1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
|
/* Copyright (C) 2000-2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
mysql_select and join optimization
@defgroup Query_Optimizer Query Optimizer
@{
*/
#include "drizzled/server_includes.h"
#include "drizzled/sql_select.h"
#include "drizzled/sj_tmp_table.h"
#include "drizzled/table_map_iterator.h"
#include "mysys/my_bit.h"
#include "drizzled/error.h"
#include "drizzled/gettext.h"
#include "drizzled/util/test.h"
#include "drizzled/name_resolution_context_state.h"
#include "drizzled/nested_join.h"
#include "drizzled/probes.h"
#include "drizzled/show.h"
#include "drizzled/item/cache.h"
#include "drizzled/item/cmpfunc.h"
#include "drizzled/item/copy_string.h"
#include "drizzled/item/uint.h"
#include "drizzled/cached_item.h"
#include "drizzled/sql_base.h"
#include "drizzled/field/blob.h"
#include "drizzled/check_stack_overrun.h"
#include "drizzled/lock.h"
#include "drizzled/item/outer_ref.h"
#include "drizzled/index_hint.h"
#include <string>
#include <iostream>
using namespace std;
const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref",
"MAYBE_REF","ALL","range","index",
"ref_or_null","unique_subquery","index_subquery",
"index_merge"
};
struct st_sargable_param;
static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array);
static bool make_join_statistics(JOIN *join, TableList *leaves, COND *conds,
DYNAMIC_ARRAY *keyuse);
static bool update_ref_and_keys(Session *session, DYNAMIC_ARRAY *keyuse,
JOIN_TAB *join_tab,
uint32_t tables, COND *conds,
COND_EQUAL *cond_equal,
table_map table_map, Select_Lex *select_lex,
st_sargable_param **sargables);
static int sort_keyuse(KEYUSE *a,KEYUSE *b);
static void set_position(JOIN *join,uint32_t index,JOIN_TAB *table,KEYUSE *key);
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
table_map used_tables);
static bool choose_plan(JOIN *join,table_map join_tables);
static void best_access_path(JOIN *join, JOIN_TAB *s, Session *session,
table_map remaining_tables, uint32_t idx,
double record_count, double read_time);
static void optimize_straight_join(JOIN *join, table_map join_tables);
static bool greedy_search(JOIN *join, table_map remaining_tables,
uint32_t depth, uint32_t prune_level);
static bool best_extension_by_limited_search(JOIN *join,
table_map remaining_tables,
uint32_t idx, double record_count,
double read_time, uint32_t depth,
uint32_t prune_level);
static uint32_t determine_search_depth(JOIN* join);
extern "C" int join_tab_cmp(const void* ptr1, const void* ptr2);
extern "C" int join_tab_cmp_straight(const void* ptr1, const void* ptr2);
/*
TODO: 'find_best' is here only temporarily until 'greedy_search' is
tested and approved.
*/
static bool find_best(JOIN *join,table_map rest_tables,uint32_t index,
double record_count,double read_time);
static uint32_t cache_record_length(JOIN *join,uint32_t index);
static double prev_record_reads(JOIN *join, uint32_t idx, table_map found_ref);
static bool get_best_combination(JOIN *join);
static store_key *get_store_key(Session *session,
KEYUSE *keyuse, table_map used_tables,
KEY_PART_INFO *key_part, unsigned char *key_buff,
uint32_t maybe_null);
static bool make_simple_join(JOIN *join,Table *tmp_table);
static void make_outerjoin_info(JOIN *join);
static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *item);
static bool make_join_readinfo(JOIN *join, uint64_t options, uint32_t no_jbuf_after);
static bool only_eq_ref_tables(JOIN *join, order_st *order, table_map tables);
static void update_depend_map(JOIN *join);
static void update_depend_map(JOIN *join, order_st *order);
static order_st *remove_constants(JOIN *join,order_st *first_order,COND *cond,
bool change_list, bool *simple_order);
static int return_zero_rows(JOIN *join, select_result *res,TableList *tables,
List<Item> &fields, bool send_row,
uint64_t select_options, const char *info,
Item *having);
static COND *build_equal_items(Session *session, COND *cond,
COND_EQUAL *inherited,
List<TableList> *join_list,
COND_EQUAL **cond_equal_ref);
static COND* substitute_for_best_equal_field(COND *cond,
COND_EQUAL *cond_equal,
void *table_join_idx);
static COND *simplify_joins(JOIN *join, List<TableList> *join_list,
COND *conds, bool top, bool in_sj);
static bool check_interleaving_with_nj(JOIN_TAB *last, JOIN_TAB *next);
static void restore_prev_nj_state(JOIN_TAB *last);
static void reset_nj_counters(List<TableList> *join_list);
static uint32_t build_bitmap_for_nested_joins(List<TableList> *join_list,
uint32_t first_unused);
static
void advance_sj_state(const table_map remaining_tables, const JOIN_TAB *tab);
static void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab);
static COND *optimize_cond(JOIN *join, COND *conds,
List<TableList> *join_list,
Item::cond_result *cond_value);
static bool const_expression_in_where(COND *conds,Item *item, Item **comp_item);
static int do_select(JOIN *join,List<Item> *fields,Table *tmp_table);
static enum_nested_loop_state
evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
int error);
static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab);
static enum_nested_loop_state
flush_cached_records(JOIN *join, JOIN_TAB *join_tab, bool skip_last);
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
static int join_read_const_table(JOIN_TAB *tab, POSITION *pos);
static int join_read_system(JOIN_TAB *tab);
static int join_read_const(JOIN_TAB *tab);
static int join_read_key(JOIN_TAB *tab);
static int join_read_always_key(JOIN_TAB *tab);
static int join_read_last_key(JOIN_TAB *tab);
static int join_no_more_records(READ_RECORD *info);
static int join_read_next(READ_RECORD *info);
static int join_read_next_different(READ_RECORD *info);
static int join_init_quick_read_record(JOIN_TAB *tab);
static int test_if_quick_select(JOIN_TAB *tab);
static int join_init_read_record(JOIN_TAB *tab);
static int join_read_first(JOIN_TAB *tab);
static int join_read_next_same(READ_RECORD *info);
static int join_read_next_same_diff(READ_RECORD *info);
static int join_read_last(JOIN_TAB *tab);
static int join_read_prev_same(READ_RECORD *info);
static int join_read_prev(READ_RECORD *info);
int join_read_always_key_or_null(JOIN_TAB *tab);
int join_read_next_same_or_null(READ_RECORD *info);
static COND *make_cond_for_table(COND *cond,table_map table,
table_map used_table,
bool exclude_expensive_cond);
static Item* part_of_refkey(Table *form,Field *field);
static bool test_if_skip_sort_order(JOIN_TAB *tab,order_st *order,
ha_rows select_limit, bool no_changes,
const key_map *map);
static bool list_contains_unique_index(Table *table,
bool (*find_func) (Field *, void *), void *data);
static bool find_field_in_item_list (Field *field, void *data);
static bool find_field_in_order_list (Field *field, void *data);
static int create_sort_index(Session *session, JOIN *join, order_st *order,
ha_rows filesort_limit, ha_rows select_limit,
bool is_order_by);
static int remove_duplicates(JOIN *join,Table *entry,List<Item> &fields,
Item *having);
static int remove_dup_with_compare(Session *session, Table *entry, Field **field,
uint32_t offset, Item *having);
static int remove_dup_with_hash_index(Session *session,Table *table,
uint32_t field_count, Field **first_field,
uint32_t key_length, Item *having);
static int join_init_cache(Session *session,JOIN_TAB *tables,uint32_t table_count);
static uint32_t used_blob_length(CACHE_FIELD **ptr);
static bool store_record_in_cache(JOIN_CACHE *cache);
static void reset_cache_read(JOIN_CACHE *cache);
static void reset_cache_write(JOIN_CACHE *cache);
static void read_cached_record(JOIN_TAB *tab);
static bool cmp_buffer_with_ref(JOIN_TAB *tab);
static order_st *create_distinct_group(Session *session, Item **ref_pointer_array,
order_st *order, List<Item> &fields,
List<Item> &all_fields,
bool *all_order_by_fields_used);
static bool test_if_subpart(order_st *a,order_st *b);
static Table *get_sort_by_table(order_st *a,order_st *b,TableList *tables);
static void calc_group_buffer(JOIN *join,order_st *group);
static bool make_group_fields(JOIN *main_join, JOIN *curr_join);
static bool alloc_group_fields(JOIN *join,order_st *group);
// Create list for using with tempory table
static bool change_to_use_tmp_fields(Session *session, Item **ref_pointer_array,
List<Item> &new_list1,
List<Item> &new_list2,
uint32_t elements, List<Item> &items);
// Create list for using with tempory table
static bool change_refs_to_tmp_fields(Session *session, Item **ref_pointer_array,
List<Item> &new_list1,
List<Item> &new_list2,
uint32_t elements, List<Item> &items);
static void init_tmptable_sum_functions(Item_sum **func);
static void update_tmptable_sum_func(Item_sum **func,Table *tmp_table);
static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end);
static bool add_ref_to_table_cond(Session *session, JOIN_TAB *join_tab);
static bool setup_sum_funcs(Session *session, Item_sum **func_ptr);
static bool init_sum_functions(Item_sum **func, Item_sum **end);
static bool update_sum_func(Item_sum **func);
void select_describe(JOIN *join, bool need_tmp_table,bool need_order,
bool distinct, const char *message=NULL);
static Item *remove_additional_cond(Item* conds);
static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab);
static bool test_if_ref(Item_field *left_item,Item *right_item);
static bool replace_where_subcondition(JOIN *join, Item *old_cond,
Item *new_cond, bool fix_fields);
static bool eval_const_cond(COND *cond)
{
return ((Item_func*) cond)->val_int() ? true : false;
}
/*
This is used to mark equalities that were made from i-th IN-equality.
