1
/* Copyright (C) 2000 MySQL AB
3
This program is free software; you can redistribute it and/or modify
4
it under the terms of the GNU General Public License as published by
5
the Free Software Foundation; version 2 of the License.
7
This program is distributed in the hope that it will be useful,
8
but WITHOUT ANY WARRANTY; without even the implied warranty of
9
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10
GNU General Public License for more details.
12
You should have received a copy of the GNU General Public License
13
along with this program; if not, write to the Free Software
14
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
17
Code for handling red-black (balanced) binary trees.
18
key in tree is allocated accrding to following:
20
1) If size < 0 then tree will not allocate keys and only a pointer to
21
each key is saved in tree.
22
compare and search functions uses and returns key-pointer
24
2) If size == 0 then there are two options:
25
- key_size != 0 to tree_insert: The key will be stored in the tree.
26
- key_size == 0 to tree_insert: A pointer to the key is stored.
27
compare and search functions uses and returns key-pointer.
29
3) if key_size is given to init_tree then each node will continue the
30
key and calls to insert_key may increase length of key.
31
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
32
allign) then key will be put on a 8 alligned adress. Else
33
the key will be on adress (element+1). This is transparent for user
34
compare and search functions uses a pointer to given key-argument.
36
- If you use a free function for tree-elements and you are freeing
37
the element itself, you should use key_size = 0 to init_tree and
40
The actual key in TREE_ELEMENT is saved as a pointer or after the
42
If one uses only pointers in tree one can use tree_set_pointer() to
43
change address of data.
50
tree->compare function should be ALWAYS called as
51
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
52
and not other way around, as
53
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
56
#include "mysys_priv.h"
63
#define DEFAULT_ALLOC_SIZE 8192
64
#define DEFAULT_ALIGN_SIZE 8192
66
static void delete_tree_element(TREE *,TREE_ELEMENT *);
67
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
68
tree_walk_action,void *);
69
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
70
tree_walk_action,void *);
71
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
72
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
73
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
75
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
78
/* The actuall code for handling binary trees */
81
static int test_rb_tree(TREE_ELEMENT *element);
84
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
85
int size, qsort_cmp2 compare, bool with_delete,
86
tree_element_free free_element, void *custom_arg)
88
DBUG_ENTER("init_tree");
89
DBUG_PRINT("enter",("tree: 0x%lx size: %d", (long) tree, size));
91
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
92
default_alloc_size= DEFAULT_ALLOC_SIZE;
93
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
94
bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
95
tree->root= &tree->null_element;
96
tree->compare=compare;
97
tree->size_of_element=size > 0 ? (uint) size : 0;
98
tree->memory_limit=memory_limit;
99
tree->free=free_element;
101
tree->elements_in_tree=0;
102
tree->custom_arg = custom_arg;
103
tree->null_element.colour=BLACK;
104
tree->null_element.left=tree->null_element.right=0;
106
if (!free_element && size >= 0 &&
107
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
110
We know that the data doesn't have to be aligned (like if the key
111
contains a double), so we can store the data combined with the
114
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
115
/* Fix allocation size so that we don't lose any memory */
116
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
117
if (!default_alloc_size)
118
default_alloc_size=1;
119
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
123
tree->offset_to_key=0; /* use key through pointer */
124
tree->size_of_element+=sizeof(void*);
126
if (!(tree->with_delete=with_delete))
128
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
129
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
134
static void free_tree(TREE *tree, myf free_flags)
136
DBUG_ENTER("free_tree");
137
DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
139
if (tree->root) /* If initialized */
141
if (tree->with_delete)
142
delete_tree_element(tree,tree->root);
147
if (tree->memory_limit)
148
(*tree->free)(NULL, free_init, tree->custom_arg);
149
delete_tree_element(tree,tree->root);
150
if (tree->memory_limit)
151
(*tree->free)(NULL, free_end, tree->custom_arg);
153
free_root(&tree->mem_root, free_flags);
156
tree->root= &tree->null_element;
157
tree->elements_in_tree=0;
163
void delete_tree(TREE* tree)
165
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
168
void reset_tree(TREE* tree)
170
/* do not free mem_root, just mark blocks as free */
171
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
175
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
177
if (element != &tree->null_element)
179
delete_tree_element(tree,element->left);
181
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
