/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=2:tabstop=2:smarttab: * * Copyright (C) 2008 Sun Microsystems, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef DRIZZLED_SQL_LIST_H #define DRIZZLED_SQL_LIST_H #include #include #include #include #include #include namespace drizzled { typedef struct st_sql_list { uint32_t elements; unsigned char *first; unsigned char **next; inline void clear() { elements=0; first=0; next= &first; } size_t size() const { return elements; } inline void link_in_list(unsigned char *element,unsigned char **next_ptr) { elements++; (*next)=element; next= next_ptr; *next=0; } inline void save_and_clear(struct st_sql_list *save) { *save= *this; clear(); } inline void push_front(struct st_sql_list *save) { *save->next= first; /* link current list last */ first= save->first; elements+= save->elements; } inline void push_back(struct st_sql_list *save) { if (save->first) { *next= save->first; next= save->next; elements+= save->elements; } } } SQL_LIST; /* Basic single linked list Used for item and item_buffs. All list ends with a pointer to the 'end_of_list' element, which data pointer is a null pointer and the next pointer points to itself. This makes it very fast to traverse lists as we don't have to test for a specialend condition for list that can't contain a null pointer. */ /** list_node - a node of a single-linked list. @note We never call a destructor for instances of this class. */ struct list_node : public memory::SqlAlloc { list_node *next; void *info; list_node(void *info_par,list_node *next_par) :next(next_par),info(info_par) {} list_node() /* For end_of_list */ { info= 0; next= this; } }; extern DRIZZLED_API list_node end_of_list; class base_list :public memory::SqlAlloc { protected: list_node *first,**last; uint32_t elements; public: inline void clear() { elements=0; first= &end_of_list; last=&first;} inline base_list() { clear(); } /** This is a shallow copy constructor that implicitly passes the ownership from the source list to the new instance. The old instance is not updated, so both objects end up sharing the same nodes. If one of the instances then adds or removes a node, the other becomes out of sync ('last' pointer), while still operational. Some old code uses and relies on this behaviour. This logic is quite tricky: please do not use it in any new code. */ inline base_list(const base_list &tmp) :memory::SqlAlloc() { elements= tmp.elements; first= tmp.first; last= elements ? tmp.last : &first; } inline base_list(bool) { } inline bool push_back(void *info) { if (((*last)=new list_node(info, &end_of_list))) { last= &(*last)->next; elements++; return 0; } return 1; } inline bool push_back(void *info, memory::Root *mem_root) { if (((*last)=new (mem_root) list_node(info, &end_of_list))) { last= &(*last)->next; elements++; return 0; } return 1; } inline bool push_front(void *info) { list_node *node=new list_node(info,first); if (node) { if (last == &first) last= &node->next; first=node; elements++; return 0; } return 1; } void remove(list_node **prev) { list_node *node=(*prev)->next; if (!--elements) last= &first; else if (last == &(*prev)->next) last= prev; delete *prev; *prev=node; } inline void concat(base_list *list) { if (!list->is_empty()) { *last= list->first; last= list->last; elements+= list->elements; } } inline void *pop(void) { if (first == &end_of_list) return 0; list_node *tmp=first; first=first->next; if (!--elements) last= &first; return tmp->info; } inline void disjoin(base_list *list) { list_node **prev= &first; list_node *node= first; list_node *list_first= list->first; elements=0; while (node && node != list_first) { prev= &node->next; node= node->next; elements++; } *prev= *last; last= prev; } inline void prepand(base_list *list) { if (!list->is_empty()) { *list->last= first; first= list->first; elements+= list->elements; } } /** Swap two lists. */ inline void swap(base_list &rhs) { std::swap(first, rhs.first); std::swap(last, rhs.last); std::swap(elements, rhs.elements); } inline list_node* last_node() { return *last; } inline list_node* first_node() { return first;} inline void *head() { return first->info; } inline void **head_ref() { return first != &end_of_list ? &first->info : 0; } inline bool is_empty() { return first == &end_of_list ; } inline list_node *last_ref() { return &end_of_list; } friend class base_list_iterator; #ifdef LIST_EXTRA_DEBUG /* Check list invariants and print results into trace. Invariants are: - (*last) points