We limit semi-join InsideOut optimization to handling max 64 inequalities,
The following variable occupies 64 addresses.
*/
const char *subq_sj_cond_name=
"0123456789ABCDEF0123456789abcdef0123456789ABCDEF0123456789abcdef-sj-cond";
static bool bitmap_covers(const table_map x, const table_map y)
{
return !test(y & ~x);
}
/**
This handles SELECT with and without UNION.
*/
bool handle_select(Session *session, LEX *lex, select_result *result,
uint64_t setup_tables_done_option)
{
bool res;
register Select_Lex *select_lex = &lex->select_lex;
DRIZZLE_SELECT_START();
if (select_lex->master_unit()->is_union() ||
select_lex->master_unit()->fake_select_lex)
res= mysql_union(session, lex, result, &lex->unit, setup_tables_done_option);
else
{
Select_Lex_Unit *unit= &lex->unit;
unit->set_limit(unit->global_parameters);
session->session_marker= 0;
/*
'options' of mysql_select will be set in JOIN, as far as JOIN for
every PS/SP execution new, we will not need reset this flag if
setup_tables_done_option changed for next rexecution
*/
res= mysql_select(session, &select_lex->ref_pointer_array,
(TableList*) select_lex->table_list.first,
select_lex->with_wild, select_lex->item_list,
select_lex->where,
select_lex->order_list.elements +
select_lex->group_list.elements,
(order_st*) select_lex->order_list.first,
(order_st*) select_lex->group_list.first,
select_lex->having,
select_lex->options | session->options |
setup_tables_done_option,
result, unit, select_lex);
}
res|= session->is_error();
if (unlikely(res))
result->abort();
DRIZZLE_SELECT_END();
return(res);
}
/*
Fix fields referenced from inner selects.
SYNOPSIS
fix_inner_refs()
session Thread handle
all_fields List of all fields used in select
select Current select
ref_pointer_array Array of references to Items used in current select
DESCRIPTION
The function serves 3 purposes - adds fields referenced from inner
selects to the current select list, resolves which class to use
to access referenced item (Item_ref of Item_direct_ref) and fixes
references (Item_ref objects) to these fields.
If a field isn't already in the select list and the ref_pointer_array
is provided then it is added to the all_fields list and the pointer to
it is saved in the ref_pointer_array.
The class to access the outer field is determined by the following rules:
1. If the outer field isn't used under an aggregate function
then the Item_ref class should be used.
2. If the outer field is used under an aggregate function and this
function is aggregated in the select where the outer field was
resolved or in some more inner select then the Item_direct_ref
class should be used.
The resolution is done here and not at the fix_fields() stage as
it can be done only after sum functions are fixed and pulled up to
selects where they are have to be aggregated.
When the class is chosen it substitutes the original field in the
Item_outer_ref object.
After this we proceed with fixing references (Item_outer_ref objects) to
this field from inner subqueries.
RETURN
true an error occured
false ok
*/
bool
fix_inner_refs(Session *session, List<Item> &all_fields, Select_Lex *select,
Item **ref_pointer_array)
{
Item_outer_ref *ref;
bool res= false;
bool direct_ref= false;
List_iterator<Item_outer_ref> ref_it(select->inner_refs_list);
while ((ref= ref_it++))
{
Item *item= ref->outer_ref;
Item **item_ref= ref->ref;
Item_ref *new_ref;
/*
TODO: this field item already might be present in the select list.
In this case instead of adding new field item we could use an
existing one. The change will lead to less operations for copying fields,
smaller temporary tables and less data passed through filesort.
*/
if (ref_pointer_array && !ref->found_in_select_list)
{
int el= all_fields.elements;
ref_pointer_array[el]= item;
/* Add the field item to the select list of the current select. */
all_fields.push_front(item);
/*
If it's needed reset each Item_ref item that refers this field with
a new reference taken from ref_pointer_array.
*/
item_ref= ref_pointer_array + el;
}
if (ref->in_sum_func)
{
Item_sum *sum_func;
if (ref->in_sum_func->nest_level > select->nest_level)
direct_ref= true;
else
{
for (sum_func= ref->in_sum_func; sum_func &&
sum_func->aggr_level >= select->nest_level;
sum_func= sum_func->in_sum_func)
{
if (sum_func->aggr_level == select->nest_level)
{
direct_ref= true;
break;
}
}
}
}
new_ref= direct_ref ?
new Item_direct_ref(ref->context, item_ref, ref->table_name,
ref->field_name, ref->alias_name_used) :
new Item_ref(ref->context, item_ref, ref->table_name,
ref->field_name, ref->alias_name_used);
if (!new_ref)
return true;
ref->outer_ref= new_ref;
ref->ref= &ref->outer_ref;
if (!ref->fixed && ref->fix_fields(session, 0))
return true;
session->used_tables|= item->used_tables();
}
return res;
}
/**
Function to setup clauses without sum functions.
*/
inline int setup_without_group(Session *session, Item **ref_pointer_array,
TableList *tables,
TableList *leaves,
List<Item> &fields,
List<Item> &all_fields,
COND **conds,
order_st *order,
order_st *group, bool *hidden_group_fields)
{
int res;
nesting_map save_allow_sum_func=session->lex->allow_sum_func ;
session->lex->allow_sum_func&= ~(1 << session->lex->current_select->nest_level);
res= setup_conds(session, tables, leaves, conds);
session->lex->allow_sum_func|= 1 << session->lex->current_select->nest_level;
res= res || setup_order(session, ref_pointer_array, tables, fields, all_fields,
order);
session->lex->allow_sum_func&= ~(1 << session->lex->current_select->nest_level);
res= res || setup_group(session, ref_pointer_array, tables, fields, all_fields,
group, hidden_group_fields);
session->lex->allow_sum_func= save_allow_sum_func;
return(res);
}
/*****************************************************************************
Check fields, find best join, do the select and output fields.
mysql_select assumes that all tables are already opened
*****************************************************************************/
/**
Prepare of whole select (including sub queries in future).
