103
97
implementation-defined.
108
#include <drizzled/definitions.h>
109
#include <drizzled/internal/m_string.h>
110
#include <drizzled/charset_info.h>
111
#include <drizzled/type/decimal.h>
113
#include <plugin/myisam/myisampack.h>
102
#include <m_string.h>
104
#include <storage/myisam/myisampack.h>
105
#include <mystrings/decimal.h>
114
107
#include <drizzled/util/test.h>
122
#include <drizzled/current_session.h>
123
#include <drizzled/error.h>
124
#include <drizzled/field.h>
125
#include <drizzled/internal/my_sys.h>
132
report result of decimal operation.
134
@param result decimal library return code (E_DEC_* see include/decimal.h)
143
int decimal_operation_results(int result)
148
case E_DEC_TRUNCATED:
149
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_WARN,
150
ER_WARN_DATA_TRUNCATED, ER(ER_WARN_DATA_TRUNCATED),
154
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_ERROR,
155
ER_TRUNCATED_WRONG_VALUE,
156
ER(ER_TRUNCATED_WRONG_VALUE),
160
my_error(ER_DIVISION_BY_ZERO, MYF(0));
163
push_warning_printf(current_session, DRIZZLE_ERROR::WARN_LEVEL_ERROR,
164
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD,
165
ER(ER_TRUNCATED_WRONG_VALUE_FOR_FIELD),
166
"decimal", "", "", (long)-1);
169
my_error(ER_OUT_OF_RESOURCES, MYF(0));
179
@brief Converting decimal to string
181
@details Convert given type::Decimal to String; allocate buffer as needed.
183
@param[in] mask what problems to warn on (mask of E_DEC_* values)
184
@param[in] d the decimal to print
185
@param[in] fixed_prec overall number of digits if ZEROFILL, 0 otherwise
186
@param[in] fixed_dec number of decimal places (if fixed_prec != 0)
187
@param[in] filler what char to pad with (ZEROFILL et al.)
188
@param[out] *str where to store the resulting string
192
@retval E_DEC_TRUNCATED
193
@retval E_DEC_OVERFLOW
197
int class_decimal2string(const type::Decimal *d,
198
uint32_t fixed_dec, String *str)
200
uint32_t mask= E_DEC_FATAL_ERROR;
203
Calculate the size of the string: For DECIMAL(a,b), fixed_prec==a
204
holds true iff the type is also ZEROFILL, which in turn implies
205
UNSIGNED. Hence the buffer for a ZEROFILLed value is the length
206
the user requested, plus one for a possible decimal point, plus
207
one if the user only wanted decimal places, but we force a leading
208
zero on them. Because the type is implicitly UNSIGNED, we do not
209
need to reserve a character for the sign. For all other cases,
210
fixed_prec will be 0, and class_decimal_string_length() will be called
211
instead to calculate the required size of the buffer.
