103
97
implementation-defined.
108
#include <drizzled/definitions.h>
109
#include <drizzled/internal/m_string.h>
110
#include <drizzled/charset_info.h>
111
#include <drizzled/type/decimal.h>
113
#include <plugin/myisam/myisampack.h>
114
#include <drizzled/util/test.h>
117
100
#include <alloca.h>
122
#include <drizzled/current_session.h>
123
#include <drizzled/error.h>
124
#include <drizzled/field.h>
125
#include <drizzled/internal/my_sys.h>
132
report result of decimal operation.
134
@param result decimal library return code (E_DEC_* see include/decimal.h)
143
int decimal_operation_results(int result)
148
case E_DEC_TRUNCATED:
149
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_WARN,
150
ER_WARN_DATA_TRUNCATED, ER(ER_WARN_DATA_TRUNCATED),
154
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_ERROR,
155
ER_TRUNCATED_WRONG_VALUE,
156
ER(ER_TRUNCATED_WRONG_VALUE),
160
my_error(ER_DIVISION_BY_ZERO, MYF(0));
163
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_ERROR,
164
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD,
165
ER(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD),
166
"decimal", "", "", (long)-1);
169
my_error(ER_OUT_OF_RESOURCES, MYF(0));
179
@brief Converting decimal to string
181
@details Convert given type::Decimal to String; allocate buffer as needed.
183
@param[in] mask what problems to warn on (mask of E_DEC_* values)
184
@param[in] d the decimal to print
185
@param[in] fixed_prec overall number of digits if ZEROFILL, 0 otherwise
186
@param[in] fixed_dec number of decimal places (if fixed_prec != 0)
187
@param[in] filler what char to pad with (ZEROFILL et al.)
188
@param[out] *str where to store the resulting string
192
@retval E_DEC_TRUNCATED
193
@retval E_DEC_OVERFLOW
197
int class_decimal2string(const type::Decimal *d,
198
uint32_t fixed_dec, String *str)
200
uint32_t mask= E_DEC_FATAL_ERROR;
203
Calculate the size of the string: For DECIMAL(a,b), fixed_prec==a
204
holds true iff the type is also ZEROFILL, which in turn implies
205
UNSIGNED. Hence the buffer for a ZEROFILLed value is the length
206
the user requested, plus one for a possible decimal point, plus
207
one if the user only wanted decimal places, but we force a leading
208
zero on them. Because the type is implicitly UNSIGNED, we do not
209
need to reserve a character for the sign. For all other cases,
210
fixed_prec will be 0, and class_decimal_string_length() will be called
211
instead to calculate the required size of the buffer.
214
? (uint32_t)(((0 == fixed_dec) ? 1 : 0) + 1)
215
: (uint32_t)d->string_length());
217
if (str->alloc(length))
218
return check_result(mask, E_DEC_OOM);
220
result= decimal2string((decimal_t*) d, (char*) str->ptr(),
221
&length, (int)0, fixed_dec,
224
return check_result(mask, result);
229
@brief Convert from decimal to binary representation
231
@param[in] mask error processing mask
232
@param[in] d number for conversion
233
@param[out] bin pointer to buffer where to write result
234
@param[in] prec overall number of decimal digits
235
@param[in] scale number of decimal digits after decimal point
238
Before conversion we round number if it need but produce truncation
243
@retval E_DEC_TRUNCATED
244
@retval E_DEC_OVERFLOW
249
int Decimal::val_binary(uint32_t mask, unsigned char *bin, int prec, int scale) const
251
int err1= E_DEC_OK, err2;
252
type::Decimal rounded;
253
class_decimal2decimal(this, &rounded);
254
rounded.frac= decimal_actual_fraction(&rounded);
255
if (scale < rounded.frac)
257
err1= E_DEC_TRUNCATED;
258
/* decimal_round can return only E_DEC_TRUNCATED */
259
decimal_round(&rounded, &rounded, scale, HALF_UP);
261
err2= decimal2bin(&rounded, bin, prec, scale);
264
return check_result(mask, err2);
271
@brief Convert string for decimal when string can be in some multibyte charset
273
@param mask error processing mask
274
@param from string to process
