1
/* Copyright (c) 2008 PrimeBase Technologies GmbH, Germany
3
* PrimeBase Media Stream for MySQL
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; either version 2 of the License, or
8
* (at your option) any later version.
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19
* Original author: Paul McCullagh (H&G2JCtL)
20
* Continued development: Barry Leslie
25
* Common definitions that may be required be included at the
26
* top of every header file.
33
#include <sys/types.h>
35
// Use standard portable data types
38
/* Those compilers that support the function
39
* macro (in particular the "pretty" function
40
* macro must be defined here.
43
#define __FUNC__ __FUNCTION__
44
#elif defined(OS_SOLARIS)
45
#define __FUNC__ "__func__"
47
#define __FUNC__ __PRETTY_FUNCTION__
51
* An unsigned integer, 1 byte long:
54
#define u_char unsigned char
58
* An usigned integer, 1 byte long:
60
#define s_char unsigned char
62
/* We assumes that off_t is 8 bytes so to ensure this always use off64_t*/
63
#define off64_t uint64_t
67
* A signed integer at least 32 bits long.
68
* The size used is whatever is most
69
* convenient to the machine.
71
#define s_int int_fast32_t
73
/* Forward declartion of a thread: */
76
// Used to avoid warnings about unused parameters.
77
#define UNUSED(x) (void)x
81
#define CS_DEFAULT_EOL "\r\n"
82
#define CS_DIR_CHAR '\\'
83
#define CS_DIR_DELIM "\\"
84
#define IS_DIR_CHAR(ch) ((ch) == CS_DIR_CHAR || (ch) == '/')
87
#define PATH_MAX MAX_PATH
91
#define NAME_MAX MAX_PATH
96
#define CS_DEFAULT_EOL "\n"
97
#define CS_DIR_CHAR '/'
98
#define CS_DIR_DELIM "/"
99
#define IS_DIR_CHAR(ch) ((ch) == CS_DIR_CHAR)
103
#define CS_CALL_STACK_SIZE 100
104
#define CS_RELEASE_STACK_SIZE 200
105
#define CS_JUMP_STACK_SIZE 20
107
/* C string display width sizes including space for a null terminator and possible sign. */
108
#define CS_WIDTH_INT_8 5
109
#define CS_WIDTH_INT_16 7
110
#define CS_WIDTH_INT_32 12
111
#define CS_WIDTH_INT_64 22
113
typedef uint8_t CSDiskValue1[1];
114
typedef uint8_t CSDiskValue2[2];
115
typedef uint8_t CSDiskValue3[3];
116
typedef uint8_t CSDiskValue4[4];
117
typedef uint8_t CSDiskValue6[6];
118
typedef uint8_t CSDiskValue8[8];
121
* Byte order on the disk is little endian! This is the byte order of the i386.
122
* Little endian byte order starts with the least significan byte.
124
* The reason for choosing this byte order for the disk is 2-fold:
125
* Firstly the i386 is the cheapest and fasted platform today.
126
* Secondly the i386, unlike RISK chips (with big endian) can address
127
* memory that is not aligned!
129
* Since the disk image of PrimeBase XT is not aligned, the second point
130
* is significant. A RISK chip needs to access it byte-wise, so we might as
131
* well do the byte swapping at the same time.
133
* The macros below are of 4 general types:
135
* GET/SET - Get and set 1,2,4,8 byte values (short, int, long, etc).
136
* Values are swapped only on big endian platforms. This makes these
137
* functions very efficient on little-endian platforms.
139
* COPY - Transfer data without swapping regardless of platform. This
140
* function is a bit more efficient on little-endian platforms
141
* because alignment is not an issue.
143
* MOVE - Similar to get and set, but the deals with memory instead
144
* of values. Since no swapping is done on little-endian platforms
145
* this function is identical to COPY on little-endian platforms.
147
* SWAP - Transfer and swap data regardless of the platform type.
148
* Aligment is not assumed.
150
* The DISK component of the macro names indicates that alignment of
151
* the value cannot be assumed.
