of a buffer frame. Similarly for the hash node cells of the locks, and for the adaptive index. Thus, for each individual transaction, its locks can occupy at most about the size of the buffer frame of memory in the common pool, and after that its locks will grow into the buffer pool. */ /* Mask used to extract the free bit from area->size */ #define MEM_AREA_FREE 1 /* The smallest memory area total size */ #define MEM_AREA_MIN_SIZE (2 * MEM_AREA_EXTRA_SIZE) /* Data structure for a memory pool. The space is allocated using the buddy algorithm, where free list i contains areas of size 2 to power i. */ struct mem_pool_struct{ byte* buf; /* memory pool */ ulint size; /* memory common pool size */ ulint reserved; /* amount of currently allocated memory */ mutex_t mutex; /* mutex protecting this struct */ UT_LIST_BASE_NODE_T(mem_area_t) free_list[64]; /* lists of free memory areas: an area is put to the list whose number is the 2-logarithm of the area size */ }; /* The common memory pool */ UNIV_INTERN mem_pool_t* mem_comm_pool = NULL; /* We use this counter to check that the mem pool mutex does not leak; this is to track a strange assertion failure reported at mysql@lists.mysql.com */ UNIV_INTERN ulint mem_n_threads_inside = 0; /************************************************************************ Reserves the mem pool mutex. */ UNIV_INTERN void mem_pool_mutex_enter(void) /*======================*/ { mutex_enter(&(mem_comm_pool->mutex)); } /************************************************************************ Releases the mem pool mutex. */ UNIV_INTERN void mem_pool_mutex_exit(void) /*=====================*/ { mutex_exit(&(mem_comm_pool->mutex)); } /************************************************************************ Returns memory area size. */ UNIV_INLINE ulint mem_area_get_size( /*==============*/ /* out: size */ mem_area_t* area) /* in: area */ { return(area->size_and_free & ~MEM_AREA_FREE); } /************************************************************************ Sets memory area size. */ UNIV_INLINE void mem_area_set_size( /*==============*/ mem_area_t* area, /* in: area */ ulint size) /* in: size */ { area->size_and_free = (area->size_and_free & MEM_AREA_FREE) | size; } /************************************************************************ Returns memory area free bit. */ UNIV_INLINE ibool mem_area_get_free( /*==============*/ /* out: TRUE if free */ mem_area_t* area) /* in: area */ { #if TRUE != MEM_AREA_FREE # error "TRUE != MEM_AREA_FREE" #endif return(area->size_and_free & MEM_AREA_FREE); } /************************************************************************ Sets memory area free bit. */ UNIV_INLINE void mem_area_set_free( /*==============*/ mem_area_t* area, /* in: area */ ibool free) /* in: free bit value */ { #if TRUE != MEM_AREA_FREE # error "TRUE != MEM_AREA_FREE" #endif area->size_and_free = (area->size_and_free & ~MEM_AREA_FREE) | free; } /************************************************************************ Creates a memory pool. */ UNIV_INTERN mem_pool_t* mem_pool_create( /*============*/ /* out: memory pool */ ulint size) /* in: pool size in bytes */ { mem_pool_t* pool; mem_area_t* area; ulint i; ulint used; ut_a(size > 10000); pool = ut_malloc(sizeof(mem_pool_t)); /* We do not set the memory to zero (FALSE) in the pool, but only when allocated at a higher level in mem0mem.c. This is to avoid masking useful Purify warnings. */ pool->buf = ut_malloc_low(size, FALSE, TRUE); pool->size = size; mutex_create(&pool->mutex, SYNC_MEM_POOL); /* Initialize the free lists */ for (i = 0; i < 64; i++) { UT_LIST_INIT(pool->free_list[i]); } used = 0; while (size - used >= MEM_AREA_MIN_SIZE) { i = ut_2_log(size - used); if (ut_2_exp(i) > size - used) { /* ut_2_log rounds upward */ i--; } area = (mem_area_t*)(pool->buf + used); mem_area_set_size(area, ut_2_exp(i)); mem_area_set_free(area, TRUE); UNIV_MEM_FREE(MEM_AREA_EXTRA_SIZE + (byte*) area, ut_2_exp(i) - MEM_AREA_EXTRA_SIZE); UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area); used = used + ut_2_exp(i); } ut_ad(size >= used); pool->reserved = 0; return(pool); } /************************************************************************ Fills the specified free list. */ static ibool mem_pool_fill_free_list( /*====================*/ /* out: TRUE if we were able to insert a block to the free list */ ulint i, /* in: free list index */ mem_pool_t* pool) /* in: memory pool */ { mem_area_t* area; mem_area_t* area2; ibool ret; ut_ad(mutex_own(&(pool->mutex))); if (UNIV_UNLIKELY(i >= 63)) { /* We come here when we have run out of space in the memory pool: */ return(FALSE); } area = UT_LIST_GET_FIRST(pool->free_list[i + 1]); if (area == NULL) { if (UT_LIST_GET_LEN(pool->free_list[i + 1]) > 0) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: mem pool free list %lu" " length is %lu\n" "InnoDB: though the list is empty!