275
@param length length of given string
276
@param charset charset of given string
280
@retval E_DEC_TRUNCATED
281
@retval E_DEC_OVERFLOW
282
@retval E_DEC_BAD_NUM
286
int type::Decimal::store(uint32_t mask, const char *from, uint32_t length, const CHARSET_INFO * charset)
288
char *end, *from_end;
290
char buff[STRING_BUFFER_USUAL_SIZE];
291
String tmp(buff, sizeof(buff), &my_charset_bin);
292
if (charset->mbminlen > 1)
295
tmp.copy(from, length, charset, &my_charset_utf8_general_ci, &dummy_errors);
297
length= tmp.length();
298
charset= &my_charset_bin;
300
from_end= end= (char*) from+length;
301
err= string2decimal((char *)from, (decimal_t*) this, &end);
302
if (end != from_end && !err)
304
/* Give warning if there is something other than end space */
305
for ( ; end < from_end; end++)
307
if (!my_isspace(&my_charset_utf8_general_ci, *end))
309
err= E_DEC_TRUNCATED;
314
check_result_and_overflow(mask, err);
318
void type::Decimal::convert(double &result) const
320
decimal2double(static_cast<const decimal_t*>(this), &result);
323
type::Decimal *date2_class_decimal(type::Time *ltime, type::Decimal *dec)
326
date = (ltime->year*100L + ltime->month)*100L + ltime->day;
327
if (ltime->time_type > type::DRIZZLE_TIMESTAMP_DATE)
328
date= ((date*100L + ltime->hour)*100L+ ltime->minute)*100L + ltime->second;
330
if (int2_class_decimal(E_DEC_FATAL_ERROR, date, false, dec))
333
if (ltime->second_part)
335
dec->buf[(dec->intg-1) / 9 + 1]= ltime->second_part * 1000;
343
void class_decimal_trim(uint32_t *precision, uint32_t *scale)
345
if (!(*precision) && !(*scale))
101
#include <m_string.h>
103
#include <storage/myisam/myisampack.h>
104
#include <mystrings/decimal.h>
355
107
Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
388
135
999900000, 999990000, 999999000,
389
136
999999900, 999999990 };
392
139
#define sanity(d) assert((d)->len > 0)
394
141
#define sanity(d) assert((d)->len >0 && ((d)->buf[0] | \
395
142
(d)->buf[(d)->len-1] | 1))
398
inline static void fix_intg_frac_error(const int len, int &intg1, int &frac1, int &error)
400
if (unlikely(intg1+frac1 > len))
402
if (unlikely(intg1 > len))
406
error=E_DEC_OVERFLOW;
411
error=E_DEC_TRUNCATED;
418
/* assume carry <= 1 */
419
inline static void add(dec1 &to, const dec1 &from1, const dec1& from2, dec1 &carry)
421
dec1 a=from1+from2+carry;
423
if ((carry= (a >= DIG_BASE))) /* no division here! */
428
inline static void add2(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
430
dec2 a=dec2(from1)+from2+carry;
431
if ((carry= (a >= DIG_BASE)))
433
if (unlikely(a >= DIG_BASE))
442
inline static void sub(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
444
dec1 a=from1-from2-carry;
445
if ((carry= (a < 0)))
451
inline static void sub2(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
453
dec1 a=from1-from2-carry;
454
if ((carry= (a < 0)))
145
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
148
if (unlikely(intg1+frac1 > (len))) \
150
if (unlikely(intg1 > (len))) \
154
error=E_DEC_OVERFLOW; \
159
error=E_DEC_TRUNCATED; \
166
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
169
dec1 a=(from1)+(from2)+(carry); \
170
assert((carry) <= 1); \
171
if (((carry)= a >= DIG_BASE)) /* no division here! */ \
176
#define ADD2(to, from1, from2, carry) \
179
dec2 a=((dec2)(from1))+(from2)+(carry); \
180
if (((carry)= a >= DIG_BASE)) \
182
if (unlikely(a >= DIG_BASE)) \
190
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
193
dec1 a=(from1)-(from2)-(carry); \
194
if (((carry)= a < 0)) \
199
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
202
dec1 a=(from1)-(from2)-(carry); \
203
if (((carry)= a < 0)) \
205
if (unlikely(a < 0)) \
465
@brief Get maximum value for given precision and scale
467
@param precision/scale see decimal_bin_size() below
468
@param to decimal where where the result will be stored
214
Swap the contents of two variables.
