1
/* Copyright (C) 2000 MySQL AB
3
This program is free software; you can redistribute it and/or modify
4
it under the terms of the GNU General Public License as published by
5
the Free Software Foundation; version 2 of the License.
7
This program is distributed in the hope that it will be useful,
8
but WITHOUT ANY WARRANTY; without even the implied warranty of
9
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
GNU General Public License for more details.
12
You should have received a copy of the GNU General Public License
13
along with this program; if not, write to the Free Software
14
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
17
Code for handling red-black (balanced) binary trees.
18
key in tree is allocated accrding to following:
20
1) If size < 0 then tree will not allocate keys and only a pointer to
21
each key is saved in tree.
22
compare and search functions uses and returns key-pointer
24
2) If size == 0 then there are two options:
25
- key_size != 0 to tree_insert: The key will be stored in the tree.
26
- key_size == 0 to tree_insert: A pointer to the key is stored.
27
compare and search functions uses and returns key-pointer.
29
3) if key_size is given to init_tree then each node will continue the
30
key and calls to insert_key may increase length of key.
31
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
allign) then key will be put on a 8 alligned adress. Else
33
the key will be on adress (element+1). This is transparent for user
34
compare and search functions uses a pointer to given key-argument.
36
- If you use a free function for tree-elements and you are freeing
37
the element itself, you should use key_size = 0 to init_tree and
40
The actual key in TREE_ELEMENT is saved as a pointer or after the
42
If one uses only pointers in tree one can use tree_set_pointer() to
43
change address of data.
50
tree->compare function should be ALWAYS called as
51
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
and not other way around, as
53
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
56
#include "mysys_priv.h"
63
#define DEFAULT_ALLOC_SIZE 8192
64
#define DEFAULT_ALIGN_SIZE 8192
66
static void delete_tree_element(TREE *,TREE_ELEMENT *);
67
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
68
tree_walk_action,void *);
69
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
70
tree_walk_action,void *);
71
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
72
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
73
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
75
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
78
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
79
int size, qsort_cmp2 compare, bool with_delete,
80
tree_element_free free_element, void *custom_arg)
82
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
83
default_alloc_size= DEFAULT_ALLOC_SIZE;
84
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
85
bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
86
tree->root= &tree->null_element;
87
tree->compare=compare;
88
tree->size_of_element=size > 0 ? (uint) size : 0;
89
tree->memory_limit=memory_limit;
90
tree->free=free_element;
92
tree->elements_in_tree=0;
93
tree->custom_arg = custom_arg;
94
tree->null_element.colour=BLACK;
95
tree->null_element.left=tree->null_element.right=0;
97
if (!free_element && size >= 0 &&
98
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
101
We know that the data doesn't have to be aligned (like if the key
102
contains a double), so we can store the data combined with the
105
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
106
/* Fix allocation size so that we don't lose any memory */
107
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
108
if (!default_alloc_size)
109
default_alloc_size=1;
110
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
114
tree->offset_to_key=0; /* use key through pointer */
115
tree->size_of_element+=sizeof(void*);
117
if (!(tree->with_delete=with_delete))
119
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
120
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
125
static void free_tree(TREE *tree, myf free_flags)
127
if (tree->root) /* If initialized */
129
if (tree->with_delete)
130
delete_tree_element(tree,tree->root);
135
if (tree->memory_limit)
136
(*tree->free)(NULL, free_init, tree->custom_arg);
137
delete_tree_element(tree,tree->root);
138
if (tree->memory_limit)
139
(*tree->free)(NULL, free_end, tree->custom_arg);
141
free_root(&tree->mem_root, free_flags);
144
tree->root= &tree->null_element;
145
tree->elements_in_tree=0;
151
void delete_tree(TREE* tree)
153
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
156
void reset_tree(TREE* tree)
158
/* do not free mem_root, just mark blocks as free */
159
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
163
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
165
if (element != &tree->null_element)
167
delete_tree_element(tree,element->left);
169
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
170
delete_tree_element(tree,element->right);
171
if (tree->with_delete)
172
my_free((char*) element,MYF(0));