154
#if BYTE_ORDER == BIG_ENDIAN
155
/* The native order of the machine is big endian. Since the native disk
156
* disk order of XT is little endian, all data to and from disk
159
#define CS_SET_DISK_1(d, s) ((d)[0] = (uint8_t) (s))
161
#define CS_SET_DISK_2(d, s) do { (d)[0] = (uint8_t) (((uint16_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint16_t) (s)) >> 8 ) & 0xFF); } while (0)
163
#define CS_SET_DISK_3(d, s) do { (d)[0] = (uint8_t) (((uint32_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
164
(d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); } while (0)
166
#define CS_SET_DISK_4(d, s) do { (d)[0] = (uint8_t) (((uint32_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
167
(d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint32_t) (s)) >> 24) & 0xFF); } while (0)
169
#define CS_SET_DISK_6(d, s) do { (d)[0] = (uint8_t) (((uint64_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
170
(d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
171
(d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); } while (0)
173
#define CS_SET_DISK_8(d, s) do { (d)[0] = (uint8_t) (((uint64_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
174
(d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
175
(d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); \
176
(d)[6] = (uint8_t) ((((uint64_t) (s)) >> 48) & 0xFF); (d)[7] = (uint8_t) ((((uint64_t) (s)) >> 56) & 0xFF); } while (0)
178
#define CS_GET_DISK_1(s) ((s)[0])
180
#define CS_GET_DISK_2(s) ((uint16_t) (((uint16_t) (s)[0]) | (((uint16_t) (s)[1]) << 8)))
182
#define CS_GET_DISK_3(s) ((uint32_t) (((uint32_t) (s)[0]) | (((uint32_t) (s)[1]) << 8) | (((uint32_t) (s)[2]) << 16)))
184
#define CS_GET_DISK_4(s) (((uint32_t) (s)[0]) | (((uint32_t) (s)[1]) << 8 ) | \
185
(((uint32_t) (s)[2]) << 16) | (((uint32_t) (s)[3]) << 24))
187
#define CS_GET_DISK_6(s) (((uint64_t) (s)[0]) | (((uint64_t) (s)[1]) << 8 ) | \
188
(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
189
(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40))
191
#define CS_GET_DISK_8(s) (((uint64_t) (s)[0]) | (((uint64_t) (s)[1]) << 8 ) | \
192
(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
193
(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40) | \
194
(((uint64_t) (s)[6]) << 48) | (((uint64_t) (s)[7]) << 56))
196
/* Move will copy memory, and swap the bytes on a big endian machine.
197
* On a little endian machine it is the same as COPY.
199
#define CS_MOVE_DISK_1(d, s) ((d)[0] = (s)[0])
200
#define CS_MOVE_DISK_2(d, s) do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
201
#define CS_MOVE_DISK_3(d, s) do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
202
#define CS_MOVE_DISK_4(d, s) do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
203
#define CS_MOVE_DISK_8(d, s) do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; \
204
(d)[2] = (s)[5]; (d)[3] = (s)[4]; \
205
(d)[4] = (s)[3]; (d)[5] = (s)[2]; \
206
(d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
209
* Copy just copies the number of bytes assuming the data is not alligned.
211
#define CS_COPY_DISK_1(d, s) (d)[0] = s
212
#define CS_COPY_DISK_2(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; } while (0)
213
#define CS_COPY_DISK_3(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; } while (0)
214
#define CS_COPY_DISK_4(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; (d)[3] = (s)[3]; } while (0)
215
#define CS_COPY_DISK_6(d, s) memcpy(&((d)[0]), &((s)[0]), 6)
216
#define CS_COPY_DISK_8(d, s) memcpy(&((d)[0]), &((s)[0]), 8)
217
#define CS_COPY_DISK_10(d, s) memcpy(&((d)[0]), &((s)[0]), 10)
219
#define CS_SET_NULL_DISK_1(d) CS_SET_DISK_1(d, 0)
220
#define CS_SET_NULL_DISK_2(d) do { (d)[0] = 0; (d)[1] = 0; } while (0)
221
#define CS_SET_NULL_DISK_4(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; } while (0)
222
#define CS_SET_NULL_DISK_6(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; } while (0)
223
#define CS_SET_NULL_DISK_8(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; (d)[6] = 0; (d)[7] = 0; } while (0)
225
#define CS_IS_NULL_DISK_1(d) (!(CS_GET_DISK_1(d)))
226
#define CS_IS_NULL_DISK_4(d) (!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3])
227
#define CS_IS_NULL_DISK_8(d) (!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3] && !(d)[4] && !(d)[5] && !(d)[6] && !(7)[3])
229
#define CS_EQ_DISK_4(d, s) ((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3])
230
#define CS_EQ_DISK_8(d, s) ((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3] && \
231
(d)[4] == (s)[4] && (d)[5] == (s)[5] && (d)[6] == (s)[6] && (d)[7] == (s)[7])
233
#define CS_IS_FF_DISK_4(d) ((d)[0] == 0xFF && (d)[1] == 0xFF && (d)[2] == 0xFF && (d)[3] == 0xFF)
236
* The native order of the machine is little endian. This means the data to
237
* and from disk need not be swapped. In addition to this, since
238
* the i386 can access non-aligned memory we are not required to
239
* handle the data byte-for-byte.
