1
/* Copyright (C) 2000 MySQL AB
3
This program is free software; you can redistribute it and/or modify
4
it under the terms of the GNU General Public License as published by
5
the Free Software Foundation; version 2 of the License.
7
This program is distributed in the hope that it will be useful,
8
but WITHOUT ANY WARRANTY; without even the implied warranty of
9
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
GNU General Public License for more details.
12
You should have received a copy of the GNU General Public License
13
along with this program; if not, write to the Free Software
14
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
17
Code for handling red-black (balanced) binary trees.
18
key in tree is allocated accrding to following:
20
1) If size < 0 then tree will not allocate keys and only a pointer to
21
each key is saved in tree.
22
compare and search functions uses and returns key-pointer
24
2) If size == 0 then there are two options:
25
- key_size != 0 to tree_insert: The key will be stored in the tree.
26
- key_size == 0 to tree_insert: A pointer to the key is stored.
27
compare and search functions uses and returns key-pointer.
29
3) if key_size is given to init_tree then each node will continue the
30
key and calls to insert_key may increase length of key.
31
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
allign) then key will be put on a 8 alligned adress. Else
33
the key will be on adress (element+1). This is transparent for user
34
compare and search functions uses a pointer to given key-argument.
36
- If you use a free function for tree-elements and you are freeing
37
the element itself, you should use key_size = 0 to init_tree and
40
The actual key in TREE_ELEMENT is saved as a pointer or after the
42
If one uses only pointers in tree one can use tree_set_pointer() to
43
change address of data.
50
tree->compare function should be ALWAYS called as
51
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
and not other way around, as
53
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
56
#include "mysys/mysys_priv.h"
57
#include <mystrings/m_string.h>
58
#include <mysys/my_tree.h>
62
#define DEFAULT_ALLOC_SIZE 8192
63
#define DEFAULT_ALIGN_SIZE 8192
65
static void delete_tree_element(TREE *,TREE_ELEMENT *);
66
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
67
tree_walk_action,void *);
68
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
69
tree_walk_action,void *);
70
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
71
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
72
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
74
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
77
void init_tree(TREE *tree, size_t default_alloc_size, uint32_t memory_limit,
78
uint32_t size, qsort_cmp2 compare, bool with_delete,
79
tree_element_free free_element, void *custom_arg)
81
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
82
default_alloc_size= DEFAULT_ALLOC_SIZE;
83
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
84
memset(&tree->null_element, 0, sizeof(tree->null_element));
85
tree->root= &tree->null_element;
86
tree->compare= compare;
87
tree->size_of_element= size > 0 ? (uint32_t) size : 0;
88
tree->memory_limit= memory_limit;
89
tree->free= free_element;
91
tree->elements_in_tree= 0;
92
tree->custom_arg = custom_arg;
93
tree->null_element.colour= BLACK;
94
tree->null_element.left=tree->null_element.right= 0;
97
(size <= sizeof(void*) || ((uint32_t) size & (sizeof(void*)-1))))
100
We know that the data doesn't have to be aligned (like if the key
101
contains a double), so we can store the data combined with the
104
tree->offset_to_key= sizeof(TREE_ELEMENT); /* Put key after element */
105
/* Fix allocation size so that we don't lose any memory */
106
default_alloc_size/= (sizeof(TREE_ELEMENT)+size);
107
if (!default_alloc_size)
108
default_alloc_size= 1;
109
default_alloc_size*= (sizeof(TREE_ELEMENT)+size);
113
tree->offset_to_key= 0; /* use key through pointer */
114
tree->size_of_element+= sizeof(void*);
116
if (! (tree->with_delete= with_delete))
118
init_alloc_root(&tree->mem_root, default_alloc_size, 0);
119
tree->mem_root.min_malloc= (sizeof(TREE_ELEMENT)+tree->size_of_element);
123
static void free_tree(TREE *tree, myf free_flags)
125
if (tree->root) /* If initialized */
127
if (tree->with_delete)
128
delete_tree_element(tree,tree->root);
133
if (tree->memory_limit)
134
(*tree->free)(NULL, free_init, tree->custom_arg);
135
delete_tree_element(tree,tree->root);
136
if (tree->memory_limit)
137
(*tree->free)(NULL, free_end, tree->custom_arg);
139
free_root(&tree->mem_root, free_flags);
142
tree->root= &tree->null_element;
143
tree->elements_in_tree= 0;
147
void delete_tree(TREE* tree)
149
free_tree(tree, MYF(0)); /* free() mem_root if applicable */
152
void reset_tree(TREE* tree)
154
/* do not free mem_root, just mark blocks as free */
155
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
159
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
161
if (element != &tree->null_element)
163
