1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
|
/******************************************************
The database server main program
NOTE: SQL Server 7 uses something which the documentation
calls user mode scheduled threads (UMS threads). One such
thread is usually allocated per processor. Win32
documentation does not know any UMS threads, which suggests
that the concept is internal to SQL Server 7. It may mean that
SQL Server 7 does all the scheduling of threads itself, even
in i/o waits. We should maybe modify InnoDB to use the same
technique, because thread switches within NT may be too slow.
SQL Server 7 also mentions fibers, which are cooperatively
scheduled threads. They can boost performance by 5 %,
according to the Delaney and Soukup's book.
Windows 2000 will have something called thread pooling
(see msdn website), which we could possibly use.
Another possibility could be to use some very fast user space
thread library. This might confuse NT though.
(c) 1995 Innobase Oy
Created 10/8/1995 Heikki Tuuri
*******************************************************/
/* Dummy comment */
#include "srv0srv.h"
#include "ut0mem.h"
#include "os0proc.h"
#include "mem0mem.h"
#include "mem0pool.h"
#include "sync0sync.h"
#include "thr0loc.h"
#include "que0que.h"
#include "srv0que.h"
#include "log0recv.h"
#include "pars0pars.h"
#include "usr0sess.h"
#include "lock0lock.h"
#include "trx0purge.h"
#include "ibuf0ibuf.h"
#include "buf0flu.h"
#include "btr0sea.h"
#include "dict0load.h"
#include "dict0boot.h"
#include "srv0start.h"
#include "row0mysql.h"
#include "ha_prototypes.h"
/* This is set to TRUE if the MySQL user has set it in MySQL; currently
affects only FOREIGN KEY definition parsing */
ibool srv_lower_case_table_names = FALSE;
/* The following counter is incremented whenever there is some user activity
in the server */
ulint srv_activity_count = 0;
/* The following is the maximum allowed duration of a lock wait. */
ulint srv_fatal_semaphore_wait_threshold = 600;
/* How much data manipulation language (DML) statements need to be delayed,
in microseconds, in order to reduce the lagging of the purge thread. */
ulint srv_dml_needed_delay = 0;
ibool srv_lock_timeout_and_monitor_active = FALSE;
ibool srv_error_monitor_active = FALSE;
const char* srv_main_thread_op_info = "";
/* Prefix used by MySQL to indicate pre-5.1 table name encoding */
const char srv_mysql50_table_name_prefix[9] = "#mysql50#";
/* Server parameters which are read from the initfile */
/* The following three are dir paths which are catenated before file
names, where the file name itself may also contain a path */
char* srv_data_home = NULL;
#ifdef UNIV_LOG_ARCHIVE
char* srv_arch_dir = NULL;
#endif /* UNIV_LOG_ARCHIVE */
ibool srv_file_per_table = FALSE; /* store to its own file each table
created by an user; data dictionary
tables are in the system tablespace
0 */
ibool srv_locks_unsafe_for_binlog = FALSE; /* Place locks to
records only i.e. do
not use next-key
locking except on
duplicate key checking
and foreign key
checking */
ulint srv_n_data_files = 0;
char** srv_data_file_names = NULL;
ulint* srv_data_file_sizes = NULL; /* size in database pages */
ibool srv_auto_extend_last_data_file = FALSE; /* if TRUE, then we
auto-extend the last data
file */
ulint srv_last_file_size_max = 0; /* if != 0, this tells
the max size auto-extending
may increase the last data
file size */
ulong srv_auto_extend_increment = 8; /* If the last data file is
auto-extended, we add this
many pages to it at a time */
ulint* srv_data_file_is_raw_partition = NULL;
/* If the following is TRUE we do not allow inserts etc. This protects
the user from forgetting the 'newraw' keyword to my.cnf */
ibool srv_created_new_raw = FALSE;
char** srv_log_group_home_dirs = NULL;
ulint srv_n_log_groups = ULINT_MAX;
ulint srv_n_log_files = ULINT_MAX;
ulint srv_log_file_size = ULINT_MAX; /* size in database pages */
ulint srv_log_buffer_size = ULINT_MAX; /* size in database pages */
ulong srv_flush_log_at_trx_commit = 1;
byte srv_latin1_ordering[256] /* The sort order table of the latin1
character set. The following table is
the MySQL order as of Feb 10th, 2002 */
= {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17
, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27
, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F
, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37
, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F
, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47
, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F
, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57
, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F
, 0x60, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47
, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F
, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57
, 0x58, 0x59, 0x5A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F
, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F
, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97
, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F
, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7
, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF
, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7
, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF
, 0x41, 0x41, 0x41, 0x41, 0x5C, 0x5B, 0x5C, 0x43
, 0x45, 0x45, 0x45, 0x45, 0x49, 0x49, 0x49, 0x49
, 0x44, 0x4E, 0x4F, 0x4F, 0x4F, 0x4F, 0x5D, 0xD7
, 0xD8, 0x55, 0x55, 0x55, 0x59, 0x59, 0xDE, 0xDF
, 0x41, 0x41, 0x41, 0x41, 0x5C, 0x5B, 0x5C, 0x43
, 0x45, 0x45, 0x45, 0x45, 0x49, 0x49, 0x49, 0x49
, 0x44, 0x4E, 0x4F, 0x4F, 0x4F, 0x4F, 0x5D, 0xF7
, 0xD8, 0x55, 0x55, 0x55, 0x59, 0x59, 0xDE, 0xFF
};
ulint srv_pool_size = ULINT_MAX; /* size in pages; MySQL inits
this to size in kilobytes but
we normalize this to pages in
srv_boot() */
ulint srv_awe_window_size = 0; /* size in pages; MySQL inits
this to bytes, but we
normalize it to pages in
srv_boot() */
ulint srv_mem_pool_size = ULINT_MAX; /* size in bytes */
ulint srv_lock_table_size = ULINT_MAX;
ulint srv_n_file_io_threads = ULINT_MAX;
#ifdef UNIV_LOG_ARCHIVE
ibool srv_log_archive_on = FALSE;
ibool srv_archive_recovery = 0;
dulint srv_archive_recovery_limit_lsn;
#endif /* UNIV_LOG_ARCHIVE */
ulint srv_lock_wait_timeout = 1024 * 1024 * 1024;
/* This parameter is used to throttle the number of insert buffers that are
merged in a batch. By increasing this parameter on a faster disk you can
possibly reduce the number of I/O operations performed to complete the
merge operation. The value of this parameter is used as is by the
background loop when the system is idle (low load), on a busy system
the parameter is scaled down by a factor of 4, this is to avoid putting
a heavier load on the I/O sub system. */
ulong srv_insert_buffer_batch_size = 20;
char* srv_file_flush_method_str = NULL;
ulint srv_unix_file_flush_method = SRV_UNIX_FSYNC;
ulint srv_win_file_flush_method = SRV_WIN_IO_UNBUFFERED;
ulint srv_max_n_open_files = 300;
/* The InnoDB main thread tries to keep the ratio of modified pages
in the buffer pool to all database pages in the buffer pool smaller than
the following number. But it is not guaranteed that the value stays below
that during a time of heavy update/insert activity. */
ulong srv_max_buf_pool_modified_pct = 90;
/* variable counts amount of data read in total (in bytes) */
ulint srv_data_read = 0;
/* here we count the amount of data written in total (in bytes) */
ulint srv_data_written = 0;
/* the number of the log write requests done */
ulint srv_log_write_requests = 0;
/* the number of physical writes to the log performed */
ulint srv_log_writes = 0;
/* amount of data written to the log files in bytes */
ulint srv_os_log_written = 0;
/* amount of writes being done to the log files */
ulint srv_os_log_pending_writes = 0;
/* we increase this counter, when there we don't have enough space in the
log buffer and have to flush it */
ulint srv_log_waits = 0;
/* this variable counts the amount of times, when the doublewrite buffer
was flushed */
ulint srv_dblwr_writes = 0;
/* here we store the number of pages that have been flushed to the
doublewrite buffer */
ulint srv_dblwr_pages_written = 0;
/* in this variable we store the number of write requests issued */
ulint srv_buf_pool_write_requests = 0;
/* here we store the number of times when we had to wait for a free page
in the buffer pool. It happens when the buffer pool is full and we need
to make a flush, in order to be able to read or create a page. */
ulint srv_buf_pool_wait_free = 0;
/* variable to count the number of pages that were written from buffer
pool to the disk */
ulint srv_buf_pool_flushed = 0;
/* variable to count the number of buffer pool reads that led to the
reading of a disk page */
ulint srv_buf_pool_reads = 0;
/* variable to count the number of sequential read-aheads */
ulint srv_read_ahead_seq = 0;
/* variable to count the number of random read-aheads */
ulint srv_read_ahead_rnd = 0;
/* structure to pass status variables to MySQL */
export_struc export_vars;
/* If the following is != 0 we do not allow inserts etc. This protects
the user from forgetting the innodb_force_recovery keyword to my.cnf */
ulint srv_force_recovery = 0;
/*-----------------------*/
/* We are prepared for a situation that we have this many threads waiting for
a semaphore inside InnoDB. innobase_start_or_create_for_mysql() sets the
value. */
ulint srv_max_n_threads = 0;
/* The following controls how many threads we let inside InnoDB concurrently:
threads waiting for locks are not counted into the number because otherwise
we could get a deadlock. MySQL creates a thread for each user session, and
semaphore contention and convoy problems can occur withput this restriction.