178
insert, search and delete of elements
180
The following should be true:
181
parent[0] = & parent[-1][0]->left ||
182
parent[0] = & parent[-1][0]->right
185
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
189
TREE_ELEMENT *element,***parent;
191
parent= tree->parents;
192
*parent = &tree->root; element= tree->root;
195
if (element == &tree->null_element ||
196
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
201
*++parent= &element->right; element= element->right;
205
*++parent = &element->left; element= element->left;
208
if (element == &tree->null_element)
210
uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
211
tree->allocated+=alloc_size;
213
if (tree->memory_limit && tree->elements_in_tree
214
&& tree->allocated > tree->memory_limit)
217
return tree_insert(tree, key, key_size, custom_arg);
220
key_size+=tree->size_of_element;
221
if (tree->with_delete)
222
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
224
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
228
element->left=element->right= &tree->null_element;
229
if (!tree->offset_to_key)
231
if (key_size == sizeof(void*)) /* no length, save pointer */
232
*((void**) (element+1))=key;
235
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
236
memcpy((uchar*) *((void **) (element+1)),key,
237
(size_t) (key_size-sizeof(void*)));
241
memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
242
element->count=1; /* May give warning in purify */
243
tree->elements_in_tree++;
244
rb_insert(tree,parent,element); /* rebalance tree */
248
if (tree->flag & TREE_NO_DUPS)
251
/* Avoid a wrap over of the count. */
252
if (! element->count)
258
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
260
int cmp,remove_colour;
261
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
262
if (!tree->with_delete)
263
return 1; /* not allowed */
265
parent= tree->parents;
266
*parent= &tree->root; element= tree->root;
269
if (element == &tree->null_element)
270
return 1; /* Was not in tree */
271
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
276
*++parent= &element->right; element= element->right;
280
*++parent = &element->left; element= element->left;
283
if (element->left == &tree->null_element)
285
(**parent)=element->right;
286
remove_colour= element->colour;
288
else if (element->right == &tree->null_element)
290
(**parent)=element->left;
291
remove_colour= element->colour;
296
*++parent= &element->right; nod= element->right;
297
while (nod->left != &tree->null_element)
299
*++parent= &nod->left; nod= nod->left;
301
(**parent)=nod->right; /* unlink nod from tree */
302
remove_colour= nod->colour;
303
org_parent[0][0]=nod; /* put y in place of element */
304
org_parent[1]= &nod->right;
305
nod->left=element->left;
306
nod->right=element->right;
307
nod->colour=element->colour;
309
if (remove_colour == BLACK)
310
rb_delete_fixup(tree,parent);
312
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
313
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
314
my_free((uchar*) element,MYF(0));
315
tree->elements_in_tree--;
320
void *tree_search(TREE *tree, void *key, void *custom_arg)
323
TREE_ELEMENT *element=tree->root;
327
if (element == &tree->null_element)
329
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
331
return ELEMENT_KEY(tree,element);
333
element=element->right;
335
element=element->left;
339
void *tree_search_key(TREE *tree, const void *key,
340
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
341
enum ha_rkey_function flag, void *custom_arg)
344
TREE_ELEMENT *element= tree->root;
345
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
346
TREE_ELEMENT **last_equal_element= NULL;
349
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
352
*parents = &tree->null_element;
353
while (element != &tree->null_element)
356
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
360
case HA_READ_KEY_EXACT:
361
case HA_READ_KEY_OR_NEXT:
362
case HA_READ_BEFORE_KEY:
363
last_equal_element= parents;
366
case HA_READ_AFTER_KEY:
369
case HA_READ_PREFIX_LAST:
370
case HA_READ_PREFIX_LAST_OR_PREV:
371
last_equal_element= parents;
378
if (cmp < 0) /* element < key */
380
last_right_step_parent= parents;
381
element= element->right;
385
last_left_step_parent= parents;
386
element= element->left;
390
case HA_READ_KEY_EXACT:
391
case HA_READ_PREFIX_LAST:
392
*last_pos= last_equal_element;
394
case HA_READ_KEY_OR_NEXT:
395
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
397
case HA_READ_AFTER_KEY:
398
*last_pos= last_left_step_parent;
400
case HA_READ_PREFIX_LAST_OR_PREV:
401
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
403
case HA_READ_BEFORE_KEY:
404
*last_pos= last_right_step_parent;
409
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
413
Search first (the most left) or last (the most right) tree element
415
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
416
TREE_ELEMENT ***last_pos, int child_offs)
418
TREE_ELEMENT *element= tree->root;
420
*parents= &tree->null_element;
421
while (element != &tree->null_element)
424
element= ELEMENT_CHILD(element, child_offs);
427
return **last_pos != &tree->null_element ?