241
#define CS_SET_DISK_1(d, s) ((d)[0] = (uint8_t) (s))
242
#define CS_SET_DISK_2(d, s) (*((uint16_t *) &((d)[0])) = (uint16_t) (s))
243
#define CS_SET_DISK_3(d, s) do { (*((uint16_t *) &((d)[0])) = (uint16_t) (s)); *((uint8_t *) &((d)[2])) = (uint8_t) (((uint32_t) (s)) >> 16); } while (0)
244
#define CS_SET_DISK_4(d, s) (*((uint32_t *) &((d)[0])) = (uint32_t) (s))
245
#define CS_SET_DISK_6(d, s) do { *((uint32_t *) &((d)[0])) = (uint32_t) (s); *((uint16_t *) &((d)[4])) = (uint16_t) (((uint64_t) (s)) >> 32); } while (0)
246
#define CS_SET_DISK_8(d, s) (*((uint64_t *) &((d)[0])) = (uint64_t) (s))
248
#define CS_GET_DISK_1(s) ((s)[0])
249
#define CS_GET_DISK_2(s) *((uint16_t *) &((s)[0]))
250
#define CS_GET_DISK_3(s) ((uint32_t) *((uint16_t *) &((s)[0])) | (((uint32_t) *((uint8_t *) &((s)[2]))) << 16))
251
#define CS_GET_DISK_4(s) *((uint32_t *) &((s)[0]))
252
#define CS_GET_DISK_6(s) ((uint64_t) *((uint32_t *) &((s)[0])) | (((uint64_t) *((uint16_t *) &((s)[4]))) << 32))
253
#define CS_GET_DISK_8(s) *((uint64_t *) &((s)[0]))
255
#define CS_MOVE_DISK_1(d, s) ((d)[0] = (s)[0])
256
#define CS_MOVE_DISK_2(d, s) CS_COPY_DISK_2(d, s)
257
#define CS_MOVE_DISK_3(d, s) CS_COPY_DISK_3(d, s)
258
#define CS_MOVE_DISK_4(d, s) CS_COPY_DISK_4(d, s)
259
#define CS_MOVE_DISK_8(d, s) CS_COPY_DISK_8(d, s)
261
#define CS_COPY_DISK_1(d, s) (d)[0] = s
262
#define CS_COPY_DISK_2(d, s) (*((uint16_t *) &((d)[0])) = (*((uint16_t *) &((s)[0]))))
263
#define CS_COPY_DISK_3(d, s) do { *((uint16_t *) &((d)[0])) = *((uint16_t *) &((s)[0])); (d)[2] = (s)[2]; } while (0)
264
#define CS_COPY_DISK_4(d, s) (*((uint32_t *) &((d)[0])) = (*((uint32_t *) &((s)[0]))))
265
#define CS_COPY_DISK_6(d, s) do { *((uint32_t *) &((d)[0])) = *((uint32_t *) &((s)[0])); *((uint16_t *) &((d)[4])) = *((uint16_t *) &((s)[4])); } while (0)
266
#define CS_COPY_DISK_8(d, s) (*((uint64_t *) &(d[0])) = (*((uint64_t *) &((s)[0]))))
267
#define CS_COPY_DISK_10(d, s) memcpy(&((d)[0]), &((s)[0]), 10)
269
#define CS_SET_NULL_DISK_1(d) CS_SET_DISK_1(d, 0)
270
#define CS_SET_NULL_DISK_2(d) CS_SET_DISK_2(d, 0)
271
#define CS_SET_NULL_DISK_3(d) CS_SET_DISK_3(d, 0)
272
#define CS_SET_NULL_DISK_4(d) CS_SET_DISK_4(d, 0L)
273
#define CS_SET_NULL_DISK_6(d) CS_SET_DISK_6(d, 0LL)
274
#define CS_SET_NULL_DISK_8(d) CS_SET_DISK_8(d, 0LL)
276
#define CS_IS_NULL_DISK_1(d) (!(CS_GET_DISK_1(d)))
277
#define CS_IS_NULL_DISK_2(d) (!(CS_GET_DISK_2(d)))
278
#define CS_IS_NULL_DISK_3(d) (!(CS_GET_DISK_3(d)))
279
#define CS_IS_NULL_DISK_4(d) (!(CS_GET_DISK_4(d)))
280
#define CS_IS_NULL_DISK_8(d) (!(CS_GET_DISK_8(d)))
282
#define CS_EQ_DISK_4(d, s) (CS_GET_DISK_4(d) == CS_GET_DISK_4(s))
283
#define CS_EQ_DISK_8(d, s) (CS_GET_DISK_8(d) == CS_GET_DISK_8(s))
285
#define CS_IS_FF_DISK_4(d) (CS_GET_DISK_4(d) == 0xFFFFFFFF)
288
#define CS_CMP_DISK_4(a, b) ((int32_t) CS_GET_DISK_4(a) - (int32_t) CS_GET_DISK_4(b))
289
#define CS_CMP_DISK_8(d, s) memcmp(&((d)[0]), &((s)[0]), 8)
290
//#define CS_CMP_DISK_8(d, s) (CS_CMP_DISK_4((d).h_number_4, (s).h_number_4) == 0 ? CS_CMP_DISK_4((d).h_file_4, (s).h_file_4) : CS_CMP_DISK_4((d).h_number_4, (s).h_number_4))
292
#define CS_SWAP_DISK_2(d, s) do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
293
#define CS_SWAP_DISK_3(d, s) do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
294
#define CS_SWAP_DISK_4(d, s) do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
295
#define CS_SWAP_DISK_8(d, s) do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; (d)[2] = (s)[5]; (d)[3] = (s)[4]; \
296
(d)[4] = (s)[3]; (d)[5] = (s)[2]; (d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
301
} CSIntRec, *CSIntPtr;
304
const char *rec_cchars;
309
#define CHECKSUM_VALUE_SIZE 16
311
u_char val[CHECKSUM_VALUE_SIZE];