Value 10 should be good if there are less than 4 processors + 4 disks in the
computer. Bigger computers need bigger values. Value 0 will disable the
concurrency check. */
ulong srv_thread_concurrency = 0;
ulong srv_commit_concurrency = 0;
os_fast_mutex_t srv_conc_mutex; /* this mutex protects srv_conc data
structures */
lint srv_conc_n_threads = 0; /* number of OS threads currently
inside InnoDB; it is not an error
if this drops temporarily below zero
because we do not demand that every
thread increments this, but a thread
waiting for a lock decrements this
temporarily */
ulint srv_conc_n_waiting_threads = 0; /* number of OS threads waiting in the
FIFO for a permission to enter InnoDB
*/
typedef struct srv_conc_slot_struct srv_conc_slot_t;
struct srv_conc_slot_struct{
os_event_t event; /* event to wait */
ibool reserved; /* TRUE if slot
reserved */
ibool wait_ended; /* TRUE when another
thread has already set
the event and the
thread in this slot is
free to proceed; but
reserved may still be
TRUE at that point */
UT_LIST_NODE_T(srv_conc_slot_t) srv_conc_queue; /* queue node */
};
UT_LIST_BASE_NODE_T(srv_conc_slot_t) srv_conc_queue; /* queue of threads
waiting to get in */
srv_conc_slot_t* srv_conc_slots; /* array of wait
slots */
/* Number of times a thread is allowed to enter InnoDB within the same
SQL query after it has once got the ticket at srv_conc_enter_innodb */
#define SRV_FREE_TICKETS_TO_ENTER srv_n_free_tickets_to_enter
#define SRV_THREAD_SLEEP_DELAY srv_thread_sleep_delay
/*-----------------------*/
/* If the following is set to 1 then we do not run purge and insert buffer
merge to completion before shutdown. If it is set to 2, do not even flush the
buffer pool to data files at the shutdown: we effectively 'crash'
InnoDB (but lose no committed transactions). */
ulint srv_fast_shutdown = 0;
/* Generate a innodb_status.<pid> file */
ibool srv_innodb_status = FALSE;
ibool srv_stats_on_metadata = TRUE;
ibool srv_use_doublewrite_buf = TRUE;
ibool srv_use_checksums = TRUE;
ibool srv_set_thread_priorities = TRUE;
int srv_query_thread_priority = 0;
/* TRUE if the Address Windowing Extensions of Windows are used; then we must
disable adaptive hash indexes */
ibool srv_use_awe = FALSE;
ibool srv_use_adaptive_hash_indexes = TRUE;
/*-------------------------------------------*/
ulong srv_n_spin_wait_rounds = 20;
ulong srv_n_free_tickets_to_enter = 500;
ulong srv_thread_sleep_delay = 10000;
ulint srv_spin_wait_delay = 5;
ibool srv_priority_boost = TRUE;
ibool srv_print_thread_releases = FALSE;
ibool srv_print_lock_waits = FALSE;
ibool srv_print_buf_io = FALSE;
ibool srv_print_log_io = FALSE;
ibool srv_print_latch_waits = FALSE;
ulint srv_n_rows_inserted = 0;
ulint srv_n_rows_updated = 0;
ulint srv_n_rows_deleted = 0;
ulint srv_n_rows_read = 0;
#ifndef UNIV_HOTBACKUP
static ulint srv_n_rows_inserted_old = 0;
static ulint srv_n_rows_updated_old = 0;
static ulint srv_n_rows_deleted_old = 0;
static ulint srv_n_rows_read_old = 0;
#endif /* !UNIV_HOTBACKUP */
ulint srv_n_lock_wait_count = 0;
ulint srv_n_lock_wait_current_count = 0;
ib_longlong srv_n_lock_wait_time = 0;
ulint srv_n_lock_max_wait_time = 0;
/*
Set the following to 0 if you want InnoDB to write messages on
stderr on startup/shutdown
*/
ibool srv_print_verbose_log = TRUE;
ibool srv_print_innodb_monitor = FALSE;
ibool srv_print_innodb_lock_monitor = FALSE;
ibool srv_print_innodb_tablespace_monitor = FALSE;
ibool srv_print_innodb_table_monitor = FALSE;
/* Array of English strings describing the current state of an
i/o handler thread */
const char* srv_io_thread_op_info[SRV_MAX_N_IO_THREADS];
const char* srv_io_thread_function[SRV_MAX_N_IO_THREADS];
time_t srv_last_monitor_time;
mutex_t srv_innodb_monitor_mutex;
/* Mutex for locking srv_monitor_file */
mutex_t srv_monitor_file_mutex;
/* Temporary file for innodb monitor output */
FILE* srv_monitor_file;
/* Mutex for locking srv_dict_tmpfile.
This mutex has a very high rank; threads reserving it should not
be holding any InnoDB latches. */
mutex_t srv_dict_tmpfile_mutex;
/* Temporary file for output from the data dictionary */
FILE* srv_dict_tmpfile;
/* Mutex for locking srv_misc_tmpfile.
This mutex has a very low rank; threads reserving it should not
acquire any further latches or sleep before releasing this one. */
mutex_t srv_misc_tmpfile_mutex;
/* Temporary file for miscellanous diagnostic output */
FILE* srv_misc_tmpfile;
ulint srv_main_thread_process_no = 0;
ulint srv_main_thread_id = 0;
/*
IMPLEMENTATION OF THE SERVER MAIN PROGRAM
=========================================
There is the following analogue between this database
server and an operating system kernel:
DB concept equivalent OS concept
---------- ---------------------
transaction -- process;
query thread -- thread;
lock -- semaphore;
transaction set to
the rollback state -- kill signal delivered to a process;
kernel -- kernel;
query thread execution:
(a) without kernel mutex
reserved -- process executing in user mode;
(b) with kernel mutex reserved
-- process executing in kernel mode;
The server is controlled by a master thread which runs at
a priority higher than normal, that is, higher than user threads.
It sleeps most of the time, and wakes up, say, every 300 milliseconds,
to check whether there is anything happening in the server which
requires intervention of the master thread. Such situations may be,
for example, when flushing of dirty blocks is needed in the buffer
pool or old version of database rows have to be cleaned away.
The threads which we call user threads serve the queries of
the clients and input from the console of the server.
They run at normal priority. The server may have several
communications endpoints. A dedicated set of user threads waits
at each of these endpoints ready to receive a client request.
Each request is taken by a single user thread, which then starts
processing and, when the result is ready, sends it to the client
and returns to wait at the same endpoint the thread started from.
So, we do not have dedicated communication threads listening at
the endpoints and dealing the jobs to dedicated worker threads.
Our architecture saves one thread swithch per request, compared
to the solution with dedicated communication threads
which amounts to 15 microseconds on 100 MHz Pentium
running NT. If the client
is communicating over a network, this saving is negligible, but
if the client resides in the same machine, maybe in an SMP machine
on a different processor from the server thread, the saving
can be important as the threads can communicate over shared
memory with an overhead of a few microseconds.
We may later implement a dedicated communication thread solution
for those endpoints which communicate over a network.
Our solution with user threads has two problems: for each endpoint
there has to be a number of listening threads. If there are many
communication endpoints, it may be difficult to set the right number
of concurrent threads in the system, as many of the threads
may always be waiting at less busy endpoints. Another problem
is queuing of the messages, as the server internally does not
offer any queue for jobs.
Another group of user threads is intended for splitting the
queries and processing them in parallel. Let us call these
parallel communication threads. These threads are waiting for
parallelized tasks, suspended on event semaphores.
A single user thread waits for input from the console,
like a command to shut the database.
Utility threads are a different group of threads which takes
care of the buffer pool flushing and other, mainly background
operations, in the server.
Some of these utility threads always run at a lower than normal
priority, so that they are always in background. Some of them
may dynamically boost their priority by the pri_adjust function,
even to higher than normal priority, if their task becomes urgent.
The running of utilities is controlled by high- and low-water marks
of urgency. The urgency may be measured by the number of dirty blocks
in the buffer pool, in the case of the flush thread, for example.
When the high-water mark is exceeded, an utility starts running, until
the urgency drops under the low-water mark. Then the utility thread
suspend itself to wait for an event. The master thread is
responsible of signaling this event when the utility thread is
again needed.
For each individual type of utility, some threads always remain
at lower than normal priority. This is because pri_adjust is implemented
so that the threads at normal or higher priority control their
share of running time by calling sleep. Thus, if the load of the
system sudenly drops, these threads cannot necessarily utilize
the system fully. The background priority threads make up for this,
starting to run when the load drops.
When there is no activity in the system, also the master thread
suspends itself to wait for an event making
the server totally silent. The responsibility to signal this
event is on the user thread which again receives a message
from a client.
There is still one complication in our server design. If a
background utility thread obtains a resource (e.g., mutex) needed by a user
thread, and there is also some other user activity in the system,
the user thread may have to wait indefinitely long for the
resource, as the OS does not schedule a background thread if
there is some other runnable user thread. This problem is called
priority inversion in real-time programming.