214
? (uint32_t)(((0 == fixed_dec) ? 1 : 0) + 1)
215
: (uint32_t)d->string_length());
217
if (str->alloc(length))
218
return check_result(mask, E_DEC_OOM);
220
result= decimal2string((decimal_t*) d, (char*) str->ptr(),
221
&length, (int)0, fixed_dec,
224
return check_result(mask, result);
229
@brief Convert from decimal to binary representation
231
@param[in] mask error processing mask
232
@param[in] d number for conversion
233
@param[out] bin pointer to buffer where to write result
234
@param[in] prec overall number of decimal digits
235
@param[in] scale number of decimal digits after decimal point
238
Before conversion we round number if it need but produce truncation
243
@retval E_DEC_TRUNCATED
244
@retval E_DEC_OVERFLOW
249
int Decimal::val_binary(uint32_t mask, unsigned char *bin, int prec, int scale) const
251
int err1= E_DEC_OK, err2;
252
type::Decimal rounded;
253
class_decimal2decimal(this, &rounded);
254
rounded.frac= decimal_actual_fraction(&rounded);
255
if (scale < rounded.frac)
257
err1= E_DEC_TRUNCATED;
258
/* decimal_round can return only E_DEC_TRUNCATED */
259
decimal_round(&rounded, &rounded, scale, HALF_UP);
261
err2= decimal2bin(&rounded, bin, prec, scale);
264
return check_result(mask, err2);
271
@brief Convert string for decimal when string can be in some multibyte charset
273
@param mask error processing mask
274
@param from string to process
275
@param length length of given string
276
@param charset charset of given string
280
@retval E_DEC_TRUNCATED
281
@retval E_DEC_OVERFLOW
282
@retval E_DEC_BAD_NUM
286
int type::Decimal::store(uint32_t mask, const char *from, uint32_t length, const CHARSET_INFO * charset)
288
char *end, *from_end;
290
char buff[STRING_BUFFER_USUAL_SIZE];
291
String tmp(buff, sizeof(buff), &my_charset_bin);
292
if (charset->mbminlen > 1)
295
tmp.copy(from, length, charset, &my_charset_utf8_general_ci, &dummy_errors);
297
length= tmp.length();
298
charset= &my_charset_bin;
300
from_end= end= (char*) from+length;
301
err= string2decimal((char *)from, (decimal_t*) this, &end);
302
if (end != from_end && !err)
304
/* Give warning if there is something other than end space */
305
for ( ; end < from_end; end++)
307
if (!my_isspace(&my_charset_utf8_general_ci, *end))
309
err= E_DEC_TRUNCATED;
314
check_result_and_overflow(mask, err);
318
void type::Decimal::convert(double &result) const
320
decimal2double(static_cast<const decimal_t*>(this), &result);
323
type::Decimal *date2_class_decimal(type::Time *ltime, type::Decimal *dec)
326
date = (ltime->year*100L + ltime->month)*100L + ltime->day;
327
if (ltime->time_type > type::DRIZZLE_TIMESTAMP_DATE)
328
date= ((date*100L + ltime->hour)*100L+ ltime->minute)*100L + ltime->second;
330
if (int2_class_decimal(E_DEC_FATAL_ERROR, date, false, dec))
333
if (ltime->second_part)
335
dec->buf[(dec->intg-1) / 9 + 1]= ltime->second_part * 1000;
343
void class_decimal_trim(uint32_t *precision, uint32_t *scale)
345
if (!(*precision) && !(*scale))
355
109
Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
356
110
So one variable of type decimal_digit_t is limited:
388
136
999900000, 999990000, 999999000,
389
137
999999900, 999999990 };
392
140
#define sanity(d) assert((d)->len > 0)
394
142
#define sanity(d) assert((d)->len >0 && ((d)->buf[0] | \
395
143
(d)->buf[(d)->len-1] | 1))
398
inline static void fix_intg_frac_error(const int len, int &intg1, int &frac1, int &error)
400
if (unlikely(intg1+frac1 > len))
402
if (unlikely(intg1 > len))
406
error=E_DEC_OVERFLOW;
411
error=E_DEC_TRUNCATED;
418
/* assume carry <= 1 */
419
inline static void add(dec1 &to, const dec1 &from1, const dec1& from2, dec1 &carry)
421
dec1 a=from1+from2+carry;
423
if ((carry= (a >= DIG_BASE))) /* no division here! */
428
inline static void add2(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
430
dec2 a=dec2(from1)+from2+carry;
431
if ((carry= (a >= DIG_BASE)))
433
if (unlikely(a >= DIG_BASE))
442
inline static void sub(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
444
dec1 a=from1-from2-carry;
445
if ((carry= (a < 0)))
451
inline static void sub2(dec1 &to, const dec1 &from1, const dec1 &from2, dec1 &carry)
453
dec1 a=from1-from2-carry;
454
if ((carry= (a < 0)))
146
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
149
if (unlikely(intg1+frac1 > (len))) \
151
if (unlikely(intg1 > (len))) \
155
error=E_DEC_OVERFLOW; \
160
error=E_DEC_TRUNCATED; \
167
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
170
dec1 a=(from1)+(from2)+(carry); \
171
assert((carry) <= 1); \
172
if (((carry)= a >= DIG_BASE)) /* no division here! */ \
177
#define ADD2(to, from1, from2, carry) \
180
dec2 a=((dec2)(from1))+(from2)+(carry); \
181
if (((carry)= a >= DIG_BASE)) \
183
if (unlikely(a >= DIG_BASE)) \
191
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
194
dec1 a=(from1)-(from2)-(carry); \
195
if (((carry)= a < 0)) \
200
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
203
dec1 a=(from1)-(from2)-(carry); \
204
if (((carry)= a < 0)) \
206
if (unlikely(a < 0)) \
465
@brief Get maximum value for given precision and scale
467
@param precision/scale see decimal_bin_size() below
468
@param to decimal where where the result will be stored
215
Swap the contents of two variables.
