1
/* Copyright (C) 2000 MySQL AB
3
This program is free software; you can redistribute it and/or modify
4
it under the terms of the GNU General Public License as published by
5
the Free Software Foundation; version 2 of the License.
7
This program is distributed in the hope that it will be useful,
8
but WITHOUT ANY WARRANTY; without even the implied warranty of
9
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
GNU General Public License for more details.
12
You should have received a copy of the GNU General Public License
13
along with this program; if not, write to the Free Software
14
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
17
Code for handling red-black (balanced) binary trees.
18
key in tree is allocated accrding to following:
20
1) If size < 0 then tree will not allocate keys and only a pointer to
21
each key is saved in tree.
22
compare and search functions uses and returns key-pointer
24
2) If size == 0 then there are two options:
25
- key_size != 0 to tree_insert: The key will be stored in the tree.
26
- key_size == 0 to tree_insert: A pointer to the key is stored.
27
compare and search functions uses and returns key-pointer.
29
3) if key_size is given to init_tree then each node will continue the
30
key and calls to insert_key may increase length of key.
31
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
allign) then key will be put on a 8 alligned adress. Else
33
the key will be on adress (element+1). This is transparent for user
34
compare and search functions uses a pointer to given key-argument.
36
- If you use a free function for tree-elements and you are freeing
37
the element itself, you should use key_size = 0 to init_tree and
40
The actual key in TREE_ELEMENT is saved as a pointer or after the
42
If one uses only pointers in tree one can use tree_set_pointer() to
43
change address of data.
50
tree->compare function should be ALWAYS called as
51
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
and not other way around, as
53
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
56
#include "mysys_priv.h"
57
#include <mystrings/m_string.h>
58
#include <mysys/my_tree.h>
62
#define DEFAULT_ALLOC_SIZE 8192
63
#define DEFAULT_ALIGN_SIZE 8192
65
static void delete_tree_element(TREE *,TREE_ELEMENT *);
66
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
67
tree_walk_action,void *);
68
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
69
tree_walk_action,void *);
70
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
71
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
72
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
74
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
77
void init_tree(TREE *tree, uint32_t default_alloc_size, uint32_t memory_limit,
78
int size, qsort_cmp2 compare, bool with_delete,
79
tree_element_free free_element, void *custom_arg)
81
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
82
default_alloc_size= DEFAULT_ALLOC_SIZE;
83
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
84
memset(&tree->null_element, 0, sizeof(tree->null_element));
85
tree->root= &tree->null_element;
86
tree->compare=compare;
87
tree->size_of_element=size > 0 ? (uint) size : 0;
88
tree->memory_limit=memory_limit;
89
tree->free=free_element;
91
tree->elements_in_tree=0;
92
tree->custom_arg = custom_arg;
93
tree->null_element.colour=BLACK;
94
tree->null_element.left=tree->null_element.right=0;
96
if (!free_element && size >= 0 &&
97
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
100
We know that the data doesn't have to be aligned (like if the key
101
contains a double), so we can store the data combined with the
104
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
105
/* Fix allocation size so that we don't lose any memory */
106
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
107
if (!default_alloc_size)
108
default_alloc_size=1;
109
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
113
tree->offset_to_key=0; /* use key through pointer */
114
tree->size_of_element+=sizeof(void*);
116
if (!(tree->with_delete=with_delete))
118
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
119
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
124
static void free_tree(TREE *tree, myf free_flags)
126
if (tree->root) /* If initialized */
128
if (tree->with_delete)
129
delete_tree_element(tree,tree->root);
134
if (tree->memory_limit)
135
(*tree->free)(NULL, free_init, tree->custom_arg);
136
delete_tree_element(tree,tree->root);
137
if (tree->memory_limit)
138
(*tree->free)(NULL, free_end, tree->custom_arg);
140
free_root(&tree->mem_root, free_flags);
143
tree->root= &tree->null_element;
144
tree->elements_in_tree=0;
150
void delete_tree(TREE* tree)
152
free_tree(tree, MYF(0)); /* free() mem_root if applicable */
155
void reset_tree(TREE* tree)
157
/* do not free mem_root, just mark blocks as free */
158
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
162
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
164
if (element != &tree->null_element)
166
delete_tree_element(tree,element->left);
168
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
169
delete_tree_element(tree,element->right);
170
if (tree->with_delete)