One solution to the priority inversion problem would be to
keep record of which thread owns which resource and
in the above case boost the priority of the background thread
so that it will be scheduled and it can release the resource.
This solution is called priority inheritance in real-time programming.
A drawback of this solution is that the overhead of acquiring a mutex
increases slightly, maybe 0.2 microseconds on a 100 MHz Pentium, because
the thread has to call os_thread_get_curr_id.
This may be compared to 0.5 microsecond overhead for a mutex lock-unlock
pair. Note that the thread
cannot store the information in the resource, say mutex, itself,
because competing threads could wipe out the information if it is
stored before acquiring the mutex, and if it stored afterwards,
the information is outdated for the time of one machine instruction,
at least. (To be precise, the information could be stored to
lock_word in mutex if the machine supports atomic swap.)
The above solution with priority inheritance may become actual in the
future, but at the moment we plan to implement a more coarse solution,
which could be called a global priority inheritance. If a thread
has to wait for a long time, say 300 milliseconds, for a resource,
we just guess that it may be waiting for a resource owned by a background
thread, and boost the the priority of all runnable background threads
to the normal level. The background threads then themselves adjust
their fixed priority back to background after releasing all resources
they had (or, at some fixed points in their program code).
What is the performance of the global priority inheritance solution?
We may weigh the length of the wait time 300 milliseconds, during
which the system processes some other thread
to the cost of boosting the priority of each runnable background
thread, rescheduling it, and lowering the priority again.
On 100 MHz Pentium + NT this overhead may be of the order 100
microseconds per thread. So, if the number of runnable background
threads is not very big, say < 100, the cost is tolerable.
Utility threads probably will access resources used by
user threads not very often, so collisions of user threads
to preempted utility threads should not happen very often.
The thread table contains
information of the current status of each thread existing in the system,
and also the event semaphores used in suspending the master thread
and utility and parallel communication threads when they have nothing to do.
The thread table can be seen as an analogue to the process table
in a traditional Unix implementation.
The thread table is also used in the global priority inheritance
scheme. This brings in one additional complication: threads accessing
the thread table must have at least normal fixed priority,
because the priority inheritance solution does not work if a background
thread is preempted while possessing the mutex protecting the thread table.
So, if a thread accesses the thread table, its priority has to be
boosted at least to normal. This priority requirement can be seen similar to
the privileged mode used when processing the kernel calls in traditional
Unix.*/
/* Thread slot in the thread table */
struct srv_slot_struct{
os_thread_id_t id; /* thread id */
os_thread_t handle; /* thread handle */
ulint type; /* thread type: user, utility etc. */
ibool in_use; /* TRUE if this slot is in use */
ibool suspended; /* TRUE if the thread is waiting
for the event of this slot */
ib_time_t suspend_time; /* time when the thread was
suspended */
os_event_t event; /* event used in suspending the
thread when it has nothing to do */
que_thr_t* thr; /* suspended query thread (only
used for MySQL threads) */
};
/* Table for MySQL threads where they will be suspended to wait for locks */
srv_slot_t* srv_mysql_table = NULL;
os_event_t srv_lock_timeout_thread_event;
srv_sys_t* srv_sys = NULL;
byte srv_pad1[64]; /* padding to prevent other memory update
hotspots from residing on the same memory
cache line */
mutex_t* kernel_mutex_temp;/* mutex protecting the server, trx structs,
query threads, and lock table */
byte srv_pad2[64]; /* padding to prevent other memory update
hotspots from residing on the same memory
cache line */
/* The following three values measure the urgency of the jobs of
buffer, version, and insert threads. They may vary from 0 - 1000.
The server mutex protects all these variables. The low-water values
tell that the server can acquiesce the utility when the value
drops below this low-water mark. */
ulint srv_meter[SRV_MASTER + 1];
ulint srv_meter_low_water[SRV_MASTER + 1];
ulint srv_meter_high_water[SRV_MASTER + 1];
ulint srv_meter_high_water2[SRV_MASTER + 1];
ulint srv_meter_foreground[SRV_MASTER + 1];
/* The following values give info about the activity going on in
the database. They are protected by the server mutex. The arrays
are indexed by the type of the thread. */
ulint srv_n_threads_active[SRV_MASTER + 1];
ulint srv_n_threads[SRV_MASTER + 1];
/*************************************************************************
Sets the info describing an i/o thread current state. */
void
srv_set_io_thread_op_info(
/*======================*/
ulint i, /* in: the 'segment' of the i/o thread */
const char* str) /* in: constant char string describing the
state */
{
ut_a(i < SRV_MAX_N_IO_THREADS);
srv_io_thread_op_info[i] = str;
}
/*************************************************************************
Accessor function to get pointer to n'th slot in the server thread
table. */
static
srv_slot_t*
srv_table_get_nth_slot(
/*===================*/
/* out: pointer to the slot */
ulint index) /* in: index of the slot */
{
ut_a(index < OS_THREAD_MAX_N);
return(srv_sys->threads + index);
}
#ifndef UNIV_HOTBACKUP
/*************************************************************************
Gets the number of threads in the system. */
ulint
srv_get_n_threads(void)
/*===================*/
{
ulint i;
ulint n_threads = 0;
mutex_enter(&kernel_mutex);
for (i = SRV_COM; i < SRV_MASTER + 1; i++) {
n_threads += srv_n_threads[i];
}
mutex_exit(&kernel_mutex);
return(n_threads);
}
/*************************************************************************
Reserves a slot in the thread table for the current thread. Also creates the
thread local storage struct for the current thread. NOTE! The server mutex
has to be reserved by the caller! */
static
ulint
srv_table_reserve_slot(
/*===================*/
/* out: reserved slot index */
ulint type) /* in: type of the thread: one of SRV_COM, ... */
{
srv_slot_t* slot;
ulint i;
ut_a(type > 0);
ut_a(type <= SRV_MASTER);
i = 0;
slot = srv_table_get_nth_slot(i);
while (slot->in_use) {
i++;
slot = srv_table_get_nth_slot(i);
}
ut_a(slot->in_use == FALSE);
slot->in_use = TRUE;
slot->suspended = FALSE;
slot->id = os_thread_get_curr_id();
slot->handle = os_thread_get_curr();
slot->type = type;
thr_local_create();
thr_local_set_slot_no(os_thread_get_curr_id(), i);
return(i);
}
/*************************************************************************
Suspends the calling thread to wait for the event in its thread slot.
NOTE! The server mutex has to be reserved by the caller! */
static
os_event_t
srv_suspend_thread(void)
/*====================*/
/* out: event for the calling thread to wait */
{
srv_slot_t* slot;
os_event_t event;
ulint slot_no;
ulint type;
ut_ad(mutex_own(&kernel_mutex));
slot_no = thr_local_get_slot_no(os_thread_get_curr_id());
if (srv_print_thread_releases) {
fprintf(stderr,
"Suspending thread %lu to slot %lu meter %lu\n",
(ulong) os_thread_get_curr_id(), (ulong) slot_no,
(ulong) srv_meter[SRV_RECOVERY]);
}
slot = srv_table_get_nth_slot(slot_no);
type = slot->type;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
event = slot->event;
slot->suspended = TRUE;
ut_ad(srv_n_threads_active[type] > 0);
srv_n_threads_active[type]--;
os_event_reset(event);
return(event);
}
#endif /* !UNIV_HOTBACKUP */
/*************************************************************************
Releases threads of the type given from suspension in the thread table.