217
#define swap_variables(TYPE, a, b) \
227
Get maximum value for given precision and scale
231
precision/scale - see decimal_bin_size() below
232
to - decimal where where the result will be stored
469
233
to->buf and to->len must be set.
552
@brief Convert decimal to its printable string representation
318
Convert decimal to its printable string representation
554
@param from value to convert
555
@param to points to buffer where string representation
557
@param to_len in: size of to buffer
558
out: length of the actually written string
559
@param fixed_precision 0 if representation can be variable length and
322
from - value to convert
323
to - points to buffer where string representation
325
*to_len - in: size of to buffer
326
out: length of the actually written string
327
fixed_precision - 0 if representation can be variable length and
560
328
fixed_decimals will not be checked in this case.
561
329
Put number as with fixed point position with this
562
330
number of digits (sign counted and decimal point is
564
@param fixed_decimals number digits after point.
565
@param filler character to fill gaps in case of fixed_precision > 0
332
fixed_decimals - number digits after point.
333
filler - character to fill gaps in case of fixed_precision > 0
569
@retval E_DEC_TRUNCATED
570
@retval E_DEC_OVERFLOW
336
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
572
int decimal2string(const decimal_t *from, char *to, int *to_len,
339
int decimal2string(decimal_t *from, char *to, int *to_len,
573
340
int fixed_precision, int fixed_decimals,
741
@param Left shift for alignment of data in buffer
743
@param dec pointer to decimal number which have to be shifted
744
@param shift number of decimal digits on which it should be shifted
745
@param beg beginning of decimal digits (see digits_bounds())
746
@param end end of decimal digits (see digits_bounds())
749
Result fitting in the buffer should be garanted.
750
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
752
@todo Above note is unclear - is 'garanted' a typo for 'guaranteed'
511
Left shift for alignment of data in buffer
515
dec pointer to decimal number which have to be shifted
516
shift number of decimal digits on which it should be shifted
517
beg/end bounds of decimal digits (see digits_bounds())
520
Result fitting in the buffer should be garanted.
521
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
755
524
static void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
757
dec1 *from= dec->buf + round_up(beg + 1) - 1;
758
dec1 *end= dec->buf + round_up(last) - 1;
526
dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
527
dec1 *end= dec->buf + ROUND_UP(last) - 1;
759
528
int c_shift= DIG_PER_DEC1 - shift;
760
529
assert(from >= dec->buf);
761
530
assert(end < dec->buf + dec->len);
1187
963
rc = decimal2string(from, strbuf, &len, 0, 0, 0);
1188
964
end= strbuf + len;
1190
*to= internal::my_strtod(strbuf, &end, &error);
966
*to= my_strtod(strbuf, &end, &error);
1192
968
return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
1196
@param Convert double to decimal
1198
@param[in] from value to convert
1199
@param[out] to result will be stored there
972
Convert double to decimal
976
from - value to convert
977
to - result will be stored there
1202
980
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
1205
int double2decimal(const double from, decimal_t *to)
983
int double2decimal(double from, decimal_t *to)
1207
985
char buff[FLOATING_POINT_BUFFER], *end;
1209
end= buff + internal::my_gcvt(from,
1210
internal::MY_GCVT_ARG_DOUBLE,
1211
sizeof(buff) - 1, buff, NULL);
987
end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL);
1212
988
res= string2decimal(buff, to, &end);
1652
1446
frac0*sizeof(dec1)+dig2bytes[frac0x];
1656
@brief Rounds the decimal to "scale" digits
1658
@param from - decimal to round,
1659
@param to - result buffer. from==to is allowed
1660
@param scale - to what position to round. can be negative!