182
delete_tree_element(tree,element->right);
183
if (tree->with_delete)
184
my_free((char*) element,MYF(0));
190
insert, search and delete of elements
192
The following should be true:
193
parent[0] = & parent[-1][0]->left ||
194
parent[0] = & parent[-1][0]->right
197
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
201
TREE_ELEMENT *element,***parent;
203
parent= tree->parents;
204
*parent = &tree->root; element= tree->root;
207
if (element == &tree->null_element ||
208
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
213
*++parent= &element->right; element= element->right;
217
*++parent = &element->left; element= element->left;
220
if (element == &tree->null_element)
222
uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
223
tree->allocated+=alloc_size;
225
if (tree->memory_limit && tree->elements_in_tree
226
&& tree->allocated > tree->memory_limit)
229
return tree_insert(tree, key, key_size, custom_arg);
232
key_size+=tree->size_of_element;
233
if (tree->with_delete)
234
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
236
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
240
element->left=element->right= &tree->null_element;
241
if (!tree->offset_to_key)
243
if (key_size == sizeof(void*)) /* no length, save pointer */
244
*((void**) (element+1))=key;
247
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
248
memcpy((uchar*) *((void **) (element+1)),key,
249
(size_t) (key_size-sizeof(void*)));
253
memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
254
element->count=1; /* May give warning in purify */
255
tree->elements_in_tree++;
256
rb_insert(tree,parent,element); /* rebalance tree */
260
if (tree->flag & TREE_NO_DUPS)
263
/* Avoid a wrap over of the count. */
264
if (! element->count)
267
DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
271
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
273
int cmp,remove_colour;
274
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
275
if (!tree->with_delete)
276
return 1; /* not allowed */
278
parent= tree->parents;
279
*parent= &tree->root; element= tree->root;
282
if (element == &tree->null_element)
283
return 1; /* Was not in tree */
284
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
289
*++parent= &element->right; element= element->right;
293
*++parent = &element->left; element= element->left;
296
if (element->left == &tree->null_element)
298
(**parent)=element->right;
299
remove_colour= element->colour;
301
else if (element->right == &tree->null_element)
303
(**parent)=element->left;
304
remove_colour= element->colour;
309
*++parent= &element->right; nod= element->right;
310
while (nod->left != &tree->null_element)
312
*++parent= &nod->left; nod= nod->left;
314
(**parent)=nod->right; /* unlink nod from tree */
315
remove_colour= nod->colour;
316
org_parent[0][0]=nod; /* put y in place of element */
317
org_parent[1]= &nod->right;
318
nod->left=element->left;
319
nod->right=element->right;
320
nod->colour=element->colour;
322
if (remove_colour == BLACK)
323
rb_delete_fixup(tree,parent);
325
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
326
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
327
my_free((uchar*) element,MYF(0));
328
tree->elements_in_tree--;
333
void *tree_search(TREE *tree, void *key, void *custom_arg)
336
TREE_ELEMENT *element=tree->root;
340
if (element == &tree->null_element)
342
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
344
return ELEMENT_KEY(tree,element);
346
element=element->right;
348
element=element->left;
352
void *tree_search_key(TREE *tree, const void *key,
353
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
354
enum ha_rkey_function flag, void *custom_arg)
357
TREE_ELEMENT *element= tree->root;
358
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
359
TREE_ELEMENT **last_equal_element= NULL;
362
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
365
*parents = &tree->null_element;
366
while (element != &tree->null_element)
369
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
373
case HA_READ_KEY_EXACT:
374
case HA_READ_KEY_OR_NEXT:
375
case HA_READ_BEFORE_KEY:
376
last_equal_element= parents;
379
case HA_READ_AFTER_KEY:
382
case HA_READ_PREFIX_LAST:
383
case HA_READ_PREFIX_LAST_OR_PREV:
384
last_equal_element= parents;
391
if (cmp < 0) /* element < key */
393
last_right_step_parent= parents;
394
element= element->right;
398
last_left_step_parent= parents;
399
element= element->left;
403
case HA_READ_KEY_EXACT:
404
case HA_READ_PREFIX_LAST:
405
*last_pos= last_equal_element;
407
case HA_READ_KEY_OR_NEXT:
408
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
410
case HA_READ_AFTER_KEY:
411
*last_pos= last_left_step_parent;
413
case HA_READ_PREFIX_LAST_OR_PREV:
414
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
416
case HA_READ_BEFORE_KEY:
417
*last_pos= last_right_step_parent;
422
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
426
Search first (the most left) or last (the most right) tree element
428
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
429
TREE_ELEMENT ***last_pos, int child_offs)
431
TREE_ELEMENT *element= tree->root;
433
*parents= &tree->null_element;
434
while (element != &tree->null_element)
437
element= ELEMENT_CHILD(element, child_offs);
440
return **last_pos != &tree->null_element ?