NOTE! The server mutex has to be reserved by the caller! */
ulint
srv_release_threads(
/*================*/
/* out: number of threads released: this may be
< n if not enough threads were suspended at the
moment */
ulint type, /* in: thread type */
ulint n) /* in: number of threads to release */
{
srv_slot_t* slot;
ulint i;
ulint count = 0;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
ut_ad(n > 0);
ut_ad(mutex_own(&kernel_mutex));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_table_get_nth_slot(i);
if (slot->in_use && slot->type == type && slot->suspended) {
slot->suspended = FALSE;
srv_n_threads_active[type]++;
os_event_set(slot->event);
if (srv_print_thread_releases) {
fprintf(stderr,
"Releasing thread %lu type %lu"
" from slot %lu meter %lu\n",
(ulong) slot->id, (ulong) type,
(ulong) i,
(ulong) srv_meter[SRV_RECOVERY]);
}
count++;
if (count == n) {
break;
}
}
}
return(count);
}
/*************************************************************************
Returns the calling thread type. */
ulint
srv_get_thread_type(void)
/*=====================*/
/* out: SRV_COM, ... */
{
ulint slot_no;
srv_slot_t* slot;
ulint type;
mutex_enter(&kernel_mutex);
slot_no = thr_local_get_slot_no(os_thread_get_curr_id());
slot = srv_table_get_nth_slot(slot_no);
type = slot->type;
ut_ad(type >= SRV_WORKER);
ut_ad(type <= SRV_MASTER);
mutex_exit(&kernel_mutex);
return(type);
}
/*************************************************************************
Initializes the server. */
void
srv_init(void)
/*==========*/
{
srv_conc_slot_t* conc_slot;
srv_slot_t* slot;
dict_table_t* table;
ulint i;
srv_sys = mem_alloc(sizeof(srv_sys_t));
kernel_mutex_temp = mem_alloc(sizeof(mutex_t));
mutex_create(&kernel_mutex, SYNC_KERNEL);
mutex_create(&srv_innodb_monitor_mutex, SYNC_NO_ORDER_CHECK);
srv_sys->threads = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_table_get_nth_slot(i);
slot->in_use = FALSE;
slot->type=0; /* Avoid purify errors */
slot->event = os_event_create(NULL);
ut_a(slot->event);
}
srv_mysql_table = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
slot->in_use = FALSE;
slot->type = 0;
slot->event = os_event_create(NULL);
ut_a(slot->event);
}
srv_lock_timeout_thread_event = os_event_create(NULL);
for (i = 0; i < SRV_MASTER + 1; i++) {
srv_n_threads_active[i] = 0;
srv_n_threads[i] = 0;
srv_meter[i] = 30;
srv_meter_low_water[i] = 50;
srv_meter_high_water[i] = 100;
srv_meter_high_water2[i] = 200;
srv_meter_foreground[i] = 250;
}
UT_LIST_INIT(srv_sys->tasks);
/* create dummy table and index for old-style infimum and supremum */
table = dict_mem_table_create("SYS_DUMMY1",
DICT_HDR_SPACE, 1, 0);
dict_mem_table_add_col(table, NULL, NULL, DATA_CHAR,
DATA_ENGLISH | DATA_NOT_NULL, 8);
srv_sys->dummy_ind1 = dict_mem_index_create(
"SYS_DUMMY1", "SYS_DUMMY1", DICT_HDR_SPACE, 0, 1);
dict_index_add_col(srv_sys->dummy_ind1, table, (dict_col_t*)
dict_table_get_nth_col(table, 0), 0);
srv_sys->dummy_ind1->table = table;
/* create dummy table and index for new-style infimum and supremum */
table = dict_mem_table_create("SYS_DUMMY2",
DICT_HDR_SPACE, 1, DICT_TF_COMPACT);
dict_mem_table_add_col(table, NULL, NULL, DATA_CHAR,
DATA_ENGLISH | DATA_NOT_NULL, 8);
srv_sys->dummy_ind2 = dict_mem_index_create(
"SYS_DUMMY2", "SYS_DUMMY2", DICT_HDR_SPACE, 0, 1);
dict_index_add_col(srv_sys->dummy_ind2, table, (dict_col_t*)
dict_table_get_nth_col(table, 0), 0);
srv_sys->dummy_ind2->table = table;
/* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */
srv_sys->dummy_ind1->cached = srv_sys->dummy_ind2->cached = TRUE;
/* Init the server concurrency restriction data structures */
os_fast_mutex_init(&srv_conc_mutex);
UT_LIST_INIT(srv_conc_queue);
srv_conc_slots = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_conc_slot_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
conc_slot = srv_conc_slots + i;
conc_slot->reserved = FALSE;
conc_slot->event = os_event_create(NULL);
ut_a(conc_slot->event);
}
}
/*************************************************************************
Frees the OS fast mutex created in srv_init(). */
void
srv_free(void)
/*==========*/
{
os_fast_mutex_free(&srv_conc_mutex);
}
/*************************************************************************
Initializes the synchronization primitives, memory system, and the thread
local storage. */
void
srv_general_init(void)
/*==================*/
{
os_sync_init();
sync_init();
mem_init(srv_mem_pool_size);
thr_local_init();
}
/*======================= InnoDB Server FIFO queue =======================*/
/* Maximum allowable purge history length. <=0 means 'infinite'. */
ulong srv_max_purge_lag = 0;
/*************************************************************************
Puts an OS thread to wait if there are too many concurrent threads
(>= srv_thread_concurrency) inside InnoDB. The threads wait in a FIFO queue. */
void
srv_conc_enter_innodb(
/*==================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
ibool has_slept = FALSE;
srv_conc_slot_t* slot = NULL;
ulint i;
if (trx->mysql_thd != NULL
&& thd_is_replication_slave_thread(trx->mysql_thd)) {
/* TODO Do something more interesting (based on a config
parameter). Some users what to give the replication
thread very low priority, see http://bugs.mysql.com/25078
This can be done by introducing
innodb_replication_delay(ms) config parameter */
return;
}
/* If trx has 'free tickets' to enter the engine left, then use one
such ticket */
if (trx->n_tickets_to_enter_innodb > 0) {
trx->n_tickets_to_enter_innodb--;
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
retry:
if (trx->declared_to_be_inside_innodb) {
ut_print_timestamp(stderr);
fputs(" InnoDB: Error: trying to declare trx"
" to enter InnoDB, but\n"
"InnoDB: it already is declared.\n", stderr);
trx_print(stderr, trx, 0);
putc('\n', stderr);
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
if (srv_conc_n_threads < (lint)srv_thread_concurrency) {
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
/* If the transaction is not holding resources, let it sleep
for SRV_THREAD_SLEEP_DELAY microseconds, and try again then */
if (!has_slept && !trx->has_search_latch
&& NULL == UT_LIST_GET_FIRST(trx->trx_locks)) {
has_slept = TRUE; /* We let it sleep only once to avoid
starvation */
srv_conc_n_waiting_threads++;
os_fast_mutex_unlock(&srv_conc_mutex);
trx->op_info = "sleeping before joining InnoDB queue";
/* Peter Zaitsev suggested that we take the sleep away
altogether. But the sleep may be good in pathological
situations of lots of thread switches. Simply put some
threads aside for a while to reduce the number of thread
switches. */
if (SRV_THREAD_SLEEP_DELAY > 0) {
os_thread_sleep(SRV_THREAD_SLEEP_DELAY);
}
trx->op_info = "";
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_waiting_threads--;
goto retry;
}
/* Too many threads inside: put the current thread to a queue */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_conc_slots + i;
if (!slot->reserved) {
break;
}
}
if (i == OS_THREAD_MAX_N) {
/* Could not find a free wait slot, we must let the
thread enter */
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = 0;
os_fast_mutex_unlock(&srv_conc_mutex);
return;
}
/* Release possible search system latch this thread has */
if (trx->has_search_latch) {
trx_search_latch_release_if_reserved(trx);
}
/* Add to the queue */
slot->reserved = TRUE;
slot->wait_ended = FALSE;
UT_LIST_ADD_LAST(srv_conc_queue, srv_conc_queue, slot);
os_event_reset(slot->event);
srv_conc_n_waiting_threads++;
os_fast_mutex_unlock(&srv_conc_mutex);
/* Go to wait for the event; when a thread leaves InnoDB it will
release this thread */
trx->op_info = "waiting in InnoDB queue";
os_event_wait(slot->event);
trx->op_info = "";
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_waiting_threads--;
/* NOTE that the thread which released this thread already
incremented the thread counter on behalf of this thread */
slot->reserved = FALSE;
UT_LIST_REMOVE(srv_conc_queue, srv_conc_queue, slot);
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;
os_fast_mutex_unlock(&srv_conc_mutex);
}
/*************************************************************************
This lets a thread enter InnoDB regardless of the number of threads inside
InnoDB. This must be called when a thread ends a lock wait. */
void
srv_conc_force_enter_innodb(
/*========================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
if (UNIV_LIKELY(!srv_thread_concurrency)) {
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_threads++;
trx->declared_to_be_inside_innodb = TRUE;
trx->n_tickets_to_enter_innodb = 1;
os_fast_mutex_unlock(&srv_conc_mutex);
}
/*************************************************************************
This must be called when a thread exits InnoDB in a lock wait or at the
end of an SQL statement. */
void
srv_conc_force_exit_innodb(
/*=======================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
srv_conc_slot_t* slot = NULL;
if (UNIV_LIKELY(!srv_thread_concurrency)) {
return;
}
if (trx->mysql_thd != NULL
&& thd_is_replication_slave_thread(trx->mysql_thd)) {
return;
}
if (trx->declared_to_be_inside_innodb == FALSE) {
return;
}
os_fast_mutex_lock(&srv_conc_mutex);
srv_conc_n_threads--;
trx->declared_to_be_inside_innodb = FALSE;
trx->n_tickets_to_enter_innodb = 0;
if (srv_conc_n_threads < (lint)srv_thread_concurrency) {
/* Look for a slot where a thread is waiting and no other
thread has yet released the thread */
slot = UT_LIST_GET_FIRST(srv_conc_queue);
while (slot && slot->wait_ended == TRUE) {
slot = UT_LIST_GET_NEXT(srv_conc_queue, slot);
}
if (slot != NULL) {
slot->wait_ended = TRUE;
/* We increment the count on behalf of the released
thread */
srv_conc_n_threads++;
}
}
os_fast_mutex_unlock(&srv_conc_mutex);
if (slot != NULL) {
os_event_set(slot->event);
}
}
/*************************************************************************
This must be called when a thread exits InnoDB. */
void
srv_conc_exit_innodb(
/*=================*/
trx_t* trx) /* in: transaction object associated with the
thread */
{
if (trx->n_tickets_to_enter_innodb > 0) {
/* We will pretend the thread is still inside InnoDB though it
now leaves the InnoDB engine. In this way we save
a lot of semaphore operations. srv_conc_force_exit_innodb is
used to declare the thread definitely outside InnoDB. It
should be called when there is a lock wait or an SQL statement
ends. */
return;
}
srv_conc_force_exit_innodb(trx);
}
/*========================================================================*/
/*************************************************************************
Normalizes init parameter values to use units we use inside InnoDB. */
static
ulint
srv_normalize_init_values(void)
/*===========================*/
/* out: DB_SUCCESS or error code */
{
ulint n;
ulint i;
n = srv_n_data_files;
for (i = 0; i < n; i++) {
srv_data_file_sizes[i] = srv_data_file_sizes[i]
* ((1024 * 1024) / UNIV_PAGE_SIZE);
}
srv_last_file_size_max = srv_last_file_size_max
* ((1024 * 1024) / UNIV_PAGE_SIZE);
srv_log_file_size = srv_log_file_size / UNIV_PAGE_SIZE;
srv_log_buffer_size = srv_log_buffer_size / UNIV_PAGE_SIZE;
srv_pool_size = srv_pool_size / (UNIV_PAGE_SIZE / 1024);
srv_awe_window_size = srv_awe_window_size / UNIV_PAGE_SIZE;
if (srv_use_awe) {
/* If we are using AWE we must save memory in the 32-bit
address space of the process, and cannot bind the lock
table size to the real buffer pool size. */
srv_lock_table_size = 20 * srv_awe_window_size;
} else {
srv_lock_table_size = 5 * srv_pool_size;
}
return(DB_SUCCESS);
}
/*************************************************************************
Boots the InnoDB server. */
ulint
srv_boot(void)
/*==========*/
/* out: DB_SUCCESS or error code */
{
ulint err;
/* Transform the init parameter values given by MySQL to
use units we use inside InnoDB: */
err = srv_normalize_init_values();
if (err != DB_SUCCESS) {
return(err);
}
/* Initialize synchronization primitives, memory management, and thread
local storage */
srv_general_init();
/* Initialize this module */
srv_init();
return(DB_SUCCESS);
}
#ifndef UNIV_HOTBACKUP
/*************************************************************************
Reserves a slot in the thread table for the current MySQL OS thread.