428
ELEMENT_KEY(tree, **last_pos) : NULL;
431
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
434
TREE_ELEMENT *x= **last_pos;
436
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
438
x= ELEMENT_CHILD(x, r_offs);
440
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
442
x= ELEMENT_CHILD(x, l_offs);
445
return ELEMENT_KEY(tree, x);
449
TREE_ELEMENT *y= *--*last_pos;
450
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
455
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
460
Expected that tree is fully balanced
461
(each path from root to leaf has the same length)
463
ha_rows tree_record_pos(TREE *tree, const void *key,
464
enum ha_rkey_function flag, void *custom_arg)
467
TREE_ELEMENT *element= tree->root;
469
double right= tree->elements_in_tree;
471
while (element != &tree->null_element)
473
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
477
case HA_READ_KEY_EXACT:
478
case HA_READ_BEFORE_KEY:
481
case HA_READ_AFTER_KEY:
488
if (cmp < 0) /* element < key */
490
element= element->right;
491
left= (left + right) / 2;
495
element= element->left;
496
right= (left + right) / 2;
500
case HA_READ_KEY_EXACT:
501
case HA_READ_BEFORE_KEY:
502
return (ha_rows) right;
503
case HA_READ_AFTER_KEY:
504
return (ha_rows) left;
510
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
513
case left_root_right:
514
return tree_walk_left_root_right(tree,tree->root,action,argument);
515
case right_root_left:
516
return tree_walk_right_root_left(tree,tree->root,action,argument);
518
return 0; /* Keep gcc happy */
521
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
524
if (element->left) /* Not null_element */
526
if ((error=tree_walk_left_root_right(tree,element->left,action,
528
(error=(*action)(ELEMENT_KEY(tree,element),
529
(element_count) element->count,
531
error=tree_walk_left_root_right(tree,element->right,action,argument);
537
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
540
if (element->right) /* Not null_element */
542
if ((error=tree_walk_right_root_left(tree,element->right,action,
544
(error=(*action)(ELEMENT_KEY(tree,element),
545
(element_count) element->count,
547
error=tree_walk_right_root_left(tree,element->left,action,argument);
554
/* Functions to fix up the tree after insert and delete */
556
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
566
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
576
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
578
TREE_ELEMENT *y,*par,*par2;
581
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
583
if (par == (par2=parent[-2][0])->left)
586
if (y->colour == RED)
592
leaf->colour=RED; /* And the loop continues */
596
if (leaf == par->right)
598
left_rotate(parent[-1],par);
599
par=leaf; /* leaf is now parent to old leaf */
603
right_rotate(parent[-2],par2);
610
if (y->colour == RED)
616
leaf->colour=RED; /* And the loop continues */
620
if (leaf == par->left)
622
right_rotate(parent[-1],par);
627
left_rotate(parent[-2],par2);
632
tree->root->colour=BLACK;
635
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
637
TREE_ELEMENT *x,*w,*par;
640
while (x != tree->root && x->colour == BLACK)
642
if (x == (par=parent[-1][0])->left)
645
if (w->colour == RED)
649
left_rotate(parent[-1],par);
651
*++parent= &par->left;
654
if (w->left->colour == BLACK && w->right->colour == BLACK)
662
if (w->right->colour == BLACK)
664
w->left->colour=BLACK;
666
right_rotate(&par->right,w);
669
w->colour=par->colour;
671
w->right->colour=BLACK;
672
left_rotate(parent[-1],par);
680
if (w->colour == RED)
684
right_rotate(parent[-1],par);
685
parent[0]= &w->right;
686
*++parent= &par->right;
689
if (w->right->colour == BLACK && w->left->colour == BLACK)
697
if (w->left->colour == BLACK)
699
w->right->colour=BLACK;
701
left_rotate(&par->left,w);
704
w->colour=par->colour;
706
w->left->colour=BLACK;
707
right_rotate(parent[-1],par);