441
ELEMENT_KEY(tree, **last_pos) : NULL;
444
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
447
TREE_ELEMENT *x= **last_pos;
449
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
451
x= ELEMENT_CHILD(x, r_offs);
453
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
455
x= ELEMENT_CHILD(x, l_offs);
458
return ELEMENT_KEY(tree, x);
462
TREE_ELEMENT *y= *--*last_pos;
463
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
468
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
473
Expected that tree is fully balanced
474
(each path from root to leaf has the same length)
476
ha_rows tree_record_pos(TREE *tree, const void *key,
477
enum ha_rkey_function flag, void *custom_arg)
480
TREE_ELEMENT *element= tree->root;
482
double right= tree->elements_in_tree;
484
while (element != &tree->null_element)
486
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
490
case HA_READ_KEY_EXACT:
491
case HA_READ_BEFORE_KEY:
494
case HA_READ_AFTER_KEY:
501
if (cmp < 0) /* element < key */
503
element= element->right;
504
left= (left + right) / 2;
508
element= element->left;
509
right= (left + right) / 2;
513
case HA_READ_KEY_EXACT:
514
case HA_READ_BEFORE_KEY:
515
return (ha_rows) right;
516
case HA_READ_AFTER_KEY:
517
return (ha_rows) left;
523
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
526
case left_root_right:
527
return tree_walk_left_root_right(tree,tree->root,action,argument);
528
case right_root_left:
529
return tree_walk_right_root_left(tree,tree->root,action,argument);
531
return 0; /* Keep gcc happy */
534
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
537
if (element->left) /* Not null_element */
539
if ((error=tree_walk_left_root_right(tree,element->left,action,
541
(error=(*action)(ELEMENT_KEY(tree,element),
542
(element_count) element->count,
544
error=tree_walk_left_root_right(tree,element->right,action,argument);
550
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
553
if (element->right) /* Not null_element */
555
if ((error=tree_walk_right_root_left(tree,element->right,action,
557
(error=(*action)(ELEMENT_KEY(tree,element),
558
(element_count) element->count,
560
error=tree_walk_right_root_left(tree,element->left,action,argument);
567
/* Functions to fix up the tree after insert and delete */
569
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
579
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
589
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
591
TREE_ELEMENT *y,*par,*par2;
594
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
596
if (par == (par2=parent[-2][0])->left)
599
if (y->colour == RED)
605
leaf->colour=RED; /* And the loop continues */
609
if (leaf == par->right)
611
left_rotate(parent[-1],par);
612
par=leaf; /* leaf is now parent to old leaf */
616
right_rotate(parent[-2],par2);
623
if (y->colour == RED)
629
leaf->colour=RED; /* And the loop continues */
633
if (leaf == par->left)
635
right_rotate(parent[-1],par);
640
left_rotate(parent[-2],par2);
645
tree->root->colour=BLACK;
648
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
650
TREE_ELEMENT *x,*w,*par;
653
while (x != tree->root && x->colour == BLACK)
655
if (x == (par=parent[-1][0])->left)
658
if (w->colour == RED)
662
left_rotate(parent[-1],par);
664
*++parent= &par->left;
667
if (w->left->colour == BLACK && w->right->colour == BLACK)
675
if (w->right->colour == BLACK)
677
w->left->colour=BLACK;
679
right_rotate(&par->right,w);
682
w->colour=par->colour;
684
w->right->colour=BLACK;
685
left_rotate(parent[-1],par);
693
if (w->colour == RED)
697
right_rotate(parent[-1],par);
698
parent[0]= &w->right;
699
*++parent= &par->right;
702
if (w->right->colour == BLACK && w->left->colour == BLACK)
710
if (w->left->colour == BLACK)
712
w->right->colour=BLACK;
714
left_rotate(&par->left,w);
717
w->colour=par->colour;
719
w->left->colour=BLACK;
720
right_rotate(parent[-1],par);
731
/* Test that the proporties for a red-black tree holds */
733
static int test_rb_tree(TREE_ELEMENT *element)
738
return 0; /* Found end of tree */
739
if (element->colour == RED &&
740
(element->left->colour == RED || element->right->colour == RED))
742
printf("Wrong tree: Found two red in a row\n");
745
count_l=test_rb_tree(element->left);
746
count_r=test_rb_tree(element->right);
747
if (count_l >= 0 && count_r >= 0)
749
if (count_l == count_r)
750
return count_l+(element->colour == BLACK);
751
printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);