NOTE! The kernel mutex has to be reserved by the caller! */
static
srv_slot_t*
srv_table_reserve_slot_for_mysql(void)
/*==================================*/
/* out: reserved slot */
{
srv_slot_t* slot;
ulint i;
ut_ad(mutex_own(&kernel_mutex));
i = 0;
slot = srv_mysql_table + i;
while (slot->in_use) {
i++;
if (i >= OS_THREAD_MAX_N) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: There appear to be %lu MySQL"
" threads currently waiting\n"
"InnoDB: inside InnoDB, which is the"
" upper limit. Cannot continue operation.\n"
"InnoDB: We intentionally generate"
" a seg fault to print a stack trace\n"
"InnoDB: on Linux. But first we print"
" a list of waiting threads.\n", (ulong) i);
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
fprintf(stderr,
"Slot %lu: thread id %lu, type %lu,"
" in use %lu, susp %lu, time %lu\n",
(ulong) i,
(ulong) os_thread_pf(slot->id),
(ulong) slot->type,
(ulong) slot->in_use,
(ulong) slot->suspended,
(ulong) difftime(ut_time(),
slot->suspend_time));
}
ut_error;
}
slot = srv_mysql_table + i;
}
ut_a(slot->in_use == FALSE);
slot->in_use = TRUE;
slot->id = os_thread_get_curr_id();
slot->handle = os_thread_get_curr();
return(slot);
}
#endif /* !UNIV_HOTBACKUP */
/*******************************************************************
Puts a MySQL OS thread to wait for a lock to be released. If an error
occurs during the wait trx->error_state associated with thr is
!= DB_SUCCESS when we return. DB_LOCK_WAIT_TIMEOUT and DB_DEADLOCK
are possible errors. DB_DEADLOCK is returned if selective deadlock
resolution chose this transaction as a victim. */
void
srv_suspend_mysql_thread(
/*=====================*/
que_thr_t* thr) /* in: query thread associated with the MySQL
OS thread */
{
#ifndef UNIV_HOTBACKUP
srv_slot_t* slot;
os_event_t event;
double wait_time;
trx_t* trx;
ibool had_dict_lock = FALSE;
ibool was_declared_inside_innodb = FALSE;
ib_longlong start_time = 0;
ib_longlong finish_time;
ulint diff_time;
ulint sec;
ulint ms;
ut_ad(!mutex_own(&kernel_mutex));
trx = thr_get_trx(thr);
os_event_set(srv_lock_timeout_thread_event);
mutex_enter(&kernel_mutex);
trx->error_state = DB_SUCCESS;
if (thr->state == QUE_THR_RUNNING) {
ut_ad(thr->is_active == TRUE);
/* The lock has already been released or this transaction
was chosen as a deadlock victim: no need to suspend */
if (trx->was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->was_chosen_as_deadlock_victim = FALSE;
}
mutex_exit(&kernel_mutex);
return;
}
ut_ad(thr->is_active == FALSE);
slot = srv_table_reserve_slot_for_mysql();
event = slot->event;
slot->thr = thr;
os_event_reset(event);
slot->suspend_time = ut_time();
if (thr->lock_state == QUE_THR_LOCK_ROW) {
srv_n_lock_wait_count++;
srv_n_lock_wait_current_count++;
ut_usectime(&sec, &ms);
start_time = (ib_longlong)sec * 1000000 + ms;
}
/* Wake the lock timeout monitor thread, if it is suspended */
os_event_set(srv_lock_timeout_thread_event);
mutex_exit(&kernel_mutex);
if (trx->declared_to_be_inside_innodb) {
was_declared_inside_innodb = TRUE;
/* We must declare this OS thread to exit InnoDB, since a
possible other thread holding a lock which this thread waits
for must be allowed to enter, sooner or later */
srv_conc_force_exit_innodb(trx);
}
/* Release possible foreign key check latch */
if (trx->dict_operation_lock_mode == RW_S_LATCH) {
had_dict_lock = TRUE;
row_mysql_unfreeze_data_dictionary(trx);
}
ut_a(trx->dict_operation_lock_mode == 0);
/* Wait for the release */
os_event_wait(event);
if (had_dict_lock) {
row_mysql_freeze_data_dictionary(trx);
}
if (was_declared_inside_innodb) {
/* Return back inside InnoDB */
srv_conc_force_enter_innodb(trx);
}
mutex_enter(&kernel_mutex);
/* Release the slot for others to use */
slot->in_use = FALSE;
wait_time = ut_difftime(ut_time(), slot->suspend_time);
if (thr->lock_state == QUE_THR_LOCK_ROW) {
ut_usectime(&sec, &ms);
finish_time = (ib_longlong)sec * 1000000 + ms;
diff_time = (ulint) (finish_time - start_time);
srv_n_lock_wait_current_count--;
srv_n_lock_wait_time = srv_n_lock_wait_time + diff_time;
if (diff_time > srv_n_lock_max_wait_time) {
srv_n_lock_max_wait_time = diff_time;
}
}
if (trx->was_chosen_as_deadlock_victim) {
trx->error_state = DB_DEADLOCK;
trx->was_chosen_as_deadlock_victim = FALSE;
}
mutex_exit(&kernel_mutex);
if (srv_lock_wait_timeout < 100000000
&& wait_time > (double)srv_lock_wait_timeout) {
trx->error_state = DB_LOCK_WAIT_TIMEOUT;
}
#else /* UNIV_HOTBACKUP */
/* This function depends on MySQL code that is not included in
InnoDB Hot Backup builds. Besides, this function should never
be called in InnoDB Hot Backup. */
ut_error;
#endif /* UNIV_HOTBACKUP */
}
/************************************************************************
Releases a MySQL OS thread waiting for a lock to be released, if the
thread is already suspended. */
void
srv_release_mysql_thread_if_suspended(
/*==================================*/
que_thr_t* thr) /* in: query thread associated with the
MySQL OS thread */
{
#ifndef UNIV_HOTBACKUP
srv_slot_t* slot;
ulint i;
ut_ad(mutex_own(&kernel_mutex));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
if (slot->in_use && slot->thr == thr) {
/* Found */
os_event_set(slot->event);
return;
}
}
/* not found */
#else /* UNIV_HOTBACKUP */
/* This function depends on MySQL code that is not included in
InnoDB Hot Backup builds. Besides, this function should never
be called in InnoDB Hot Backup. */
ut_error;
#endif /* UNIV_HOTBACKUP */
}
#ifndef UNIV_HOTBACKUP
/**********************************************************************
Refreshes the values used to calculate per-second averages. */
static
void
srv_refresh_innodb_monitor_stats(void)
/*==================================*/
{
mutex_enter(&srv_innodb_monitor_mutex);
srv_last_monitor_time = time(NULL);
os_aio_refresh_stats();
btr_cur_n_sea_old = btr_cur_n_sea;
btr_cur_n_non_sea_old = btr_cur_n_non_sea;
log_refresh_stats();
buf_refresh_io_stats();
srv_n_rows_inserted_old = srv_n_rows_inserted;
srv_n_rows_updated_old = srv_n_rows_updated;
srv_n_rows_deleted_old = srv_n_rows_deleted;
srv_n_rows_read_old = srv_n_rows_read;
mutex_exit(&srv_innodb_monitor_mutex);
}
/**********************************************************************
Outputs to a file the output of the InnoDB Monitor. */
void
srv_printf_innodb_monitor(
/*======================*/
FILE* file, /* in: output stream */
ulint* trx_start, /* out: file position of the start of
the list of active transactions */
ulint* trx_end) /* out: file position of the end of
the list of active transactions */
{
double time_elapsed;
time_t current_time;
ulint n_reserved;
mutex_enter(&srv_innodb_monitor_mutex);
current_time = time(NULL);
/* We add 0.001 seconds to time_elapsed to prevent division
by zero if two users happen to call SHOW INNODB STATUS at the same
time */
time_elapsed = difftime(current_time, srv_last_monitor_time)
+ 0.001;
srv_last_monitor_time = time(NULL);
fputs("\n=====================================\n", file);
ut_print_timestamp(file);
fprintf(file,
" INNODB MONITOR OUTPUT\n"