to end_of_list - There are no NULLs in the list. - base_list::elements is the number of elements in the list. SYNOPSIS check_list() name Name to print to trace file RETURN 1 The list is Ok. 0 List invariants are not met. */ bool check_list(const char *name) { base_list *list= this; list_node *node= first; uint32_t cnt= 0; while (node->next != &end_of_list) { if (!node->info) { return false; } node= node->next; cnt++; } if (last != &(node->next)) { return false; } if (cnt+1 != elements) { return false; } return true; } #endif // LIST_EXTRA_DEBUG protected: void after(void *info,list_node *node) { list_node *new_node=new list_node(info,node->next); node->next=new_node; elements++; if (last == &(node->next)) last= &new_node->next; } }; class base_list_iterator { protected: base_list *list; list_node **el,**prev,*current; public: void sublist(base_list &ls, uint32_t elm) { ls.first= *el; ls.last= list->last; ls.elements= elm; } base_list_iterator() :list(0), el(0), prev(0), current(0) {} base_list_iterator(base_list &list_par, list_node** el0) :list(&list_par), el(el0), prev(0), current(0) { } inline void *next(void) { prev=el; current= *el; el= ¤t->next; return current->info; } inline void *replace(void *element) { // Return old element void *tmp=current->info; assert(current->info != 0); current->info=element; return tmp; } void *replace(base_list &new_list) { void *ret_value=current->info; if (!new_list.is_empty()) { *new_list.last=current->next; current->info=new_list.first->info; current->next=new_list.first->next; if ((list->last == ¤t->next) && (new_list.elements > 1)) list->last= new_list.last; list->elements+=new_list.elements-1; } return ret_value; // return old element } inline void remove(void) // Remove current { list->remove(prev); el=prev; current=0; // Safeguard } void after(void *element) // Insert element after current { list->after(element,current); current=current->next; el= ¤t->next; } inline void **ref(void) // Get reference pointer { return ¤t->info; } inline bool is_last(void) { return el == &list->last_ref()->next; } }; template class List_iterator; template class List :public base_list { public: typedef List_iterator iterator; friend class List_iterator; inline List() :base_list() {} inline List(const List &tmp) :base_list(tmp) {} inline List(const List &tmp, memory::Root *mem_root) : base_list(tmp, mem_root) {} inline bool push_back(T *a) { return base_list::push_back(a); } inline bool push_back(T *a, memory::Root *mem_root) { return base_list::push_back(a, mem_root); } inline bool push_front(T *a) { return base_list::push_front(a); } inline T* head() {return static_cast(base_list::head()); } inline T* pop() {return static_cast(base_list::pop()); } inline void concat(List *list) { base_list::concat(list); } inline void disjoin(List *list) { base_list::disjoin(list); } inline void prepand(List *list) { base_list::prepand(list); } void delete_elements(void) { list_node *element,*next; for (element=first; element != &end_of_list; element=next) { next=element->next; delete (T*) element->info; } clear(); } iterator begin() { return iterator(*this, &first); } size_t size() const { return elements; } void set_size(size_t v) { elements = v; } }; template class List_iterator :public base_list_iterator { public: List_iterator(List& a, list_node** b) : base_list_iterator(a, b) {}; List_iterator() {}; inline T *operator++(int) { return (T*) base_list_iterator::next(); } inline T *replace(T *a) { return (T*) base_list_iterator::replace(a); } inline T *replace(List &a) { return (T*) base_list_iterator::replace(a); } inline T** ref(void) { return (T**) base_list_iterator::ref(); } }; /** Make a deep copy of each list element. @note A template function and not a template method of class List is employed because of explicit template instantiation: in server code there are explicit instantiations of List and an explicit instantiation of a template requires that any method of the instantiated class used in the template can be resolved. Evidently not all template arguments have clone() method with the right signature. @return You must query the error state in Session for out-of-memory situation after calling this function. */ template void list_copy_and_replace_each_value(List &list, memory::Root *mem_root) { /* Make a deep copy of each element */ typename List::iterator it(list.begin()); T *el; while ((el= it++)) it.replace(el->clone(mem_root)); } } /* namespace drizzled */ #endif /* DRIZZLED_SQL_LIST_H */