@todo
Add check of calculation of GROUP functions and fields:
SELECT COUNT(*)+table.col1 from table1;
@retval
-1 on error
@retval
0 on success
*/
int
JOIN::prepare(Item ***rref_pointer_array,
TableList *tables_init,
uint32_t wild_num, COND *conds_init, uint32_t og_num,
order_st *order_init, order_st *group_init,
Item *having_init,
Select_Lex *select_lex_arg,
Select_Lex_Unit *unit_arg)
{
// to prevent double initialization on EXPLAIN
if (optimized)
return(0);
conds= conds_init;
order= order_init;
group_list= group_init;
having= having_init;
tables_list= tables_init;
select_lex= select_lex_arg;
select_lex->join= this;
join_list= &select_lex->top_join_list;
union_part= unit_arg->is_union();
session->lex->current_select->is_item_list_lookup= 1;
/*
If we have already executed SELECT, then it have not sense to prevent
its table from update (see unique_table())
*/
if (session->derived_tables_processing)
select_lex->exclude_from_table_unique_test= true;
/* Check that all tables, fields, conds and order are ok */
if (!(select_options & OPTION_SETUP_TABLES_DONE) &&
setup_tables_and_check_access(session, &select_lex->context, join_list,
tables_list, &select_lex->leaf_tables,
false))
return(-1);
TableList *table_ptr;
for (table_ptr= select_lex->leaf_tables;
table_ptr;
table_ptr= table_ptr->next_leaf)
tables++;
if (setup_wild(session, tables_list, fields_list, &all_fields, wild_num) ||
select_lex->setup_ref_array(session, og_num) ||
setup_fields(session, (*rref_pointer_array), fields_list, MARK_COLUMNS_READ,
&all_fields, 1) ||
setup_without_group(session, (*rref_pointer_array), tables_list,
select_lex->leaf_tables, fields_list,
all_fields, &conds, order, group_list,
&hidden_group_fields))
return(-1); /* purecov: inspected */
ref_pointer_array= *rref_pointer_array;
if (having)
{
nesting_map save_allow_sum_func= session->lex->allow_sum_func;
session->where="having clause";
session->lex->allow_sum_func|= 1 << select_lex_arg->nest_level;
select_lex->having_fix_field= 1;
bool having_fix_rc= (!having->fixed &&
(having->fix_fields(session, &having) ||
having->check_cols(1)));
select_lex->having_fix_field= 0;
if (having_fix_rc || session->is_error())
return(-1); /* purecov: inspected */
session->lex->allow_sum_func= save_allow_sum_func;
}
{
Item_subselect *subselect;
Item_in_subselect *in_subs= NULL;
/*
Are we in a subquery predicate?
TODO: the block below will be executed for every PS execution without need.
*/
if ((subselect= select_lex->master_unit()->item))
{
bool do_semijoin= !test(session->variables.optimizer_switch &
OPTIMIZER_SWITCH_NO_SEMIJOIN);
if (subselect->substype() == Item_subselect::IN_SUBS)
in_subs= (Item_in_subselect*)subselect;
/*
Check if we're in subquery that is a candidate for flattening into a
semi-join (which is done done in flatten_subqueries()). The
requirements are:
1. Subquery predicate is an IN/=ANY subq predicate
2. Subquery is a single SELECT (not a UNION)
3. Subquery does not have GROUP BY or order_st BY
4. Subquery does not use aggregate functions or HAVING
5. Subquery predicate is at the AND-top-level of ON/WHERE clause
6. No execution method was already chosen (by a prepared statement).
(*). We are not in a subquery of a single table UPDATE/DELETE that
doesn't have a JOIN (TODO: We should handle this at some
point by switching to multi-table UPDATE/DELETE)
(**). We're not in a confluent table-less subquery, like
"SELECT 1".
*/
if (in_subs && // 1
!select_lex->master_unit()->first_select()->next_select() && // 2
!select_lex->group_list.elements && !order && // 3
!having && !select_lex->with_sum_func && // 4
session->session_marker && // 5
select_lex->outer_select()->join && // (*)
select_lex->master_unit()->first_select()->leaf_tables && // (**)
do_semijoin &&
in_subs->exec_method == Item_in_subselect::NOT_TRANSFORMED) // 6
{
{
if (!in_subs->left_expr->fixed &&
in_subs->left_expr->fix_fields(session, &in_subs->left_expr))
{
return(-1);
}
/*
Check that the right part of the subselect contains no more than one
column. E.g. in SELECT 1 IN (SELECT * ..) the right part is (SELECT * ...)
*/
if (subselect->substype() == Item_subselect::IN_SUBS &&
(select_lex->item_list.elements !=
((Item_in_subselect*)subselect)->left_expr->cols()))
{
my_error(ER_OPERAND_COLUMNS, MYF(0), ((Item_in_subselect*)subselect)->left_expr->cols());
return(-1);
}
}
/* Register the subquery for further processing */
select_lex->outer_select()->join->sj_subselects.append(session->mem_root, in_subs);
in_subs->expr_join_nest= (TableList*)session->session_marker;
}
else
{
bool do_materialize= !test(session->variables.optimizer_switch &
OPTIMIZER_SWITCH_NO_MATERIALIZATION);
/*
Check if the subquery predicate can be executed via materialization.
The required conditions are:
1. Subquery predicate is an IN/=ANY subq predicate
2. Subquery is a single SELECT (not a UNION)
3. Subquery is not a table-less query. In this case there is no
point in materializing.
4. Subquery predicate is a top-level predicate
(this implies it is not negated)
TODO: this is a limitation that should be lifeted once we
implement correct NULL semantics (WL#3830)
5. Subquery is non-correlated
TODO:
This is an overly restrictive condition. It can be extended to:
(Subquery is non-correlated ||
Subquery is correlated to any query outer to IN predicate ||
(Subquery is correlated to the immediate outer query &&
Subquery !contains {GROUP BY, order_st BY [LIMIT],
aggregate functions) && subquery predicate is not under "NOT IN"))
6. No execution method was already chosen (by a prepared statement).
(*) The subquery must be part of a SELECT statement. The current
condition also excludes multi-table update statements.
We have to determine whether we will perform subquery materialization
before calling the IN=>EXISTS transformation, so that we know whether to
perform the whole transformation or only that part of it which wraps
Item_in_subselect in an Item_in_optimizer.
*/
if (do_materialize &&
in_subs && // 1
!select_lex->master_unit()->first_select()->next_select() && // 2
select_lex->master_unit()->first_select()->leaf_tables && // 3
session->lex->sql_command == SQLCOM_SELECT) // *
{
if (in_subs->is_top_level_item() && // 4
!in_subs->is_correlated && // 5
in_subs->exec_method == Item_in_subselect::NOT_TRANSFORMED) // 6
in_subs->exec_method= Item_in_subselect::MATERIALIZATION;
}
Item_subselect::trans_res trans_res;
if ((trans_res= subselect->select_transformer(this)) !=
Item_subselect::RES_OK)
{
return((trans_res == Item_subselect::RES_ERROR));
}
}
}
}
if (order)
{
order_st *ord;
for (ord= order; ord; ord= ord->next)
{
Item *item= *ord->item;
if (item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM)
item->split_sum_func(session, ref_pointer_array, all_fields);
}
}
if (having && having->with_sum_func)
having->split_sum_func(session, ref_pointer_array, all_fields,
&having, true);
if (select_lex->inner_sum_func_list)
{
Item_sum *end=select_lex->inner_sum_func_list;
Item_sum *item_sum= end;
do
{
item_sum= item_sum->next;
item_sum->split_sum_func(session, ref_pointer_array,
all_fields, item_sum->ref_by, false);
} while (item_sum != end);
}
if (select_lex->inner_refs_list.elements &&
fix_inner_refs(session, all_fields, select_lex, ref_pointer_array))
return(-1);
/*
Check if there are references to un-aggregated columns when computing
aggregate functions with implicit grouping (there is no GROUP BY).