"=====================================\n"
"Per second averages calculated from the last %lu seconds\n",
(ulong)time_elapsed);
fputs("----------\n"
"SEMAPHORES\n"
"----------\n", file);
sync_print(file);
/* Conceptually, srv_innodb_monitor_mutex has a very high latching
order level in sync0sync.h, while dict_foreign_err_mutex has a very
low level 135. Therefore we can reserve the latter mutex here without
a danger of a deadlock of threads. */
mutex_enter(&dict_foreign_err_mutex);
if (ftell(dict_foreign_err_file) != 0L) {
fputs("------------------------\n"
"LATEST FOREIGN KEY ERROR\n"
"------------------------\n", file);
ut_copy_file(file, dict_foreign_err_file);
}
mutex_exit(&dict_foreign_err_mutex);
lock_print_info_summary(file);
if (trx_start) {
long t = ftell(file);
if (t < 0) {
*trx_start = ULINT_UNDEFINED;
} else {
*trx_start = (ulint) t;
}
}
lock_print_info_all_transactions(file);
if (trx_end) {
long t = ftell(file);
if (t < 0) {
*trx_end = ULINT_UNDEFINED;
} else {
*trx_end = (ulint) t;
}
}
fputs("--------\n"
"FILE I/O\n"
"--------\n", file);
os_aio_print(file);
fputs("-------------------------------------\n"
"INSERT BUFFER AND ADAPTIVE HASH INDEX\n"
"-------------------------------------\n", file);
ibuf_print(file);
ha_print_info(file, btr_search_sys->hash_index);
fprintf(file,
"%.2f hash searches/s, %.2f non-hash searches/s\n",
(btr_cur_n_sea - btr_cur_n_sea_old)
/ time_elapsed,
(btr_cur_n_non_sea - btr_cur_n_non_sea_old)
/ time_elapsed);
btr_cur_n_sea_old = btr_cur_n_sea;
btr_cur_n_non_sea_old = btr_cur_n_non_sea;
fputs("---\n"
"LOG\n"
"---\n", file);
log_print(file);
fputs("----------------------\n"
"BUFFER POOL AND MEMORY\n"
"----------------------\n", file);
fprintf(file,
"Total memory allocated " ULINTPF
"; in additional pool allocated " ULINTPF "\n",
ut_total_allocated_memory,
mem_pool_get_reserved(mem_comm_pool));
fprintf(file, "Dictionary memory allocated " ULINTPF "\n",
dict_sys->size);
if (srv_use_awe) {
fprintf(file,
"In addition to that %lu MB of AWE memory allocated\n",
(ulong) (srv_pool_size
/ ((1024 * 1024) / UNIV_PAGE_SIZE)));
}
buf_print_io(file);
fputs("--------------\n"
"ROW OPERATIONS\n"
"--------------\n", file);
fprintf(file, "%ld queries inside InnoDB, %lu queries in queue\n",
(long) srv_conc_n_threads,
(ulong) srv_conc_n_waiting_threads);
fprintf(file, "%lu read views open inside InnoDB\n",
UT_LIST_GET_LEN(trx_sys->view_list));
n_reserved = fil_space_get_n_reserved_extents(0);
if (n_reserved > 0) {
fprintf(file,
"%lu tablespace extents now reserved for"
" B-tree split operations\n",
(ulong) n_reserved);
}
#ifdef UNIV_LINUX
fprintf(file, "Main thread process no. %lu, id %lu, state: %s\n",
(ulong) srv_main_thread_process_no,
(ulong) srv_main_thread_id,
srv_main_thread_op_info);
#else
fprintf(file, "Main thread id %lu, state: %s\n",
(ulong) srv_main_thread_id,
srv_main_thread_op_info);
#endif
fprintf(file,
"Number of rows inserted " ULINTPF
", updated " ULINTPF ", deleted " ULINTPF
", read " ULINTPF "\n",
srv_n_rows_inserted,
srv_n_rows_updated,
srv_n_rows_deleted,
srv_n_rows_read);
fprintf(file,
"%.2f inserts/s, %.2f updates/s,"
" %.2f deletes/s, %.2f reads/s\n",
(srv_n_rows_inserted - srv_n_rows_inserted_old)
/ time_elapsed,
(srv_n_rows_updated - srv_n_rows_updated_old)
/ time_elapsed,
(srv_n_rows_deleted - srv_n_rows_deleted_old)
/ time_elapsed,
(srv_n_rows_read - srv_n_rows_read_old)
/ time_elapsed);
srv_n_rows_inserted_old = srv_n_rows_inserted;
srv_n_rows_updated_old = srv_n_rows_updated;
srv_n_rows_deleted_old = srv_n_rows_deleted;
srv_n_rows_read_old = srv_n_rows_read;
fputs("----------------------------\n"
"END OF INNODB MONITOR OUTPUT\n"
"============================\n", file);
mutex_exit(&srv_innodb_monitor_mutex);
fflush(file);
}
/**********************************************************************
Function to pass InnoDB status variables to MySQL */
void
srv_export_innodb_status(void)
{
mutex_enter(&srv_innodb_monitor_mutex);
export_vars.innodb_data_pending_reads
= os_n_pending_reads;
export_vars.innodb_data_pending_writes
= os_n_pending_writes;
export_vars.innodb_data_pending_fsyncs
= fil_n_pending_log_flushes
+ fil_n_pending_tablespace_flushes;
export_vars.innodb_data_fsyncs = os_n_fsyncs;
export_vars.innodb_data_read = srv_data_read;
export_vars.innodb_data_reads = os_n_file_reads;
export_vars.innodb_data_writes = os_n_file_writes;
export_vars.innodb_data_written = srv_data_written;
export_vars.innodb_buffer_pool_read_requests = buf_pool->n_page_gets;
export_vars.innodb_buffer_pool_write_requests
= srv_buf_pool_write_requests;
export_vars.innodb_buffer_pool_wait_free = srv_buf_pool_wait_free;
export_vars.innodb_buffer_pool_pages_flushed = srv_buf_pool_flushed;
export_vars.innodb_buffer_pool_reads = srv_buf_pool_reads;
export_vars.innodb_buffer_pool_read_ahead_rnd = srv_read_ahead_rnd;
export_vars.innodb_buffer_pool_read_ahead_seq = srv_read_ahead_seq;
export_vars.innodb_buffer_pool_pages_data
= UT_LIST_GET_LEN(buf_pool->LRU);
export_vars.innodb_buffer_pool_pages_dirty
= UT_LIST_GET_LEN(buf_pool->flush_list);
export_vars.innodb_buffer_pool_pages_free
= UT_LIST_GET_LEN(buf_pool->free);
export_vars.innodb_buffer_pool_pages_latched
= buf_get_latched_pages_number();
export_vars.innodb_buffer_pool_pages_total = buf_pool->curr_size;
export_vars.innodb_buffer_pool_pages_misc = buf_pool->max_size
- UT_LIST_GET_LEN(buf_pool->LRU)
- UT_LIST_GET_LEN(buf_pool->free);
export_vars.innodb_page_size = UNIV_PAGE_SIZE;
export_vars.innodb_log_waits = srv_log_waits;
export_vars.innodb_os_log_written = srv_os_log_written;
export_vars.innodb_os_log_fsyncs = fil_n_log_flushes;
export_vars.innodb_os_log_pending_fsyncs = fil_n_pending_log_flushes;
export_vars.innodb_os_log_pending_writes = srv_os_log_pending_writes;
export_vars.innodb_log_write_requests = srv_log_write_requests;
export_vars.innodb_log_writes = srv_log_writes;
export_vars.innodb_dblwr_pages_written = srv_dblwr_pages_written;
export_vars.innodb_dblwr_writes = srv_dblwr_writes;
export_vars.innodb_pages_created = buf_pool->n_pages_created;
export_vars.innodb_pages_read = buf_pool->n_pages_read;
export_vars.innodb_pages_written = buf_pool->n_pages_written;
export_vars.innodb_row_lock_waits = srv_n_lock_wait_count;
export_vars.innodb_row_lock_current_waits
= srv_n_lock_wait_current_count;
export_vars.innodb_row_lock_time = srv_n_lock_wait_time / 1000;
if (srv_n_lock_wait_count > 0) {
export_vars.innodb_row_lock_time_avg = (ulint)
(srv_n_lock_wait_time / 1000 / srv_n_lock_wait_count);
} else {
export_vars.innodb_row_lock_time_avg = 0;
}
export_vars.innodb_row_lock_time_max
= srv_n_lock_max_wait_time / 1000;
export_vars.innodb_rows_read = srv_n_rows_read;
export_vars.innodb_rows_inserted = srv_n_rows_inserted;
export_vars.innodb_rows_updated = srv_n_rows_updated;
export_vars.innodb_rows_deleted = srv_n_rows_deleted;
mutex_exit(&srv_innodb_monitor_mutex);
}
/*************************************************************************
A thread which wakes up threads whose lock wait may have lasted too long.