1661
@param mode - round to nearest even or truncate
1450
Rounds the decimal to "scale" digits
1454
from - decimal to round,
1455
to - result buffer. from==to is allowed
1456
scale - to what position to round. can be negative!
1457
mode - round to nearest even or truncate
1664
1460
scale can be negative !
1665
1461
one TRUNCATED error (line XXX below) isn't treated very logical :(
1668
1464
E_DEC_OK/E_DEC_TRUNCATED
1671
decimal_round(const decimal_t *from, decimal_t *to, int scale,
1468
decimal_round(decimal_t *from, decimal_t *to, int scale,
1672
1469
decimal_round_mode mode)
1674
int frac0=scale>0 ? round_up(scale) : scale/DIG_PER_DEC1,
1675
frac1=round_up(from->frac), round_digit= 0,
1676
intg0=round_up(from->intg), error=E_DEC_OK, len=to->len,
1677
intg1=round_up(from->intg +
1471
int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
1472
frac1=ROUND_UP(from->frac), round_digit= 0,
1473
intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len,
1474
intg1=ROUND_UP(from->intg +
1678
1475
(((intg0 + frac0)>0) && (from->buf[0] == DIG_MAX)));
1679
1476
dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
1863
static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1865
int intg1=round_up(from1->intg), intg2=round_up(from2->intg),
1866
frac1=round_up(from1->frac), frac2=round_up(from2->frac),
1867
frac0=max(frac1, frac2), intg0=max(intg1, intg2), error;
1661
Returns the size of the result of the operation
1664
decimal_result_size()
1665
from1 - operand of the unary operation or first operand of the
1667
from2 - second operand of the binary operation
1668
op - operation. one char '+', '-', '*', '/' are allowed
1669
others may be added later
1670
param - extra param to the operation. unused for '+', '-', '*'
1671
scale increment for '/'
1674
returned valued may be larger than the actual buffer requred
1675
in the operation, as decimal_result_size, by design, operates on
1676
precision/scale values only and not on the actual decimal number
1679
size of to->buf array in dec1 elements. to get size in bytes
1680
multiply by sizeof(dec1)
1683
int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
1687
return ROUND_UP(cmax(from1->intg, from2->intg)) +
1688
ROUND_UP(cmax(from1->frac, from2->frac));
1690
return ROUND_UP(cmax(from1->intg, from2->intg)+1) +
1691
ROUND_UP(cmax(from1->frac, from2->frac));
1693
return ROUND_UP(from1->intg+from2->intg)+
1694
ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
1696
return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
1699
return -1; /* shut up the warning */
1702
static int do_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
1704
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
1705
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
1706
frac0=cmax(frac1, frac2), intg0=cmax(intg1, intg2), error;
1868
1707
dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
2090
int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1927
int decimal_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
2092
1929
if (likely(from1->sign == from2->sign))
2093
1930
return do_add(from1, from2, to);
2094
1931
return do_sub(from1, from2, to);
2097
int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1934
int decimal_sub(decimal_t *from1, decimal_t *from2, decimal_t *to)
2099
1936
if (likely(from1->sign == from2->sign))
2100
1937
return do_sub(from1, from2, to);
2101
1938
return do_add(from1, from2, to);
2104
int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
1941
int decimal_cmp(decimal_t *from1, decimal_t *from2)
2106
1943
if (likely(from1->sign == from2->sign))
2107
1944
return do_sub(from1, from2, 0);
2108
1945
return from1->sign > from2->sign ? -1 : 1;
2111
int decimal_t::isZero() const
1948
int decimal_is_zero(decimal_t *from)
2114
*end= buf1 +round_up(intg) +round_up(frac);
1950
dec1 *buf1=from->buf,
1951
*end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
2116
1952
while (buf1 < end)
2128
@brief multiply two decimals
2130
@param[in] from1 First factor
2131
@param[in] from2 Second factor
2132
@param[out] to product
1959
multiply two decimals
1963
from1, from2 - factors
2135
1967
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
2138
1970
in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
2139
1971
and 63-digit number will take only 7 dec1 words (basically a 7-digit
2140
1972
"base 999999999" number). Thus there's no need in fast multiplication
2144
1976
XXX if this library is to be used with huge numbers of thousands of
2145
1977
digits, fast multiplication must be implemented.