MODE_ONLY_FULL_GROUP_BY is enabled here by default
*/
if (!group_list && select_lex->full_group_by_flag == (NON_AGG_FIELD_USED | SUM_FUNC_USED))
{
my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
ER(ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
return(-1);
}
{
/* Caclulate the number of groups */
send_group_parts= 0;
for (order_st *group_tmp= group_list ; group_tmp ; group_tmp= group_tmp->next)
send_group_parts++;
}
if (error)
goto err; /* purecov: inspected */
if (result && result->prepare(fields_list, unit_arg))
goto err; /* purecov: inspected */
/* Init join struct */
count_field_types(select_lex, &tmp_table_param, all_fields, 0);
ref_pointer_array_size= all_fields.elements*sizeof(Item*);
this->group= group_list != 0;
unit= unit_arg;
#ifdef RESTRICTED_GROUP
if (sum_func_count && !group_list && (func_count || field_count))
{
my_message(ER_WRONG_SUM_SELECT,ER(ER_WRONG_SUM_SELECT),MYF(0));
goto err;
}
#endif
if (select_lex->olap == ROLLUP_TYPE && rollup_init())
goto err;
if (alloc_func_list())
goto err;
return(0); // All OK
err:
return(-1); /* purecov: inspected */
}
/*
Remove the predicates pushed down into the subquery
SYNOPSIS
JOIN::remove_subq_pushed_predicates()
where IN Must be NULL
OUT The remaining WHERE condition, or NULL
DESCRIPTION
Given that this join will be executed using (unique|index)_subquery,
without "checking NULL", remove the predicates that were pushed down
into the subquery.
If the subquery compares scalar values, we can remove the condition that
was wrapped into trig_cond (it will be checked when needed by the subquery
engine)
If the subquery compares row values, we need to keep the wrapped
equalities in the WHERE clause: when the left (outer) tuple has both NULL
and non-NULL values, we'll do a full table scan and will rely on the
equalities corresponding to non-NULL parts of left tuple to filter out
non-matching records.
TODO: We can remove the equalities that will be guaranteed to be true by the
fact that subquery engine will be using index lookup. This must be done only
for cases where there are no conversion errors of significance, e.g. 257
that is searched in a byte. But this requires homogenization of the return
codes of all Field*::store() methods.
*/
void JOIN::remove_subq_pushed_predicates(Item **where)
{
if (conds->type() == Item::FUNC_ITEM &&
((Item_func *)this->conds)->functype() == Item_func::EQ_FUNC &&
((Item_func *)conds)->arguments()[0]->type() == Item::REF_ITEM &&
((Item_func *)conds)->arguments()[1]->type() == Item::FIELD_ITEM &&
test_if_ref ((Item_field *)((Item_func *)conds)->arguments()[1],
((Item_func *)conds)->arguments()[0]))
{
*where= 0;
return;
}
}
/*
Index lookup-based subquery: save some flags for EXPLAIN output
SYNOPSIS
save_index_subquery_explain_info()
join_tab Subquery's join tab (there is only one as index lookup is
only used for subqueries that are single-table SELECTs)
where Subquery's WHERE clause
DESCRIPTION
For index lookup-based subquery (i.e. one executed with
subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
check its EXPLAIN output row should contain
"Using index" (TAB_INFO_FULL_SCAN_ON_NULL)
"Using Where" (TAB_INFO_USING_WHERE)
"Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
and set appropriate flags in join_tab->packed_info.
*/
static void save_index_subquery_explain_info(JOIN_TAB *join_tab, Item* where)
{
join_tab->packed_info= TAB_INFO_HAVE_VALUE;
if (join_tab->table->covering_keys.test(join_tab->ref.key))
join_tab->packed_info |= TAB_INFO_USING_INDEX;
if (where)
join_tab->packed_info |= TAB_INFO_USING_WHERE;
for (uint32_t i = 0; i < join_tab->ref.key_parts; i++)
{
if (join_tab->ref.cond_guards[i])
{
join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
break;
}
}
}
/*
Check if the table's rowid is included in the temptable
SYNOPSIS
sj_table_is_included()
join The join
join_tab The table to be checked
DESCRIPTION
SemiJoinDuplicateElimination: check the table's rowid should be included
in the temptable. This is so if
1. The table is not embedded within some semi-join nest
2. The has been pulled out of a semi-join nest, or
3. The table is functionally dependent on some previous table
[4. This is also true for constant tables that can't be
NULL-complemented but this function is not called for such tables]
RETURN
true - Include table's rowid
false - Don't
*/
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab)
{
if (join_tab->emb_sj_nest)
return false;
/* Check if this table is functionally dependent on the tables that
are within the same outer join nest
*/
TableList *embedding= join_tab->table->pos_in_table_list->embedding;
if (join_tab->type == JT_EQ_REF)
{
Table_map_iterator it(join_tab->ref.depend_map & ~PSEUDO_TABLE_BITS);
uint32_t idx;
while ((idx= it.next_bit())!=Table_map_iterator::BITMAP_END)
{
JOIN_TAB *ref_tab= join->join_tab + idx;
if (embedding == ref_tab->table->pos_in_table_list->embedding)
return true;
}
/* Ok, functionally dependent */
return false;
}
/* Not functionally dependent => need to include*/
return true;
}
/*
Setup the strategies to eliminate semi-join duplicates.
SYNOPSIS
setup_semijoin_dups_elimination()
join Join to process
options Join options (needed to see if join buffering will be
used or not)
no_jbuf_after Another bit of information re where join buffering will
be used.
DESCRIPTION
Setup the strategies to eliminate semi-join duplicates. ATM there are 3
strategies:
1. DuplicateWeedout (use of temptable to remove duplicates based on rowids
of row combinations)
2. FirstMatch (pick only the 1st matching row combination of inner tables)
3. InsideOut (scanning the sj-inner table in a way that groups duplicates
together and picking the 1st one)
The join order has "duplicate-generating ranges", and every range is
served by one strategy or a combination of FirstMatch with with some
other strategy.
"Duplicate-generating range" is defined as a range within the join order
that contains all of the inner tables of a semi-join. All ranges must be
disjoint, if tables of several semi-joins are interleaved, then the ranges
are joined together, which is equivalent to converting
SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )
to
SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)
.
Applicability conditions are as follows:
DuplicateWeedout strategy
~~~~~~~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|ot|nt)* (it|ot))] (nt)*
+------+ +=========================+ +---+
(1) (2) (3)
(1) - Prefix of OuterTables (those that participate in
IN-equality and/or are correlated with subquery) and outer
Noncorrelated Tables.
(2) - The handled range. The range starts with the first sj-inner
table, and covers all sj-inner and outer tables
Within the range, Inner, Outer, outer Noncorrelated tables
may follow in any order.
(3) - The suffix of outer Noncorrelated tables.
FirstMatch strategy
~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|nt)* it) ] (nt)*
+------+ +==================+ +---+
(1) (2) (3)
(1) - Prefix of outer and non-correlated tables
(2) - The handled range, which may contain only inner and
non-correlated tables.
(3) - The suffix of outer Noncorrelated tables.
InsideOut strategy
~~~~~~~~~~~~~~~~~~
(ot|ct|nt) [ insideout_tbl (ot|nt|it)* it ] (ot|nt)*
+--------+ +===========+ +=============+ +------+
(1) (2) (3) (4)
(1) - Prefix that may contain any outer tables. The prefix must contain
all the non-trivially correlated outer tables. (non-trivially means
that the correlation is not just through the IN-equality).
(2) - Inner table for which the InsideOut scan is performed.
(3) - The remainder of the duplicate-generating range. It is served by
application of FirstMatch strategy, with the exception that
outer IN-correlated tables are considered to be non-correlated.
(4) - THe suffix of outer and outer non-correlated tables.
If several strategies are applicable, their relative priorities are:
1. InsideOut
2. FirstMatch
3. DuplicateWeedout
This function walks over the join order and sets up the strategies by
setting appropriate members in join_tab structures.
RETURN
false OK
true Out of memory error
*/
static
int setup_semijoin_dups_elimination(JOIN *join, uint64_t options, uint32_t no_jbuf_after)
{
table_map cur_map= join->const_table_map | PSEUDO_TABLE_BITS;
struct {
/*
0 - invalid (EOF marker),
1 - InsideOut,
2 - Temptable (maybe confluent),
3 - Temptable with join buffering
*/
uint32_t strategy;
uint32_t start_idx; /* Left range bound */
uint32_t end_idx; /* Right range bound */
/*
For Temptable strategy: Bitmap of all outer and correlated tables from
all involved join nests.