216
#define swap_variables(TYPE, a, b) \
226
Get maximum value for given precision and scale
230
precision/scale - see decimal_bin_size() below
231
to - decimal where where the result will be stored
469
232
to->buf and to->len must be set.
552
@brief Convert decimal to its printable string representation
317
Convert decimal to its printable string representation
554
@param from value to convert
555
@param to points to buffer where string representation
557
@param to_len in: size of to buffer
558
out: length of the actually written string
559
@param fixed_precision 0 if representation can be variable length and
321
from - value to convert
322
to - points to buffer where string representation
324
*to_len - in: size of to buffer
325
out: length of the actually written string
326
fixed_precision - 0 if representation can be variable length and
560
327
fixed_decimals will not be checked in this case.
561
328
Put number as with fixed point position with this
562
329
number of digits (sign counted and decimal point is
564
@param fixed_decimals number digits after point.
565
@param filler character to fill gaps in case of fixed_precision > 0
331
fixed_decimals - number digits after point.
332
filler - character to fill gaps in case of fixed_precision > 0
569
@retval E_DEC_TRUNCATED
570
@retval E_DEC_OVERFLOW
335
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
572
int decimal2string(const decimal_t *from, char *to, int *to_len,
338
int decimal2string(decimal_t *from, char *to, int *to_len,
573
339
int fixed_precision, int fixed_decimals,
741
@param Left shift for alignment of data in buffer
743
@param dec pointer to decimal number which have to be shifted
744
@param shift number of decimal digits on which it should be shifted
745
@param beg beginning of decimal digits (see digits_bounds())
746
@param end end of decimal digits (see digits_bounds())
749
Result fitting in the buffer should be garanted.
750
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
752
@todo Above note is unclear - is 'garanted' a typo for 'guaranteed'
510
Left shift for alignment of data in buffer
514
dec pointer to decimal number which have to be shifted
515
shift number of decimal digits on which it should be shifted
516
beg/end bounds of decimal digits (see digits_bounds())
519
Result fitting in the buffer should be garanted.
520
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
755
523
static void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
757
dec1 *from= dec->buf + round_up(beg + 1) - 1;
758
dec1 *end= dec->buf + round_up(last) - 1;
525
dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
526
dec1 *end= dec->buf + ROUND_UP(last) - 1;
759
527
int c_shift= DIG_PER_DEC1 - shift;
760
528
assert(from >= dec->buf);
761
529
assert(end < dec->buf + dec->len);
1187
962
rc = decimal2string(from, strbuf, &len, 0, 0, 0);
1188
963
end= strbuf + len;
1190
*to= internal::my_strtod(strbuf, &end, &error);
965
*to= my_strtod(strbuf, &end, &error);
1192
967
return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
1196
@param Convert double to decimal
1198
@param[in] from value to convert
1199
@param[out] to result will be stored there
971
Convert double to decimal
975
from - value to convert
976
to - result will be stored there
1202
979
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
1205
int double2decimal(const double from, decimal_t *to)
982
int double2decimal(double from, decimal_t *to)
1207
984
char buff[FLOATING_POINT_BUFFER], *end;
1209
end= buff + internal::my_gcvt(from,
1210
internal::MY_GCVT_ARG_DOUBLE,
1211
sizeof(buff) - 1, buff, NULL);
986
end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL);
1212
987
res= string2decimal(buff, to, &end);
1523
@brief Restores decimal from its binary fixed-length representation
1525
@param from value to convert
1527
@param precision see decimal_bin_size() below
1528
@param scale see decimal_bin_size() below
1298
Restores decimal from its binary fixed-length representation
1302
from - value to convert
1304
precision/scale - see decimal_bin_size() below
1531
1307
see decimal2bin()
1532
1308
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
1535
1311
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
1537
int bin2decimal(const unsigned char *from, decimal_t *to, int precision, int scale)
1314
int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale)
1539
1316
int error=E_DEC_OK, intg=precision-scale,
1540
1317
intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
1541
1318
intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
1542
1319
intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
1543
1320
dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
1544
const unsigned char *stop;
1545
unsigned char *d_copy;
1546
1323
int bin_size= decimal_bin_size(precision, scale);
1549
d_copy= (unsigned char*) alloca(bin_size);
1326
d_copy= (uchar*) alloca(bin_size);
1550
1327
memcpy(d_copy, from, bin_size);
1551
1328
d_copy[0]^= 0x80;
1554
fix_intg_frac_error(to->len, intg1, frac1, error);
1331
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
1555
1332
if (unlikely(error))
1557
1334
if (intg1 < intg0+(intg0x>0))
1652
1445
frac0*sizeof(dec1)+dig2bytes[frac0x];
1656
@brief Rounds the decimal to "scale" digits
1658
@param from - decimal to round,
1659
@param to - result buffer. from==to is allowed
1660
@param scale - to what position to round. can be negative!