\n", (ulong) i + 1, (ulong) UT_LIST_GET_LEN(pool->free_list[i + 1])); } ret = mem_pool_fill_free_list(i + 1, pool); if (ret == FALSE) { return(FALSE); } area = UT_LIST_GET_FIRST(pool->free_list[i + 1]); } if (UNIV_UNLIKELY(UT_LIST_GET_LEN(pool->free_list[i + 1]) == 0)) { mem_analyze_corruption(area); ut_error; } UT_LIST_REMOVE(free_list, pool->free_list[i + 1], area); area2 = (mem_area_t*)(((byte*)area) + ut_2_exp(i)); UNIV_MEM_ALLOC(area2, MEM_AREA_EXTRA_SIZE); mem_area_set_size(area2, ut_2_exp(i)); mem_area_set_free(area2, TRUE); UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area2); mem_area_set_size(area, ut_2_exp(i)); UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area); return(TRUE); } /************************************************************************ Allocates memory from a pool. NOTE: This low-level function should only be used in mem0mem.*! */ UNIV_INTERN void* mem_area_alloc( /*===========*/ /* out, own: allocated memory buffer */ ulint* psize, /* in: requested size in bytes; for optimum space usage, the size should be a power of 2 minus MEM_AREA_EXTRA_SIZE; out: allocated size in bytes (greater than or equal to the requested size) */ mem_pool_t* pool) /* in: memory pool */ { mem_area_t* area; ulint size; ulint n; ibool ret; size = *psize; n = ut_2_log(ut_max(size + MEM_AREA_EXTRA_SIZE, MEM_AREA_MIN_SIZE)); mutex_enter(&(pool->mutex)); mem_n_threads_inside++; ut_a(mem_n_threads_inside == 1); area = UT_LIST_GET_FIRST(pool->free_list[n]); if (area == NULL) { ret = mem_pool_fill_free_list(n, pool); if (ret == FALSE) { /* Out of memory in memory pool: we try to allocate from the operating system with the regular malloc: */ mem_n_threads_inside--; mutex_exit(&(pool->mutex)); return(ut_malloc(size)); } area = UT_LIST_GET_FIRST(pool->free_list[n]); } if (!mem_area_get_free(area)) { fprintf(stderr, "InnoDB: Error: Removing element from mem pool" " free list %lu though the\n" "InnoDB: element is not marked free!\n", (ulong) n); mem_analyze_corruption(area); /* Try to analyze a strange assertion failure reported at mysql@lists.mysql.com where the free bit IS 1 in the hex dump above */ if (mem_area_get_free(area)) { fprintf(stderr, "InnoDB: Probably a race condition" " because now the area is marked free!\n"); } ut_error; } if (UT_LIST_GET_LEN(pool->free_list[n]) == 0) { fprintf(stderr, "InnoDB: Error: Removing element from mem pool" " free list %lu\n" "InnoDB: though the list length is 0!\n", (ulong) n); mem_analyze_corruption(area); ut_error; } ut_ad(mem_area_get_size(area) == ut_2_exp(n)); mem_area_set_free(area, FALSE); UT_LIST_REMOVE(free_list, pool->free_list[n], area); pool->reserved += mem_area_get_size(area); mem_n_threads_inside--; mutex_exit(&(pool->mutex)); ut_ad(mem_pool_validate(pool)); *psize = ut_2_exp(n) - MEM_AREA_EXTRA_SIZE; UNIV_MEM_ALLOC(MEM_AREA_EXTRA_SIZE + (byte*)area, *psize); return((void*)(MEM_AREA_EXTRA_SIZE + ((byte*)area))); } /************************************************************************ Gets the buddy of an area, if it exists in pool. */ UNIV_INLINE mem_area_t* mem_area_get_buddy( /*===============*/ /* out: the buddy, NULL if no buddy in pool */ mem_area_t* area, /* in: memory area */ ulint size, /* in: memory area size */ mem_pool_t* pool) /* in: memory pool */ { mem_area_t* buddy; ut_ad(size != 0); if (((((byte*)area) - pool->buf) % (2 * size)) == 0) { /* The buddy is in a higher address */ buddy = (mem_area_t*)(((byte*)area) + size); if ((((byte*)buddy) - pool->buf) + size > pool->size) { /* The buddy is not wholly contained in the pool: there is no buddy */ buddy = NULL; } } else { /* The buddy is in a lower address; NOTE that area cannot be at the pool lower end, because then we would end up to the upper branch in this if-clause: the remainder would be 0 */ buddy = (mem_area_t*)(((byte*)area) - size); } return(buddy); } /************************************************************************ Frees memory to a pool. */ UNIV_INTERN void mem_area_free( /*==========*/ void* ptr, /* in, own: pointer to allocated memory buffer */ mem_pool_t* pool) /* in: memory pool */ { mem_area_t* area; mem_area_t* buddy; void* new_ptr; ulint size; ulint n; /* It may be that the area was really allocated from the OS with regular malloc: check if ptr points within our memory pool */ if ((byte*)ptr < pool->buf || (byte*)ptr >= pool->buf + pool->size) { ut_free(ptr); return; } area = (mem_area_t*) (((byte*)ptr) - MEM_AREA_EXTRA_SIZE); if (mem_area_get_free(area)) { fprintf(stderr, "InnoDB: Error: Freeing element to mem pool" " free list though the\n" "InnoDB: element is marked free!\n"); mem_analyze_corruption(area); ut_error; } size = mem_area_get_size(area); UNIV_MEM_FREE(ptr, size - MEM_AREA_EXTRA_SIZE); if (size == 0) { fprintf(stderr, "InnoDB: Error: Mem area size is 0. Possibly a" " memory overrun of the\n" "InnoDB: previous allocated area!\n"); mem_analyze_corruption(area); ut_error; } #ifdef UNIV_LIGHT_MEM_DEBUG if (((byte*)area) + size < pool->buf + pool->size) { ulint next_size; next_size = mem_area_get_size( (mem_area_t*)(((byte*)area) + size)); if (UNIV_UNLIKELY(!next_size || !ut_is_2pow(next_size))) { fprintf(stderr, "InnoDB: Error: Memory area size %lu," " next area size %lu not a power of 2!\n" "InnoDB: Possibly a memory overrun of" " the buffer being freed here.\n", (ulong) size, (ulong) next_size); mem_analyze_corruption(area); ut_error; } } #endif buddy = mem_area_get_buddy(area, size, pool); n = ut_2_log(size); mutex_enter(&(pool->mutex)); mem_n_threads_inside++; ut_a(mem_n_threads_inside == 1); if (buddy && mem_area_get_free(buddy) && (size == mem_area_get_size(buddy))) { /* The buddy is in a free list */ if ((byte*)buddy < (byte*)area) { new_ptr = ((byte*)buddy) + MEM_AREA_EXTRA_SIZE; mem_area_set_size(buddy, 2 * size); mem_area_set_free(buddy, FALSE); } else { new_ptr = ptr; mem_area_set_size(area, 2 * size); } /* Remove the buddy from its free list and merge it to area */ UT_LIST_REMOVE(free_list, pool->free_list[n], buddy); pool->reserved += ut_2_exp(n); mem_n_threads_inside--; mutex_exit(&(pool->mutex)); mem_area_free(new_ptr, pool); return; } else { UT_LIST_ADD_FIRST(free_list, pool->free_list[n], area); mem_area_set_free(area, TRUE); ut_ad(pool->reserved >= size); pool->reserved -= size; } mem_n_threads_inside--; mutex_exit(&(pool->mutex)); ut_ad(mem_pool_validate(pool)); } /************************************************************************ Validates a memory pool. */ UNIV_INTERN ibool mem_pool_validate( /*==============*/ /* out: TRUE if ok */ mem_pool_t* pool) /* in: memory pool */ { mem_area_t* area; mem_area_t* buddy; ulint free; ulint i; mutex_enter(&(pool->mutex)); free = 0; for (i = 0; i < 64; i++) { UT_LIST_VALIDATE(free_list, mem_area_t, pool->free_list[i]); area = UT_LIST_GET_FIRST(pool->free_list[i]); while (area != NULL) { ut_a(mem_area_get_free(area)); ut_a(mem_area_get_size(area) == ut_2_exp(i)); buddy = mem_area_get_buddy(area, ut_2_exp(i), pool); ut_a(!buddy || !mem_area_get_free(buddy) || (ut_2_exp(i) != mem_area_get_size(buddy))); area = UT_LIST_GET_NEXT(free_list, area); free += ut_2_exp(i); } } ut_a(free + pool->reserved == pool->size); mutex_exit(&(pool->mutex)); return(TRUE); } /************************************************************************ Prints info of a memory pool. */ UNIV_INTERN void mem_pool_print_info( /*================*/ FILE* outfile,/* in: output file to write to */ mem_pool_t* pool) /* in: memory pool */ { ulint i; mem_pool_validate(pool); fprintf(outfile, "INFO OF A MEMORY POOL\n"); mutex_enter(&(pool->mutex)); for (i = 0; i < 64; i++) { if (UT_LIST_GET_LEN(pool->free_list[i]) > 0) { fprintf(outfile, "Free list length %lu for" " blocks of size %lu\n", (ulong) UT_LIST_GET_LEN(pool->free_list[i]), (ulong) ut_2_exp(i)); } } fprintf(outfile, "Pool size %lu, reserved %lu.\n", (ulong) pool->size, (ulong) pool->reserved); mutex_exit(&(pool->mutex)); } /************************************************************************ Returns the amount of reserved memory. */ UNIV_INTERN ulint mem_pool_get_reserved( /*==================*/ /* out: reserved memory in bytes */ mem_pool_t* pool) /* in: memory pool */ { ulint reserved; mutex_enter(&(pool->mutex)); reserved = pool->reserved; mutex_exit(&(pool->mutex)); return(reserved); }