*/
table_map outer_tables;
} dups_ranges [MAX_TABLES];
TableList *emb_insideout_nest= NULL;
table_map emb_sj_map= 0; /* A bitmap of sj-nests (that is, their sj-inner
tables) whose ranges we're in */
table_map emb_outer_tables= 0; /* sj-outer tables for those sj-nests */
table_map range_start_map= 0; /* table_map at current range start */
bool dealing_with_jbuf= false; /* true <=> table within cur range uses join buf */
int cur_range= 0;
uint32_t i;
/*
First pass: locate the duplicate-generating ranges and pick the strategies.
*/
for (i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
Table *table=tab->table;
cur_map |= table->map;
if (tab->emb_sj_nest) // Encountered an sj-inner table
{
if (!emb_sj_map)
{
dups_ranges[cur_range].start_idx= i;
range_start_map= cur_map & ~table->map;
/*
Remember if this is a possible start of range that is covered by
the InsideOut strategy (the reason that it is not covered could
be that it overlaps with anther semi-join's range. we don't
support InsideOut for joined ranges)
*/
if (join->best_positions[i].use_insideout_scan)
emb_insideout_nest= tab->emb_sj_nest;
}
emb_sj_map |= tab->emb_sj_nest->sj_inner_tables;
emb_outer_tables |= tab->emb_sj_nest->nested_join->sj_depends_on;
if (tab->emb_sj_nest != emb_insideout_nest)
{
/*
Two different semi-joins interleave. This cannot be handled by
InsideOut strategy.
*/
emb_insideout_nest= NULL;
}
}
if (emb_sj_map) /* We're in duplicate-generating range */
{
if (i != join->const_tables && !(options & SELECT_NO_JOIN_CACHE) &&
tab->type == JT_ALL && tab->use_quick != 2 && !tab->first_inner &&
i <= no_jbuf_after && !dealing_with_jbuf)
{
/*
This table uses join buffering, which makes use of FirstMatch or
InsideOut strategies impossible for the current and (we assume)
preceding duplicate-producing ranges.
That is, for the join order:
x x [ x x] x [x x x] x [x x X* x] x
| | | | | \
+-----+ +-----+ | join buffering use
r1 r2 we're here
we'll have to remove r1 and r2 and use duplicate-elimination
strategy that spans all the tables, starting from the very 1st
one.
*/
dealing_with_jbuf= true;
emb_insideout_nest= false;
/*
Absorb all preceding duplicate-eliminating ranges. Their strategies
do not matter:
*/
for (int prev_range= 0; prev_range < cur_range; prev_range++)
{
dups_ranges[cur_range].outer_tables |=
dups_ranges[prev_range].outer_tables;
}
dups_ranges[0].start_idx= 0; /* Will need to start from the 1st table */
dups_ranges[0].outer_tables= dups_ranges[cur_range].outer_tables;
cur_range= 0;
}
/*
Check if we are at the end of duplicate-producing range. We are if
1. It's an InsideOut range (which presumes all correlated tables are
in the prefix), and all inner tables are in the join order prefix,
or
2. It's a DuplicateElimination range (possibly covering several
SJ-nests), and all inner, outer, and correlated tables of all
sj-nests are in the join order prefix.
*/
bool end_of_range= false;
if (emb_insideout_nest &&
bitmap_covers(cur_map, emb_insideout_nest->sj_inner_tables))
{
/* Save that this range is handled with InsideOut: */
dups_ranges[cur_range].strategy= 1;
end_of_range= true;
}
else if (bitmap_covers(cur_map, emb_outer_tables | emb_sj_map))
{
/*
This is a complete range to be handled with either DuplicateWeedout
or FirstMatch
*/
dups_ranges[cur_range].strategy= dealing_with_jbuf? 3 : 2;
/*
This will hold tables from within the range that need to be put
into the join buffer before we can use the FirstMatch on its tail.
*/
dups_ranges[cur_range].outer_tables= emb_outer_tables &
~range_start_map;
end_of_range= true;
}
if (end_of_range)
{
dups_ranges[cur_range].end_idx= i+1;
emb_sj_map= emb_outer_tables= 0;
emb_insideout_nest= NULL;
dealing_with_jbuf= false;
dups_ranges[++cur_range].strategy= 0;
}
}
}
Session *session= join->session;
SJ_TMP_TABLE **next_sjtbl_ptr= &join->sj_tmp_tables;
/*
Second pass: setup the chosen strategies
*/
for (int j= 0; j < cur_range; j++)
{
JOIN_TAB *tab=join->join_tab + dups_ranges[j].start_idx;
JOIN_TAB *jump_to;
if (dups_ranges[j].strategy == 1) // InsideOut strategy
{
tab->insideout_match_tab= join->join_tab + dups_ranges[j].end_idx - 1;
jump_to= tab++;
}
else // DuplicateWeedout strategy
{
SJ_TMP_TABLE::TAB sjtabs[MAX_TABLES];
table_map weed_cur_map= join->const_table_map | PSEUDO_TABLE_BITS;
uint32_t jt_rowid_offset= 0; // # tuple bytes are already occupied (w/o NULL bytes)
uint32_t jt_null_bits= 0; // # null bits in tuple bytes
SJ_TMP_TABLE::TAB *last_tab= sjtabs;
uint32_t rowid_keep_flags= JOIN_TAB::CALL_POSITION | JOIN_TAB::KEEP_ROWID;
JOIN_TAB *last_outer_tab= tab - 1;
/*
Walk through the range and remember
- tables that need their rowids to be put into temptable
- the last outer table
*/
for (; tab < join->join_tab + dups_ranges[j].end_idx; tab++)
{
if (sj_table_is_included(join, tab))
{
last_tab->join_tab= tab;
last_tab->rowid_offset= jt_rowid_offset;
jt_rowid_offset += tab->table->file->ref_length;
if (tab->table->maybe_null)
{
last_tab->null_byte= jt_null_bits / 8;
last_tab->null_bit= jt_null_bits++;
}
last_tab++;
tab->table->prepare_for_position();
tab->rowid_keep_flags= rowid_keep_flags;
}
weed_cur_map |= tab->table->map;
if (!tab->emb_sj_nest && bitmap_covers(weed_cur_map,
dups_ranges[j].outer_tables))
last_outer_tab= tab;
}
if (jt_rowid_offset) /* Temptable has at least one rowid */
{
SJ_TMP_TABLE *sjtbl;
uint32_t tabs_size= (last_tab - sjtabs) * sizeof(SJ_TMP_TABLE::TAB);
if (!(sjtbl= (SJ_TMP_TABLE*)session->alloc(sizeof(SJ_TMP_TABLE))) ||
!(sjtbl->tabs= (SJ_TMP_TABLE::TAB*) session->alloc(tabs_size)))
return(true);
memcpy(sjtbl->tabs, sjtabs, tabs_size);
sjtbl->tabs_end= sjtbl->tabs + (last_tab - sjtabs);
sjtbl->rowid_len= jt_rowid_offset;
sjtbl->null_bits= jt_null_bits;
sjtbl->null_bytes= (jt_null_bits + 7)/8;
*next_sjtbl_ptr= sjtbl;
next_sjtbl_ptr= &(sjtbl->next);
sjtbl->next= NULL;
sjtbl->tmp_table=
create_duplicate_weedout_tmp_table(session,
sjtbl->rowid_len +
sjtbl->null_bytes,
sjtbl);
join->join_tab[dups_ranges[j].start_idx].flush_weedout_table= sjtbl;
join->join_tab[dups_ranges[j].end_idx - 1].check_weed_out_table= sjtbl;
}
tab= last_outer_tab + 1;
jump_to= last_outer_tab;
}
/* Create the FirstMatch tail */
for (; tab < join->join_tab + dups_ranges[j].end_idx; tab++)
{
if (tab->emb_sj_nest)
tab->do_firstmatch= jump_to;
else
jump_to= tab;
}
}
return(false);
}
static void cleanup_sj_tmp_tables(JOIN *join)
{
for (SJ_TMP_TABLE *sj_tbl= join->sj_tmp_tables; sj_tbl;
sj_tbl= sj_tbl->next)
{
if (sj_tbl->tmp_table)
{
sj_tbl->tmp_table->free_tmp_table(join->session);
}
}
join->sj_tmp_tables= NULL;
}
uint32_t make_join_orderinfo(JOIN *join);
/**
global select optimisation.