171
free((char*) element);
177
insert, search and delete of elements
179
The following should be true:
180
parent[0] = & parent[-1][0]->left ||
181
parent[0] = & parent[-1][0]->right
184
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint32_t key_size,
188
TREE_ELEMENT *element,***parent;
190
parent= tree->parents;
191
*parent = &tree->root; element= tree->root;
194
if (element == &tree->null_element ||
195
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
200
*++parent= &element->right; element= element->right;
204
*++parent = &element->left; element= element->left;
207
if (element == &tree->null_element)
209
uint32_t alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
210
tree->allocated+=alloc_size;
212
if (tree->memory_limit && tree->elements_in_tree
213
&& tree->allocated > tree->memory_limit)
216
return tree_insert(tree, key, key_size, custom_arg);
219
key_size+=tree->size_of_element;
220
if (tree->with_delete)
221
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
223
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
227
element->left=element->right= &tree->null_element;
228
if (!tree->offset_to_key)
230
if (key_size == sizeof(void*)) /* no length, save pointer */
231
*((void**) (element+1))=key;
234
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
235
memcpy(*((void **) (element+1)),key, key_size - sizeof(void*));
239
memcpy((unsigned char*) element + tree->offset_to_key, key, key_size);
240
element->count=1; /* May give warning in purify */
241
tree->elements_in_tree++;
242
rb_insert(tree,parent,element); /* rebalance tree */
246
if (tree->flag & TREE_NO_DUPS)
249
/* Avoid a wrap over of the count. */
250
if (! element->count)
256
int tree_delete(TREE *tree, void *key, uint32_t key_size, void *custom_arg)
258
int cmp,remove_colour;
259
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
260
if (!tree->with_delete)
261
return 1; /* not allowed */
263
parent= tree->parents;
264
*parent= &tree->root; element= tree->root;
267
if (element == &tree->null_element)
268
return 1; /* Was not in tree */
269
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
274
*++parent= &element->right; element= element->right;
278
*++parent = &element->left; element= element->left;
281
if (element->left == &tree->null_element)
283
(**parent)=element->right;
284
remove_colour= element->colour;
286
else if (element->right == &tree->null_element)
288
(**parent)=element->left;
289
remove_colour= element->colour;
294
*++parent= &element->right; nod= element->right;
295
while (nod->left != &tree->null_element)
297
*++parent= &nod->left; nod= nod->left;
299
(**parent)=nod->right; /* unlink nod from tree */
300
remove_colour= nod->colour;
301
org_parent[0][0]=nod; /* put y in place of element */
302
org_parent[1]= &nod->right;
303
nod->left=element->left;
304
nod->right=element->right;
305
nod->colour=element->colour;
307
if (remove_colour == BLACK)
308
rb_delete_fixup(tree,parent);
310
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
311
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
312
free((unsigned char*) element);
313
tree->elements_in_tree--;
318
void *tree_search(TREE *tree, void *key, void *custom_arg)
321
TREE_ELEMENT *element=tree->root;
325
if (element == &tree->null_element)
327
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
329
return ELEMENT_KEY(tree,element);
331
element=element->right;
333
element=element->left;
337
void *tree_search_key(TREE *tree, const void *key,
338
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
339
enum ha_rkey_function flag, void *custom_arg)
342
TREE_ELEMENT *element= tree->root;
343
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
344
TREE_ELEMENT **last_equal_element= NULL;
347
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
350
*parents = &tree->null_element;
351
while (element != &tree->null_element)
354
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
358
case HA_READ_KEY_EXACT:
359
case HA_READ_KEY_OR_NEXT:
360
case HA_READ_BEFORE_KEY:
361
last_equal_element= parents;
364
case HA_READ_AFTER_KEY:
367
case HA_READ_PREFIX_LAST:
368
case HA_READ_PREFIX_LAST_OR_PREV:
369
last_equal_element= parents;
376
if (cmp < 0) /* element < key */
378
last_right_step_parent= parents;
379
element= element->right;
383
last_left_step_parent= parents;
384
element= element->left;
388
case HA_READ_KEY_EXACT:
389
case HA_READ_PREFIX_LAST:
390
*last_pos= last_equal_element;
392
case HA_READ_KEY_OR_NEXT:
393
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
395
case HA_READ_AFTER_KEY:
396
*last_pos= last_left_step_parent;
398
case HA_READ_PREFIX_LAST_OR_PREV:
399
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
401
case HA_READ_BEFORE_KEY:
402
*last_pos= last_right_step_parent;
407
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
411
Search first (the most left) or last (the most right) tree element
413
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
414
TREE_ELEMENT ***last_pos, int child_offs)
416
TREE_ELEMENT *element= tree->root;
418
*parents= &tree->null_element;
419
while (element != &tree->null_element)
422
element= ELEMENT_CHILD(element, child_offs);
425
return **last_pos != &tree->null_element ?