delete_tree_element(tree,element->left);
165
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
166
delete_tree_element(tree,element->right);
167
if (tree->with_delete)
168
free((char*) element);
174
insert, search and delete of elements
176
The following should be true:
177
parent[0] = & parent[-1][0]->left ||
178
parent[0] = & parent[-1][0]->right
181
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint32_t key_size,
185
TREE_ELEMENT *element,***parent;
187
parent= tree->parents;
188
*parent = &tree->root; element= tree->root;
191
if (element == &tree->null_element ||
192
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
197
*++parent= &element->right; element= element->right;
201
*++parent = &element->left; element= element->left;
204
if (element == &tree->null_element)
206
size_t alloc_size= sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
207
tree->allocated+= alloc_size;
209
if (tree->memory_limit && tree->elements_in_tree
210
&& tree->allocated > tree->memory_limit)
213
return tree_insert(tree, key, key_size, custom_arg);
216
key_size+= tree->size_of_element;
217
if (tree->with_delete)
218
element= (TREE_ELEMENT *) malloc(alloc_size);
220
element= (TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
224
element->left= element->right= &tree->null_element;
225
if (!tree->offset_to_key)
227
if (key_size == sizeof(void*)) /* no length, save pointer */
228
*((void**) (element+1))= key;
231
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
232
memcpy(*((void **) (element+1)),key, key_size - sizeof(void*));
236
memcpy((unsigned char*) element + tree->offset_to_key, key, key_size);
237
element->count= 1; /* May give warning in purify */
238
tree->elements_in_tree++;
239
rb_insert(tree,parent,element); /* rebalance tree */
243
if (tree->flag & TREE_NO_DUPS)
246
/* Avoid a wrap over of the count. */
247
if (! element->count)
254
int tree_delete(TREE *tree, void *key, uint32_t key_size, void *custom_arg)
257
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
258
if (!tree->with_delete)
259
return 1; /* not allowed */
261
parent= tree->parents;
262
*parent= &tree->root; element= tree->root;
267
if (element == &tree->null_element)
268
return 1; /* Was not in tree */
269
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
274
*++parent= &element->right; element= element->right;
278
*++parent = &element->left; element= element->left;
281
if (element->left == &tree->null_element)
283
(**parent)= element->right;
284
remove_colour= element->colour;
286
else if (element->right == &tree->null_element)
288
(**parent)= element->left;
289
remove_colour= element->colour;
294
*++parent= &element->right; nod= element->right;
295
while (nod->left != &tree->null_element)
297
*++parent= &nod->left; nod= nod->left;
299
(**parent)= nod->right; /* unlink nod from tree */
300
remove_colour= nod->colour;
301
org_parent[0][0]= nod; /* put y in place of element */
302
org_parent[1]= &nod->right;
303
nod->left= element->left;
304
nod->right= element->right;
305
nod->colour= element->colour;
307
if (remove_colour == BLACK)
308
rb_delete_fixup(tree,parent);
310
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
311
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
312
free((unsigned char*) element);
313
tree->elements_in_tree--;
318
void *tree_search_key(TREE *tree, const void *key,
319
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
320
enum ha_rkey_function flag, void *custom_arg)
322
TREE_ELEMENT *element= tree->root;
323
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
324
TREE_ELEMENT **last_equal_element= NULL;
327
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
330
*parents = &tree->null_element;
331
while (element != &tree->null_element)
337
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
341
case HA_READ_KEY_EXACT:
342
case HA_READ_KEY_OR_NEXT:
343
case HA_READ_BEFORE_KEY:
344
last_equal_element= parents;
347
case HA_READ_AFTER_KEY:
350
case HA_READ_PREFIX_LAST:
351
case HA_READ_PREFIX_LAST_OR_PREV:
352
last_equal_element= parents;
359
if (cmp < 0) /* element < key */
361
last_right_step_parent= parents;
362
element= element->right;
366
last_left_step_parent= parents;
367
element= element->left;
371
case HA_READ_KEY_EXACT:
372
case HA_READ_PREFIX_LAST:
373
*last_pos= last_equal_element;
375
case HA_READ_KEY_OR_NEXT:
376
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
378
case HA_READ_AFTER_KEY:
379
*last_pos= last_left_step_parent;
381
case HA_READ_PREFIX_LAST_OR_PREV:
382
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
384
case HA_READ_BEFORE_KEY:
385
*last_pos= last_right_step_parent;
391
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
395
Search first (the most left) or last (the most right) tree element
397
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
398
TREE_ELEMENT ***last_pos, int child_offs)
400
TREE_ELEMENT *element= tree->root;
402
*parents= &tree->null_element;
403
while (element != &tree->null_element)
406
element= ELEMENT_CHILD(element, child_offs);
409
return **last_pos != &tree->null_element ?