@note
error code saved in field 'error'
@retval
0 success
@retval
1 error
*/
int
JOIN::optimize()
{
// to prevent double initialization on EXPLAIN
if (optimized)
return(0);
optimized= 1;
session->set_proc_info("optimizing");
row_limit= ((select_distinct || order || group_list) ? HA_POS_ERROR :
unit->select_limit_cnt);
/* select_limit is used to decide if we are likely to scan the whole table */
select_limit= unit->select_limit_cnt;
if (having || (select_options & OPTION_FOUND_ROWS))
select_limit= HA_POS_ERROR;
do_send_rows = (unit->select_limit_cnt) ? 1 : 0;
// Ignore errors of execution if option IGNORE present
if (session->lex->ignore)
session->lex->current_select->no_error= 1;
#ifdef HAVE_REF_TO_FIELDS // Not done yet
/* Add HAVING to WHERE if possible */
if (having && !group_list && !sum_func_count)
{
if (!conds)
{
conds= having;
having= 0;
}
else if ((conds=new Item_cond_and(conds,having)))
{
/*
Item_cond_and can't be fixed after creation, so we do not check
conds->fixed
*/
conds->fix_fields(session, &conds);
conds->change_ref_to_fields(session, tables_list);
conds->top_level_item();
having= 0;
}
}
#endif
/* Convert all outer joins to inner joins if possible */
conds= simplify_joins(this, join_list, conds, true, false);
build_bitmap_for_nested_joins(join_list, 0);
conds= optimize_cond(this, conds, join_list, &cond_value);
if (session->is_error())
{
error= 1;
return(1);
}
{
having= optimize_cond(this, having, join_list, &having_value);
if (session->is_error())
{
error= 1;
return(1);
}
if (select_lex->where)
select_lex->cond_value= cond_value;
if (select_lex->having)
select_lex->having_value= having_value;
if (cond_value == Item::COND_FALSE || having_value == Item::COND_FALSE ||
(!unit->select_limit_cnt && !(select_options & OPTION_FOUND_ROWS)))
{ /* Impossible cond */
zero_result_cause= having_value == Item::COND_FALSE ?
"Impossible HAVING" : "Impossible WHERE";
error= 0;
return(0);
}
}
/* Optimize count(*), cmin() and cmax() */
if (tables_list && tmp_table_param.sum_func_count && ! group_list)
{
int res;
/*
opt_sum_query() returns HA_ERR_KEY_NOT_FOUND if no rows match
to the WHERE conditions,
or 1 if all items were resolved,
or 0, or an error number HA_ERR_...
*/
if ((res=opt_sum_query(select_lex->leaf_tables, all_fields, conds)))
{
if (res == HA_ERR_KEY_NOT_FOUND)
{
zero_result_cause= "No matching min/max row";
error=0;
return(0);
}
if (res > 1)
{
error= res;
return(1);
}
if (res < 0)
{
zero_result_cause= "No matching min/max row";
error=0;
return(0);
}
zero_result_cause= "Select tables optimized away";
tables_list= 0; // All tables resolved
/*
Extract all table-independent conditions and replace the WHERE
clause with them. All other conditions were computed by opt_sum_query
and the MIN/MAX/COUNT function(s) have been replaced by constants,
so there is no need to compute the whole WHERE clause again.
Notice that make_cond_for_table() will always succeed to remove all
computed conditions, because opt_sum_query() is applicable only to
conjunctions.
Preserve conditions for EXPLAIN.
*/
if (conds && !(session->lex->describe & DESCRIBE_EXTENDED))
{
COND *table_independent_conds=
make_cond_for_table(conds, PSEUDO_TABLE_BITS, 0, 0);
conds= table_independent_conds;
}
}
}
if (!tables_list)
{
error= 0;
return(0);
}
error= -1; // Error is sent to client
sort_by_table= get_sort_by_table(order, group_list, select_lex->leaf_tables);
/* Calculate how to do the join */
session->set_proc_info("statistics");
if (make_join_statistics(this, select_lex->leaf_tables, conds, &keyuse) ||
session->is_fatal_error)
{
return(1);
}
/* Remove distinct if only const tables */
select_distinct= select_distinct && (const_tables != tables);
session->set_proc_info("preparing");
if (result->initialize_tables(this))
{
return(1); // error == -1
}
if (const_table_map != found_const_table_map &&
!(select_options & SELECT_DESCRIBE) &&
(!conds ||
!(conds->used_tables() & RAND_TABLE_BIT) ||
select_lex->master_unit() == &session->lex->unit)) // upper level SELECT
{
zero_result_cause= "no matching row in const table";
error= 0;
return(0);
}
if (!(session->options & OPTION_BIG_SELECTS) &&
best_read > (double) session->variables.max_join_size &&
!(select_options & SELECT_DESCRIBE))
{ /* purecov: inspected */
my_message(ER_TOO_BIG_SELECT, ER(ER_TOO_BIG_SELECT), MYF(0));
error= -1;
return(1);
}
if (const_tables && !session->locked_tables &&
!(select_options & SELECT_NO_UNLOCK))
mysql_unlock_some_tables(session, table, const_tables);
if (!conds && outer_join)
{
/* Handle the case where we have an OUTER JOIN without a WHERE */
conds=new Item_int((int64_t) 1,1); // Always true
}
select= make_select(*table, const_table_map,
const_table_map, conds, 1, &error);
if (error)
{ /* purecov: inspected */
error= -1; /* purecov: inspected */
return(1);
}
reset_nj_counters(join_list);
make_outerjoin_info(this);
/*
Among the equal fields belonging to the same multiple equality
choose the one that is to be retrieved first and substitute
all references to these in where condition for a reference for
the selected field.
*/
if (conds)
{
conds= substitute_for_best_equal_field(conds, cond_equal, map2table);
conds->update_used_tables();
}
/*
Permorm the the optimization on fields evaluation mentioned above
for all on expressions.
*/
for (JOIN_TAB *tab= join_tab + const_tables; tab < join_tab + tables ; tab++)
{
if (*tab->on_expr_ref)
{
*tab->on_expr_ref= substitute_for_best_equal_field(*tab->on_expr_ref,
tab->cond_equal,
map2table);
(*tab->on_expr_ref)->update_used_tables();
}
}
if (conds &&!outer_join && const_table_map != found_const_table_map &&
(select_options & SELECT_DESCRIBE) &&
select_lex->master_unit() == &session->lex->unit) // upper level SELECT
{
conds=new Item_int((int64_t) 0,1); // Always false
}
if (make_join_select(this, select, conds))
{
zero_result_cause=
"Impossible WHERE noticed after reading const tables";
return(0); // error == 0
}
error= -1; /* if goto err */
/* Optimize distinct away if possible */
{
order_st *org_order= order;
order=remove_constants(this, order,conds,1, &simple_order);
if (session->is_error())
{
error= 1;
return(1);
}
/*
If we are using order_st BY NULL or order_st BY const_expression,
return result in any order (even if we are using a GROUP BY)
*/
if (!order && org_order)
skip_sort_order= 1;
}
/*
Check if we can optimize away GROUP BY/DISTINCT.
We can do that if there are no aggregate functions, the
fields in DISTINCT clause (if present) and/or columns in GROUP BY
(if present) contain direct references to all key parts of
an unique index (in whatever order) and if the key parts of the
unique index cannot contain NULLs.
Note that the unique keys for DISTINCT and GROUP BY should not
be the same (as long as they are unique).
The FROM clause must contain a single non-constant table.