This also prints the info output by various InnoDB monitors. */
os_thread_ret_t
srv_lock_timeout_and_monitor_thread(
/*================================*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
srv_slot_t* slot;
double time_elapsed;
time_t current_time;
time_t last_table_monitor_time;
time_t last_tablespace_monitor_time;
time_t last_monitor_time;
ibool some_waits;
double wait_time;
ulint i;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Lock timeout thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
UT_NOT_USED(arg);
srv_last_monitor_time = time(NULL);
last_table_monitor_time = time(NULL);
last_tablespace_monitor_time = time(NULL);
last_monitor_time = time(NULL);
loop:
srv_lock_timeout_and_monitor_active = TRUE;
/* When someone is waiting for a lock, we wake up every second
and check if a timeout has passed for a lock wait */
os_thread_sleep(1000000);
/* In case mutex_exit is not a memory barrier, it is
theoretically possible some threads are left waiting though
the semaphore is already released. Wake up those threads: */
sync_arr_wake_threads_if_sema_free();
current_time = time(NULL);
time_elapsed = difftime(current_time, last_monitor_time);
if (time_elapsed > 15) {
last_monitor_time = time(NULL);
if (srv_print_innodb_monitor) {
srv_printf_innodb_monitor(stderr, NULL, NULL);
}
if (srv_innodb_status) {
mutex_enter(&srv_monitor_file_mutex);
rewind(srv_monitor_file);
srv_printf_innodb_monitor(srv_monitor_file, NULL,
NULL);
os_file_set_eof(srv_monitor_file);
mutex_exit(&srv_monitor_file_mutex);
}
if (srv_print_innodb_tablespace_monitor
&& difftime(current_time,
last_tablespace_monitor_time) > 60) {
last_tablespace_monitor_time = time(NULL);
fputs("========================"
"========================\n",
stderr);
ut_print_timestamp(stderr);
fputs(" INNODB TABLESPACE MONITOR OUTPUT\n"
"========================"
"========================\n",
stderr);
fsp_print(0);
fputs("Validating tablespace\n", stderr);
fsp_validate(0);
fputs("Validation ok\n"
"---------------------------------------\n"
"END OF INNODB TABLESPACE MONITOR OUTPUT\n"
"=======================================\n",
stderr);
}
if (srv_print_innodb_table_monitor
&& difftime(current_time, last_table_monitor_time) > 60) {
last_table_monitor_time = time(NULL);
fputs("===========================================\n",
stderr);
ut_print_timestamp(stderr);
fputs(" INNODB TABLE MONITOR OUTPUT\n"
"===========================================\n",
stderr);
dict_print();
fputs("-----------------------------------\n"
"END OF INNODB TABLE MONITOR OUTPUT\n"
"==================================\n",
stderr);
}
}
mutex_enter(&kernel_mutex);
some_waits = FALSE;
/* Check of all slots if a thread is waiting there, and if it
has exceeded the time limit */
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = srv_mysql_table + i;
if (slot->in_use) {
some_waits = TRUE;
wait_time = ut_difftime(ut_time(), slot->suspend_time);
if (srv_lock_wait_timeout < 100000000
&& (wait_time > (double) srv_lock_wait_timeout
|| wait_time < 0)) {
/* Timeout exceeded or a wrap-around in system
time counter: cancel the lock request queued
by the transaction and release possible
other transactions waiting behind; it is
possible that the lock has already been
granted: in that case do nothing */
if (thr_get_trx(slot->thr)->wait_lock) {
lock_cancel_waiting_and_release(
thr_get_trx(slot->thr)
->wait_lock);
}
}
}
}
os_event_reset(srv_lock_timeout_thread_event);
mutex_exit(&kernel_mutex);
if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) {
goto exit_func;
}
if (some_waits || srv_print_innodb_monitor
|| srv_print_innodb_lock_monitor
|| srv_print_innodb_tablespace_monitor
|| srv_print_innodb_table_monitor) {
goto loop;
}
/* No one was waiting for a lock and no monitor was active:
suspend this thread */
srv_lock_timeout_and_monitor_active = FALSE;
#if 0
/* The following synchronisation is disabled, since
the InnoDB monitor output is to be updated every 15 seconds. */
os_event_wait(srv_lock_timeout_thread_event);
#endif
goto loop;
exit_func:
srv_lock_timeout_and_monitor_active = FALSE;
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit(NULL);
OS_THREAD_DUMMY_RETURN;
}
/*************************************************************************
A thread which prints warnings about semaphore waits which have lasted
too long. These can be used to track bugs which cause hangs. */
os_thread_ret_t
srv_error_monitor_thread(
/*=====================*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
/* number of successive fatal timeouts observed */
ulint fatal_cnt = 0;
dulint old_lsn;
dulint new_lsn;
old_lsn = srv_start_lsn;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Error monitor thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
loop:
srv_error_monitor_active = TRUE;
/* Try to track a strange bug reported by Harald Fuchs and others,
where the lsn seems to decrease at times */
new_lsn = log_get_lsn();
if (ut_dulint_cmp(new_lsn, old_lsn) < 0) {
ut_print_timestamp(stderr);
fprintf(stderr,
" InnoDB: Error: old log sequence number %lu %lu"
" was greater\n"
"InnoDB: than the new log sequence number %lu %lu!\n"
"InnoDB: Please submit a bug report"
" to http://bugs.mysql.com\n",
(ulong) ut_dulint_get_high(old_lsn),
(ulong) ut_dulint_get_low(old_lsn),
(ulong) ut_dulint_get_high(new_lsn),
(ulong) ut_dulint_get_low(new_lsn));
}
old_lsn = new_lsn;
if (difftime(time(NULL), srv_last_monitor_time) > 60) {
/* We referesh InnoDB Monitor values so that averages are
printed from at most 60 last seconds */
srv_refresh_innodb_monitor_stats();
}
if (sync_array_print_long_waits()) {
fatal_cnt++;
if (fatal_cnt > 5) {
fprintf(stderr,
"InnoDB: Error: semaphore wait has lasted"
" > %lu seconds\n"
"InnoDB: We intentionally crash the server,"
" because it appears to be hung.\n",
(ulong) srv_fatal_semaphore_wait_threshold);
ut_error;
}
} else {
fatal_cnt = 0;
}
/* Flush stderr so that a database user gets the output
to possible MySQL error file */
fflush(stderr);
os_thread_sleep(2000000);
if (srv_shutdown_state < SRV_SHUTDOWN_CLEANUP) {
goto loop;
}
srv_error_monitor_active = FALSE;
/* We count the number of threads in os_thread_exit(). A created
thread should always use that to exit and not use return() to exit. */
os_thread_exit(NULL);
OS_THREAD_DUMMY_RETURN;
}
/***********************************************************************
Tells the InnoDB server that there has been activity in the database
and wakes up the master thread if it is suspended (not sleeping). Used
in the MySQL interface. Note that there is a small chance that the master
thread stays suspended (we do not protect our operation with the kernel
mutex, for performace reasons). */
void
srv_active_wake_master_thread(void)
/*===============================*/
{
srv_activity_count++;
if (srv_n_threads_active[SRV_MASTER] == 0) {
mutex_enter(&kernel_mutex);
srv_release_threads(SRV_MASTER, 1);
mutex_exit(&kernel_mutex);
}
}
/***********************************************************************
Wakes up the master thread if it is suspended or being suspended. */
void
srv_wake_master_thread(void)
/*========================*/
{
srv_activity_count++;
mutex_enter(&kernel_mutex);
srv_release_threads(SRV_MASTER, 1);
mutex_exit(&kernel_mutex);
}
/*************************************************************************
The master thread controlling the server. */
os_thread_ret_t
srv_master_thread(
/*==============*/
/* out: a dummy parameter */
void* arg __attribute__((unused)))
/* in: a dummy parameter required by
os_thread_create */
{
os_event_t event;
time_t last_flush_time;
time_t current_time;
ulint old_activity_count;
ulint n_pages_purged;
ulint n_bytes_merged;
ulint n_pages_flushed;
ulint n_bytes_archived;
ulint n_tables_to_drop;
ulint n_ios;
ulint n_ios_old;
ulint n_ios_very_old;
ulint n_pend_ios;
ibool skip_sleep = FALSE;
ulint i;
#ifdef UNIV_DEBUG_THREAD_CREATION
fprintf(stderr, "Master thread starts, id %lu\n",
os_thread_pf(os_thread_get_curr_id()));
#endif
srv_main_thread_process_no = os_proc_get_number();
srv_main_thread_id = os_thread_pf(os_thread_get_curr_id());
srv_table_reserve_slot(SRV_MASTER);
mutex_enter(&kernel_mutex);
srv_n_threads_active[SRV_MASTER]++;
mutex_exit(&kernel_mutex);
loop:
/*****************************************************************/
/* ---- When there is database activity by users, we cycle in this
loop */
srv_main_thread_op_info = "reserving kernel mutex";
n_ios_very_old = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
mutex_enter(&kernel_mutex);
/* Store the user activity counter at the start of this loop */
old_activity_count = srv_activity_count;
mutex_exit(&kernel_mutex);
if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND) {
goto suspend_thread;
}
/* ---- We run the following loop approximately once per second
when there is database activity */