1661
@param mode - round to nearest even or truncate
1449
Rounds the decimal to "scale" digits
1453
from - decimal to round,
1454
to - result buffer. from==to is allowed
1455
scale - to what position to round. can be negative!
1456
mode - round to nearest even or truncate
1664
1459
scale can be negative !
1665
1460
one TRUNCATED error (line XXX below) isn't treated very logical :(
1668
1463
E_DEC_OK/E_DEC_TRUNCATED
1671
decimal_round(const decimal_t *from, decimal_t *to, int scale,
1467
decimal_round(decimal_t *from, decimal_t *to, int scale,
1672
1468
decimal_round_mode mode)
1674
int frac0=scale>0 ? round_up(scale) : scale/DIG_PER_DEC1,
1675
frac1=round_up(from->frac), round_digit= 0,
1676
intg0=round_up(from->intg), error=E_DEC_OK, len=to->len,
1677
intg1=round_up(from->intg +
1470
int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
1471
frac1=ROUND_UP(from->frac), round_digit= 0,
1472
intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len,
1473
intg1=ROUND_UP(from->intg +
1678
1474
(((intg0 + frac0)>0) && (from->buf[0] == DIG_MAX)));
1679
1475
dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
1863
static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1865
int intg1=round_up(from1->intg), intg2=round_up(from2->intg),
1866
frac1=round_up(from1->frac), frac2=round_up(from2->frac),
1660
Returns the size of the result of the operation
1663
decimal_result_size()
1664
from1 - operand of the unary operation or first operand of the
1666
from2 - second operand of the binary operation
1667
op - operation. one char '+', '-', '*', '/' are allowed
1668
others may be added later
1669
param - extra param to the operation. unused for '+', '-', '*'
1670
scale increment for '/'
1673
returned valued may be larger than the actual buffer requred
1674
in the operation, as decimal_result_size, by design, operates on
1675
precision/scale values only and not on the actual decimal number
1678
size of to->buf array in dec1 elements. to get size in bytes
1679
multiply by sizeof(dec1)
1682
int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
1686
return ROUND_UP(max(from1->intg, from2->intg)) +
1687
ROUND_UP(max(from1->frac, from2->frac));
1689
return ROUND_UP(max(from1->intg, from2->intg)+1) +
1690
ROUND_UP(max(from1->frac, from2->frac));
1692
return ROUND_UP(from1->intg+from2->intg)+
1693
ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
1695
return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
1698
return -1; /* shut up the warning */
1701
static int do_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
1703
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
1704
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
1867
1705
frac0=max(frac1, frac2), intg0=max(intg1, intg2), error;
1868
1706
dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
2090
int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1926
int decimal_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
2092
1928
if (likely(from1->sign == from2->sign))
2093
1929
return do_add(from1, from2, to);
2094
1930
return do_sub(from1, from2, to);
2097
int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1933
int decimal_sub(decimal_t *from1, decimal_t *from2, decimal_t *to)
2099
1935
if (likely(from1->sign == from2->sign))
2100
1936
return do_sub(from1, from2, to);
2101
1937
return do_add(from1, from2, to);
2104
int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
1940
int decimal_cmp(decimal_t *from1, decimal_t *from2)
2106
1942
if (likely(from1->sign == from2->sign))
2107
1943
return do_sub(from1, from2, 0);
2108
1944
return from1->sign > from2->sign ? -1 : 1;
2111
int decimal_t::isZero() const
1947
int decimal_is_zero(decimal_t *from)
2114
*end= buf1 +round_up(intg) +round_up(frac);
1949
dec1 *buf1=from->buf,
1950
*end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
2116
1951
while (buf1 < end)
2128
@brief multiply two decimals
2130
@param[in] from1 First factor
2131
@param[in] from2 Second factor
2132
@param[out] to product
1958
multiply two decimals
1962
from1, from2 - factors
2135
1966
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
2138
1969
in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
2139
1970
and 63-digit number will take only 7 dec1 words (basically a 7-digit
2140
1971
"base 999999999" number). Thus there's no need in fast multiplication
2144
1975
XXX if this library is to be used with huge numbers of thousands of
2145
1976
digits, fast multiplication must be implemented.