*/
if (tables - const_tables == 1 && (group_list || select_distinct) &&
!tmp_table_param.sum_func_count &&
(!join_tab[const_tables].select ||
!join_tab[const_tables].select->quick ||
join_tab[const_tables].select->quick->get_type() !=
QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX))
{
if (group_list &&
list_contains_unique_index(join_tab[const_tables].table,
find_field_in_order_list,
(void *) group_list))
{
/*
We have found that grouping can be removed since groups correspond to
only one row anyway, but we still have to guarantee correct result
order. The line below effectively rewrites the query from GROUP BY
<fields> to order_st BY <fields>. There are two exceptions:
- if skip_sort_order is set (see above), then we can simply skip
GROUP BY;
- we can only rewrite order_st BY if the order_st BY fields are 'compatible'
with the GROUP BY ones, i.e. either one is a prefix of another.
We only check if the order_st BY is a prefix of GROUP BY. In this case
test_if_subpart() copies the ASC/DESC attributes from the original
order_st BY fields.
If GROUP BY is a prefix of order_st BY, then it is safe to leave
'order' as is.
*/
if (!order || test_if_subpart(group_list, order))
order= skip_sort_order ? 0 : group_list;
/*
If we have an IGNORE INDEX FOR GROUP BY(fields) clause, this must be
rewritten to IGNORE INDEX FOR order_st BY(fields).
*/
join_tab->table->keys_in_use_for_order_by=
join_tab->table->keys_in_use_for_group_by;
group_list= 0;
group= 0;
}
if (select_distinct &&
list_contains_unique_index(join_tab[const_tables].table,
find_field_in_item_list,
(void *) &fields_list))
{
select_distinct= 0;
}
}
if (group_list || tmp_table_param.sum_func_count)
{
if (! hidden_group_fields && rollup.state == ROLLUP::STATE_NONE)
select_distinct=0;
}
else if (select_distinct && tables - const_tables == 1)
{
/*
We are only using one table. In this case we change DISTINCT to a
GROUP BY query if:
- The GROUP BY can be done through indexes (no sort) and the order_st
BY only uses selected fields.
(In this case we can later optimize away GROUP BY and order_st BY)
- We are scanning the whole table without LIMIT
This can happen if:
- We are using CALC_FOUND_ROWS
- We are using an order_st BY that can't be optimized away.
We don't want to use this optimization when we are using LIMIT
because in this case we can just create a temporary table that
holds LIMIT rows and stop when this table is full.
*/
JOIN_TAB *tab= &join_tab[const_tables];
bool all_order_fields_used;
if (order)
skip_sort_order= test_if_skip_sort_order(tab, order, select_limit, 1,
&tab->table->keys_in_use_for_order_by);
if ((group_list=create_distinct_group(session, select_lex->ref_pointer_array,
order, fields_list, all_fields,
&all_order_fields_used)))
{
bool skip_group= (skip_sort_order &&
test_if_skip_sort_order(tab, group_list, select_limit, 1,
&tab->table->keys_in_use_for_group_by) != 0);
count_field_types(select_lex, &tmp_table_param, all_fields, 0);
if ((skip_group && all_order_fields_used) ||
select_limit == HA_POS_ERROR ||
(order && !skip_sort_order))
{
/* Change DISTINCT to GROUP BY */
select_distinct= 0;
no_order= !order;
if (all_order_fields_used)
{
if (order && skip_sort_order)
{
/*
Force MySQL to read the table in sorted order to get result in
order_st BY order.
*/
tmp_table_param.quick_group=0;
}
order=0;
}
group=1; // For end_write_group
}
else
group_list= 0;
}
else if (session->is_fatal_error) // End of memory
return(1);
}
simple_group= 0;
{
order_st *old_group_list;
group_list= remove_constants(this, (old_group_list= group_list), conds,
rollup.state == ROLLUP::STATE_NONE,
&simple_group);
if (session->is_error())
{
error= 1;
return(1);
}
if (old_group_list && !group_list)
select_distinct= 0;
}
if (!group_list && group)
{
order=0; // The output has only one row
simple_order=1;
select_distinct= 0; // No need in distinct for 1 row
group_optimized_away= 1;
}
calc_group_buffer(this, group_list);
send_group_parts= tmp_table_param.group_parts; /* Save org parts */
if (test_if_subpart(group_list, order) ||
(!group_list && tmp_table_param.sum_func_count))
order=0;
// Can't use sort on head table if using row cache
if (full_join)
{
if (group_list)
simple_group=0;
if (order)
simple_order=0;
}
/*
Check if we need to create a temporary table.
This has to be done if all tables are not already read (const tables)
and one of the following conditions holds:
- We are using DISTINCT (simple distinct's are already optimized away)
- We are using an order_st BY or GROUP BY on fields not in the first table
- We are using different order_st BY and GROUP BY orders
- The user wants us to buffer the result.
*/
need_tmp= (const_tables != tables &&
((select_distinct || !simple_order || !simple_group) ||
(group_list && order) ||
test(select_options & OPTION_BUFFER_RESULT)));
uint32_t no_jbuf_after= make_join_orderinfo(this);
uint64_t select_opts_for_readinfo=
(select_options & (SELECT_DESCRIBE | SELECT_NO_JOIN_CACHE)) | (0);
sj_tmp_tables= NULL;
if (!select_lex->sj_nests.is_empty())
setup_semijoin_dups_elimination(this, select_opts_for_readinfo,
no_jbuf_after);
// No cache for MATCH == 'Don't use join buffering when we use MATCH'.
if (make_join_readinfo(this, select_opts_for_readinfo, no_jbuf_after))
return(1);
/* Create all structures needed for materialized subquery execution. */
if (setup_subquery_materialization())
return(1);
/*
is this simple IN subquery?
*/
if (!group_list && !order &&
unit->item && unit->item->substype() == Item_subselect::IN_SUBS &&
tables == 1 && conds &&
!unit->is_union())
{
if (!having)
{
Item *where= conds;
if (join_tab[0].type == JT_EQ_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(&where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_UNIQUE_SUBQUERY;
error= 0;
return(unit->item->
change_engine(new
subselect_uniquesubquery_engine(session,
join_tab,
unit->item,
where)));
}
else if (join_tab[0].type == JT_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(&where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_INDEX_SUBQUERY;
error= 0;
return(unit->item->
change_engine(new
subselect_indexsubquery_engine(session,
join_tab,
unit->item,
where,
NULL,
0)));
}
} else if (join_tab[0].type == JT_REF_OR_NULL &&
join_tab[0].ref.items[0]->name == in_left_expr_name &&
having->name == in_having_cond)
{
join_tab[0].type= JT_INDEX_SUBQUERY;
error= 0;
conds= remove_additional_cond(conds);
save_index_subquery_explain_info(join_tab, conds);
return(unit->item->
change_engine(new subselect_indexsubquery_engine(session,
join_tab,
unit->item,
conds,
having,
1)));
}
}
/*
Need to tell handlers that to play it safe, it should fetch all
columns of the primary key of the tables: this is because MySQL may
build row pointers for the rows, and for all columns of the primary key
the read set has not necessarily been set by the server code.
*/
if (need_tmp || select_distinct || group_list || order)
{
for (uint32_t i = const_tables; i < tables; i++)
join_tab[i].table->prepare_for_position();
}
if (const_tables != tables)
{
/*
Because filesort always does a full table scan or a quick range scan
we must add the removed reference to the select for the table.
We only need to do this when we have a simple_order or simple_group
as in other cases the join is done before the sort.
*/
if ((order || group_list) &&
(join_tab[const_tables].type != JT_ALL) &&
(join_tab[const_tables].type != JT_REF_OR_NULL) &&
((order && simple_order) || (group_list && simple_group)))
{
if (add_ref_to_table_cond(session,&join_tab[const_tables])) {
return(1);
}
}
if (!(select_options & SELECT_BIG_RESULT) &&
((group_list &&
(!simple_group ||
!test_if_skip_sort_order(&join_tab[const_tables], group_list,
unit->select_limit_cnt, 0,
&join_tab[const_tables].table->
keys_in_use_for_group_by))) ||
select_distinct) &&
tmp_table_param.quick_group)
{
need_tmp=1; simple_order=simple_group=0; // Force tmp table without sort
}
if (order)
{
/*
Force using of tmp table if sorting by a SP or UDF function due to
their expensive and probably non-deterministic nature.