skip_sleep = FALSE;
for (i = 0; i < 10; i++) {
n_ios_old = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
srv_main_thread_op_info = "sleeping";
if (!skip_sleep) {
os_thread_sleep(1000000);
}
skip_sleep = FALSE;
/* ALTER TABLE in MySQL requires on Unix that the table handler
can drop tables lazily after there no longer are SELECT
queries to them. */
srv_main_thread_op_info = "doing background drop tables";
row_drop_tables_for_mysql_in_background();
srv_main_thread_op_info = "";
if (srv_fast_shutdown && srv_shutdown_state > 0) {
goto background_loop;
}
/* We flush the log once in a second even if no commit
is issued or the we have specified in my.cnf no flush
at transaction commit */
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
srv_main_thread_op_info = "making checkpoint";
log_free_check();
/* If there were less than 5 i/os during the
one second sleep, we assume that there is free
disk i/o capacity available, and it makes sense to
do an insert buffer merge. */
n_pend_ios = buf_get_n_pending_ios()
+ log_sys->n_pending_writes;
n_ios = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
if (n_pend_ios < 3 && (n_ios - n_ios_old < 5)) {
srv_main_thread_op_info = "doing insert buffer merge";
ibuf_contract_for_n_pages(
TRUE, srv_insert_buffer_batch_size / 4);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
}
if (UNIV_UNLIKELY(buf_get_modified_ratio_pct()
> srv_max_buf_pool_modified_pct)) {
/* Try to keep the number of modified pages in the
buffer pool under the limit wished by the user */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 100,
ut_dulint_max);
/* If we had to do the flush, it may have taken
even more than 1 second, and also, there may be more
to flush. Do not sleep 1 second during the next
iteration of this loop. */
skip_sleep = TRUE;
}
if (srv_activity_count == old_activity_count) {
/* There is no user activity at the moment, go to
the background loop */
goto background_loop;
}
}
/* ---- We perform the following code approximately once per
10 seconds when there is database activity */
#ifdef MEM_PERIODIC_CHECK
/* Check magic numbers of every allocated mem block once in 10
seconds */
mem_validate_all_blocks();
#endif
/* If there were less than 200 i/os during the 10 second period,
we assume that there is free disk i/o capacity available, and it
makes sense to flush 100 pages. */
n_pend_ios = buf_get_n_pending_ios() + log_sys->n_pending_writes;
n_ios = log_sys->n_log_ios + buf_pool->n_pages_read
+ buf_pool->n_pages_written;
if (n_pend_ios < 3 && (n_ios - n_ios_very_old < 200)) {
srv_main_thread_op_info = "flushing buffer pool pages";
buf_flush_batch(BUF_FLUSH_LIST, 100, ut_dulint_max);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
}
/* We run a batch of insert buffer merge every 10 seconds,
even if the server were active */
srv_main_thread_op_info = "doing insert buffer merge";
ibuf_contract_for_n_pages(TRUE, srv_insert_buffer_batch_size / 4);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
/* We run a full purge every 10 seconds, even if the server
were active */
n_pages_purged = 1;
last_flush_time = time(NULL);
while (n_pages_purged) {
if (srv_fast_shutdown && srv_shutdown_state > 0) {
goto background_loop;
}
srv_main_thread_op_info = "purging";
n_pages_purged = trx_purge();
current_time = time(NULL);
if (difftime(current_time, last_flush_time) > 1) {
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
last_flush_time = current_time;
}
}
srv_main_thread_op_info = "flushing buffer pool pages";
/* Flush a few oldest pages to make a new checkpoint younger */
if (buf_get_modified_ratio_pct() > 70) {
/* If there are lots of modified pages in the buffer pool
(> 70 %), we assume we can afford reserving the disk(s) for
the time it requires to flush 100 pages */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 100,
ut_dulint_max);
} else {
/* Otherwise, we only flush a small number of pages so that
we do not unnecessarily use much disk i/o capacity from
other work */
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 10,
ut_dulint_max);
}
srv_main_thread_op_info = "making checkpoint";
/* Make a new checkpoint about once in 10 seconds */
log_checkpoint(TRUE, FALSE);
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
/* ---- When there is database activity, we jump from here back to
the start of loop */
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
/* If the database is quiet, we enter the background loop */
/*****************************************************************/
background_loop:
/* ---- In this loop we run background operations when the server
is quiet from user activity. Also in the case of a shutdown, we
loop here, flushing the buffer pool to the data files. */
/* The server has been quiet for a while: start running background
operations */
srv_main_thread_op_info = "doing background drop tables";
n_tables_to_drop = row_drop_tables_for_mysql_in_background();
if (n_tables_to_drop > 0) {
/* Do not monopolize the CPU even if there are tables waiting
in the background drop queue. (It is essentially a bug if
MySQL tries to drop a table while there are still open handles
to it and we had to put it to the background drop queue.) */
os_thread_sleep(100000);
}
srv_main_thread_op_info = "purging";
/* Run a full purge */
n_pages_purged = 1;
last_flush_time = time(NULL);
while (n_pages_purged) {
if (srv_fast_shutdown && srv_shutdown_state > 0) {
break;
}
srv_main_thread_op_info = "purging";
n_pages_purged = trx_purge();
current_time = time(NULL);
if (difftime(current_time, last_flush_time) > 1) {
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
last_flush_time = current_time;
}
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
srv_main_thread_op_info = "doing insert buffer merge";
if (srv_fast_shutdown && srv_shutdown_state > 0) {
n_bytes_merged = 0;
} else {
n_bytes_merged = ibuf_contract_for_n_pages(
TRUE, srv_insert_buffer_batch_size);
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
flush_loop:
srv_main_thread_op_info = "flushing buffer pool pages";
if (srv_fast_shutdown < 2) {
n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, 100,
ut_dulint_max);
} else {
/* In the fastest shutdown we do not flush the buffer pool
to data files: we set n_pages_flushed to 0 artificially. */
n_pages_flushed = 0;
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
srv_main_thread_op_info = "waiting for buffer pool flush to end";
buf_flush_wait_batch_end(BUF_FLUSH_LIST);
srv_main_thread_op_info = "flushing log";
log_buffer_flush_to_disk();
srv_main_thread_op_info = "making checkpoint";
log_checkpoint(TRUE, FALSE);
if (buf_get_modified_ratio_pct() > srv_max_buf_pool_modified_pct) {
/* Try to keep the number of modified pages in the
buffer pool under the limit wished by the user */
goto flush_loop;
}
srv_main_thread_op_info = "reserving kernel mutex";
mutex_enter(&kernel_mutex);
if (srv_activity_count != old_activity_count) {
mutex_exit(&kernel_mutex);
goto loop;
}
mutex_exit(&kernel_mutex);
/*
srv_main_thread_op_info = "archiving log (if log archive is on)";
log_archive_do(FALSE, &n_bytes_archived);
*/
n_bytes_archived = 0;
/* Keep looping in the background loop if still work to do */
if (srv_fast_shutdown && srv_shutdown_state > 0) {
if (n_tables_to_drop + n_pages_flushed
+ n_bytes_archived != 0) {
/* If we are doing a fast shutdown (= the default)
we do not do purge or insert buffer merge. But we
flush the buffer pool completely to disk.
In a 'very fast' shutdown we do not flush the buffer
pool to data files: we have set n_pages_flushed to
0 artificially. */
goto background_loop;
}
} else if (n_tables_to_drop
+ n_pages_purged + n_bytes_merged + n_pages_flushed
+ n_bytes_archived != 0) {
/* In a 'slow' shutdown we run purge and the insert buffer
merge to completion */
goto background_loop;
}
/* There is no work for background operations either: suspend
master thread to wait for more server activity */
suspend_thread:
srv_main_thread_op_info = "suspending";
mutex_enter(&kernel_mutex);
if (row_get_background_drop_list_len_low() > 0) {
mutex_exit(&kernel_mutex);
goto loop;
}
event = srv_suspend_thread();
mutex_exit(&kernel_mutex);
/* DO NOT CHANGE THIS STRING. innobase_start_or_create_for_mysql()
waits for database activity to die down when converting < 4.1.x
databases, and relies on this string being exactly as it is. InnoDB
manual also mentions this string in several places. */
srv_main_thread_op_info = "waiting for server activity";
os_event_wait(event);
if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
/* This is only extra safety, the thread should exit
already when the event wait ends */
os_thread_exit(NULL);
}
/* When there is user activity, InnoDB will set the event and the
main thread goes back to loop. */
goto loop;
OS_THREAD_DUMMY_RETURN; /* Not reached, avoid compiler warning */
}
#endif /* !UNIV_HOTBACKUP */
|