426
ELEMENT_KEY(tree, **last_pos) : NULL;
429
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
432
TREE_ELEMENT *x= **last_pos;
434
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
436
x= ELEMENT_CHILD(x, r_offs);
438
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
440
x= ELEMENT_CHILD(x, l_offs);
443
return ELEMENT_KEY(tree, x);
447
TREE_ELEMENT *y= *--*last_pos;
448
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
453
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
458
Expected that tree is fully balanced
459
(each path from root to leaf has the same length)
461
ha_rows tree_record_pos(TREE *tree, const void *key,
462
enum ha_rkey_function flag, void *custom_arg)
465
TREE_ELEMENT *element= tree->root;
467
double right= tree->elements_in_tree;
469
while (element != &tree->null_element)
471
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
475
case HA_READ_KEY_EXACT:
476
case HA_READ_BEFORE_KEY:
479
case HA_READ_AFTER_KEY:
486
if (cmp < 0) /* element < key */
488
element= element->right;
489
left= (left + right) / 2;
493
element= element->left;
494
right= (left + right) / 2;
498
case HA_READ_KEY_EXACT:
499
case HA_READ_BEFORE_KEY:
500
return (ha_rows) right;
501
case HA_READ_AFTER_KEY:
502
return (ha_rows) left;
508
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
511
case left_root_right:
512
return tree_walk_left_root_right(tree,tree->root,action,argument);
513
case right_root_left:
514
return tree_walk_right_root_left(tree,tree->root,action,argument);
516
return 0; /* Keep gcc happy */
519
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
522
if (element->left) /* Not null_element */
524
if ((error=tree_walk_left_root_right(tree,element->left,action,
526
(error=(*action)(ELEMENT_KEY(tree,element),
527
(element_count) element->count,
529
error=tree_walk_left_root_right(tree,element->right,action,argument);
535
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
538
if (element->right) /* Not null_element */
540
if ((error=tree_walk_right_root_left(tree,element->right,action,
542
(error=(*action)(ELEMENT_KEY(tree,element),
543
(element_count) element->count,
545
error=tree_walk_right_root_left(tree,element->left,action,argument);
552
/* Functions to fix up the tree after insert and delete */
554
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
564
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
574
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
576
TREE_ELEMENT *y,*par,*par2;
579
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
581
if (par == (par2=parent[-2][0])->left)
584
if (y->colour == RED)
590
leaf->colour=RED; /* And the loop continues */
594
if (leaf == par->right)
596
left_rotate(parent[-1],par);
597
par=leaf; /* leaf is now parent to old leaf */
601
right_rotate(parent[-2],par2);
608
if (y->colour == RED)
614
leaf->colour=RED; /* And the loop continues */
618
if (leaf == par->left)
620
right_rotate(parent[-1],par);
625
left_rotate(parent[-2],par2);
630
tree->root->colour=BLACK;
633
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
635
TREE_ELEMENT *x,*w,*par;
638
while (x != tree->root && x->colour == BLACK)
640
if (x == (par=parent[-1][0])->left)
643
if (w->colour == RED)
647
left_rotate(parent[-1],par);
649
*++parent= &par->left;
652
if (w->left->colour == BLACK && w->right->colour == BLACK)
660
if (w->right->colour == BLACK)
662
w->left->colour=BLACK;
664
right_rotate(&par->right,w);
667
w->colour=par->colour;
669
w->right->colour=BLACK;
670
left_rotate(parent[-1],par);
678
if (w->colour == RED)
682
right_rotate(parent[-1],par);
683
parent[0]= &w->right;
684
*++parent= &par->right;
687
if (w->right->colour == BLACK && w->left->colour == BLACK)
695
if (w->left->colour == BLACK)
697
w->right->colour=BLACK;
699
left_rotate(&par->left,w);
702
w->colour=par->colour;
704
w->left->colour=BLACK;
705
right_rotate(parent[-1],par);