2147
int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1978
int decimal_mul(decimal_t *from1, decimal_t *from2, decimal_t *to)
2149
int intg1=round_up(from1->intg), intg2=round_up(from2->intg),
2150
frac1=round_up(from1->frac), frac2=round_up(from2->frac),
2151
intg0=round_up(from1->intg+from2->intg),
1980
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
1981
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
1982
intg0=ROUND_UP(from1->intg+from2->intg),
2152
1983
frac0=frac1+frac2, error, i, j, d_to_move;
2153
1984
dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
2154
1985
*start2, *stop2, *stop1, *start0, carry;
2254
2085
naive division algorithm (Knuth's Algorithm D in 4.3.1) -
2255
2086
it's ok for short numbers
2256
2087
also we're using alloca() to allocate a temporary buffer
2259
If this library is to be used with huge numbers of thousands of
2089
XXX if this library is to be used with huge numbers of thousands of
2260
2090
digits, fast division must be implemented and alloca should be
2261
2091
changed to malloc (or at least fallback to malloc if alloca() fails)
2262
2092
but then, decimal_mul() should be rewritten too :(
2264
static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
2094
static int do_div_mod(decimal_t *from1, decimal_t *from2,
2265
2095
decimal_t *to, decimal_t *mod, int scale_incr)
2267
int frac1=round_up(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
2268
frac2=round_up(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
2097
int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
2098
frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
2269
2099
error= 0, i, intg0, frac0, len1, len2, dintg, div_mod=(!mod);
2270
2100
dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
2271
2101
*start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry;
2507
@brief division of two decimals
2509
@param[in] from1 dividend
2510
@param[in] from2 divisor
2511
@param[out] to quotient
2337
division of two decimals
2514
2346
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
2517
2349
see do_div_mod()
2520
decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to, int scale_incr)
2353
decimal_div(decimal_t *from1, decimal_t *from2, decimal_t *to, int scale_incr)
2522
2355
return do_div_mod(from1, from2, to, 0, scale_incr);
2528
the modulus R in R = M mod N
2534
R = M - k*N, where k is integer
2536
thus, there's no requirement for M or N to be integers
2539
@param from1 dividend
2540
@param from2 divisor
2544
2368
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
2547
2371
see do_div_mod()
2374
the modulus R in R = M mod N
2380
R = M - k*N, where k is integer
2382
thus, there's no requirement for M or N to be integers
2550
int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
2385
int decimal_mod(decimal_t *from1, decimal_t *from2, decimal_t *to)
2552
2387
return do_div_mod(from1, from2, 0, to, 0);
2555
std::ostream& operator<<(std::ostream& output, const type::Decimal &dec)
2557
drizzled::String str;
2559
class_decimal2string(&dec, 0, &str);
2561
output << "type::Decimal:(";
2562
output << str.c_ptr();
2565
return output; // for multiple << operators.
2568
} /* namespace drizzled */