410
ELEMENT_KEY(tree, **last_pos) : NULL;
413
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
416
TREE_ELEMENT *x= **last_pos;
418
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
420
x= ELEMENT_CHILD(x, r_offs);
422
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
424
x= ELEMENT_CHILD(x, l_offs);
427
return ELEMENT_KEY(tree, x);
431
TREE_ELEMENT *y= *--*last_pos;
432
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
437
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
442
Expected that tree is fully balanced
443
(each path from root to leaf has the same length)
445
ha_rows tree_record_pos(TREE *tree, const void *key,
446
enum ha_rkey_function flag, void *custom_arg)
448
TREE_ELEMENT *element= tree->root;
450
double right= tree->elements_in_tree;
452
while (element != &tree->null_element)
456
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
460
case HA_READ_KEY_EXACT:
461
case HA_READ_BEFORE_KEY:
464
case HA_READ_AFTER_KEY:
471
if (cmp < 0) /* element < key */
473
element= element->right;
474
left= (left + right) / 2;
478
element= element->left;
479
right= (left + right) / 2;
484
case HA_READ_KEY_EXACT:
485
case HA_READ_BEFORE_KEY:
486
return (ha_rows) right;
487
case HA_READ_AFTER_KEY:
488
return (ha_rows) left;
494
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
497
case left_root_right:
498
return tree_walk_left_root_right(tree,tree->root,action,argument);
499
case right_root_left:
500
return tree_walk_right_root_left(tree,tree->root,action,argument);
503
return 0; /* Keep gcc happy */
506
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
509
if (element->left) /* Not null_element */
511
if ((error=tree_walk_left_root_right(tree,element->left,action,
513
(error=(*action)(ELEMENT_KEY(tree,element),
514
(element_count) element->count,
516
error=tree_walk_left_root_right(tree,element->right,action,argument);
523
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
526
if (element->right) /* Not null_element */
528
if ((error=tree_walk_right_root_left(tree,element->right,action,
530
(error=(*action)(ELEMENT_KEY(tree,element),
531
(element_count) element->count,
533
error=tree_walk_right_root_left(tree,element->left,action,argument);
541
/* Functions to fix up the tree after insert and delete */
543
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
548
leaf->right= y->left;
553
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
558
leaf->left= x->right;
563
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
565
TREE_ELEMENT *y,*par,*par2;
568
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
570
if (par == (par2=parent[-2][0])->left)
573
if (y->colour == RED)
579
leaf->colour= RED; /* And the loop continues */
583
if (leaf == par->right)
585
left_rotate(parent[-1],par);
586
par= leaf; /* leaf is now parent to old leaf */
590
right_rotate(parent[-2],par2);
597
if (y->colour == RED)
603
leaf->colour= RED; /* And the loop continues */
607
if (leaf == par->left)
609
right_rotate(parent[-1],par);
614
left_rotate(parent[-2],par2);
619
tree->root->colour=BLACK;
622
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
624
TREE_ELEMENT *x,*w,*par;
627
while (x != tree->root && x->colour == BLACK)
629
if (x == (par=parent[-1][0])->left)
632
if (w->colour == RED)
636
left_rotate(parent[-1],par);
638
*++parent= &par->left;
641
if (w->left->colour == BLACK && w->right->colour == BLACK)
649
if (w->right->colour == BLACK)
651
w->left->colour= BLACK;
653
right_rotate(&par->right,w);
656
w->colour= par->colour;
658
w->right->colour= BLACK;
659
left_rotate(parent[-1],par);
667
if (w->colour == RED)
671
right_rotate(parent[-1],par);
672
parent[0]= &w->right;
673
*++parent= &par->right;
676
if (w->right->colour == BLACK && w->left->colour == BLACK)
684
if (w->left->colour == BLACK)
686
w->right->colour= BLACK;
688
left_rotate(&par->left,w);
691
w->colour= par->colour;
693
w->left->colour= BLACK;
694
right_rotate(parent[-1],par);