2147
int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
1979
int decimal_mul(decimal_t *from1, decimal_t *from2, decimal_t *to)
2149
int intg1=round_up(from1->intg), intg2=round_up(from2->intg),
2150
frac1=round_up(from1->frac), frac2=round_up(from2->frac),
2151
intg0=round_up(from1->intg+from2->intg),
1981
int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
1982
frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
1983
intg0=ROUND_UP(from1->intg+from2->intg),
2152
1984
frac0=frac1+frac2, error, i, j, d_to_move;
2153
1985
dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
2154
1986
*start2, *stop2, *stop1, *start0, carry;
2254
2086
naive division algorithm (Knuth's Algorithm D in 4.3.1) -
2255
2087
it's ok for short numbers
2256
2088
also we're using alloca() to allocate a temporary buffer
2259
If this library is to be used with huge numbers of thousands of
2090
XXX if this library is to be used with huge numbers of thousands of
2260
2091
digits, fast division must be implemented and alloca should be
2261
2092
changed to malloc (or at least fallback to malloc if alloca() fails)
2262
2093
but then, decimal_mul() should be rewritten too :(
2264
static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
2095
static int do_div_mod(decimal_t *from1, decimal_t *from2,
2265
2096
decimal_t *to, decimal_t *mod, int scale_incr)
2267
int frac1=round_up(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
2268
frac2=round_up(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
2098
int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
2099
frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
2269
2100
error= 0, i, intg0, frac0, len1, len2, dintg, div_mod=(!mod);
2270
2101
dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
2271
2102
*start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry;
2507
@brief division of two decimals
2509
@param[in] from1 dividend
2510
@param[in] from2 divisor
2511
@param[out] to quotient
2338
division of two decimals
2514
2347
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
2517
2350
see do_div_mod()
2520
decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to, int scale_incr)
2354
decimal_div(decimal_t *from1, decimal_t *from2, decimal_t *to, int scale_incr)
2522
2356
return do_div_mod(from1, from2, to, 0, scale_incr);
2528
the modulus R in R = M mod N
2534
R = M - k*N, where k is integer
2536
thus, there's no requirement for M or N to be integers
2539
@param from1 dividend
2540
@param from2 divisor
2544
2369
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
2547
2372
see do_div_mod()
2375
the modulus R in R = M mod N
2381
R = M - k*N, where k is integer
2383
thus, there's no requirement for M or N to be integers
2550
int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
2386
int decimal_mod(decimal_t *from1, decimal_t *from2, decimal_t *to)
2552
2388
return do_div_mod(from1, from2, 0, to, 0);
2555
std::ostream& operator<<(std::ostream& output, const type::Decimal &dec)
2557
drizzled::String str;
2559
class_decimal2string(&dec, 0, &str);
2561
output << "type::Decimal:(";
2562
output << str.c_ptr();
2565
return output; // for multiple << operators.
2568
} /* namespace drizzled */