*/
for (order_st *tmp_order= order; tmp_order ; tmp_order=tmp_order->next)
{
Item *item= *tmp_order->item;
if (item->is_expensive())
{
/* Force tmp table without sort */
need_tmp=1; simple_order=simple_group=0;
break;
}
}
}
}
tmp_having= having;
if (select_options & SELECT_DESCRIBE)
{
error= 0;
return(0);
}
having= 0;
/*
The loose index scan access method guarantees that all grouping or
duplicate row elimination (for distinct) is already performed
during data retrieval, and that all MIN/MAX functions are already
computed for each group. Thus all MIN/MAX functions should be
treated as regular functions, and there is no need to perform
grouping in the main execution loop.
Notice that currently loose index scan is applicable only for
single table queries, thus it is sufficient to test only the first
join_tab element of the plan for its access method.
*/
if (join_tab->is_using_loose_index_scan())
tmp_table_param.precomputed_group_by= true;
/* Create a tmp table if distinct or if the sort is too complicated */
if (need_tmp)
{
session->set_proc_info("Creating tmp table");
init_items_ref_array();
tmp_table_param.hidden_field_count= (all_fields.elements -
fields_list.elements);
order_st *tmp_group= ((!simple_group && !(test_flags & TEST_NO_KEY_GROUP)) ? group_list :
(order_st*) 0);
/*
Pushing LIMIT to the temporary table creation is not applicable
when there is order_st BY or GROUP BY or there is no GROUP BY, but
there are aggregate functions, because in all these cases we need
all result rows.
*/
ha_rows tmp_rows_limit= ((order == 0 || skip_sort_order) &&
!tmp_group &&
!session->lex->current_select->with_sum_func) ?
select_limit : HA_POS_ERROR;
if (!(exec_tmp_table1=
create_tmp_table(session, &tmp_table_param, all_fields,
tmp_group,
group_list ? 0 : select_distinct,
group_list && simple_group,
select_options,
tmp_rows_limit,
(char *) "")))
{
return(1);
}
/*
We don't have to store rows in temp table that doesn't match HAVING if:
- we are sorting the table and writing complete group rows to the
temp table.
- We are using DISTINCT without resolving the distinct as a GROUP BY
on all columns.
If having is not handled here, it will be checked before the row
is sent to the client.
*/
if (tmp_having &&
(sort_and_group || (exec_tmp_table1->distinct && !group_list)))
having= tmp_having;
/* if group or order on first table, sort first */
if (group_list && simple_group)
{
session->set_proc_info("Sorting for group");
if (create_sort_index(session, this, group_list,
HA_POS_ERROR, HA_POS_ERROR, false) ||
alloc_group_fields(this, group_list) ||
make_sum_func_list(all_fields, fields_list, 1) ||
setup_sum_funcs(session, sum_funcs))
{
return(1);
}
group_list=0;
}
else
{
if (make_sum_func_list(all_fields, fields_list, 0) ||
setup_sum_funcs(session, sum_funcs))
{
return(1);
}
if (!group_list && ! exec_tmp_table1->distinct && order && simple_order)
{
session->set_proc_info("Sorting for order");
if (create_sort_index(session, this, order,
HA_POS_ERROR, HA_POS_ERROR, true))
{
return(1);
}
order=0;
}
}
/*
Optimize distinct when used on some of the tables
SELECT DISTINCT t1.a FROM t1,t2 WHERE t1.b=t2.b
In this case we can stop scanning t2 when we have found one t1.a
*/
if (exec_tmp_table1->distinct)
{
table_map used_tables= session->used_tables;
JOIN_TAB *last_join_tab= join_tab+tables-1;
do
{
if (used_tables & last_join_tab->table->map)
break;
last_join_tab->not_used_in_distinct=1;
} while (last_join_tab-- != join_tab);
/* Optimize "select distinct b from t1 order by key_part_1 limit #" */
if (order && skip_sort_order)
{
/* Should always succeed */
if (test_if_skip_sort_order(&join_tab[const_tables],
order, unit->select_limit_cnt, 0,
&join_tab[const_tables].table->
keys_in_use_for_order_by))
order=0;
}
}
/*
If this join belongs to an uncacheable subquery save
the original join
*/
if (select_lex->uncacheable && !is_top_level_join() &&
init_save_join_tab())
return(-1); /* purecov: inspected */
}
error= 0;
return(0);
}
/**
Restore values in temporary join.
*/
void JOIN::restore_tmp()
{
memcpy(tmp_join, this, (size_t) sizeof(JOIN));
}
int
JOIN::reinit()
{
unit->offset_limit_cnt= (ha_rows)(select_lex->offset_limit ?
select_lex->offset_limit->val_uint() :
0UL);
first_record= 0;
if (exec_tmp_table1)
{
exec_tmp_table1->file->extra(HA_EXTRA_RESET_STATE);
exec_tmp_table1->file->ha_delete_all_rows();
free_io_cache(exec_tmp_table1);
filesort_free_buffers(exec_tmp_table1,0);
}
if (exec_tmp_table2)
{
exec_tmp_table2->file->extra(HA_EXTRA_RESET_STATE);
exec_tmp_table2->file->ha_delete_all_rows();
free_io_cache(exec_tmp_table2);
filesort_free_buffers(exec_tmp_table2,0);
}
if (items0)
set_items_ref_array(items0);
if (join_tab_save)
memcpy(join_tab, join_tab_save, sizeof(JOIN_TAB) * tables);
if (tmp_join)
restore_tmp();
/* Reset of sum functions */
if (sum_funcs)
{
Item_sum *func, **func_ptr= sum_funcs;
while ((func= *(func_ptr++)))
func->clear();
}
return(0);
}
/**
@brief Save the original join layout
@details Saves the original join layout so it can be reused in
re-execution and for EXPLAIN.
@return Operation status
@retval 0 success.
@retval 1 error occurred.
*/
bool
JOIN::init_save_join_tab()
{
if (!(tmp_join= (JOIN*)session->alloc(sizeof(JOIN))))
return 1; /* purecov: inspected */
error= 0; // Ensure that tmp_join.error= 0
restore_tmp();
return 0;
}
bool
JOIN::save_join_tab()
{
if (!join_tab_save && select_lex->master_unit()->uncacheable)
{
if (!(join_tab_save= (JOIN_TAB*)session->memdup((unsigned char*) join_tab,
sizeof(JOIN_TAB) * tables)))
return 1;
}
return 0;
}
/**
Exec select.
@todo
Note, that create_sort_index calls test_if_skip_sort_order and may
finally replace sorting with index scan if there is a LIMIT clause in
the query. It's never shown in EXPLAIN!
@todo
When can we have here session->net.report_error not zero?
*/
void JOIN::exec()
{
List<Item> *columns_list= &fields_list;
int tmp_error;
session->set_proc_info("executing");
error= 0;
if (!tables_list && (tables || !select_lex->with_sum_func))
{
/* Only test of functions */
if (select_options & SELECT_DESCRIBE)
select_describe(this, false, false, false, (zero_result_cause?zero_result_cause:"No tables used"));
else
{
result->send_fields(*columns_list, Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
/*
We have to test for 'conds' here as the WHERE may not be constant
even if we don't have any tables for prepared statements or if
conds uses something like 'rand()'.
*/
if (cond_value != Item::COND_FALSE &&
(!conds || conds->val_int()) &&
(!having || having->val_int()))
{
if (do_send_rows && result->send_data(fields_list))
error= 1;
else
{
error= (int) result->send_eof();
send_records= ((select_options & OPTION_FOUND_ROWS) ? 1 : session->sent_row_count);
}
}
else
{
error= (int) result->send_eof();
send_records= 0;
}
}
/* Single select (without union) always returns 0 or 1 row */
session->limit_found_rows= send_records;
session->examined_row_count= 0;
return;
}
/*
Don't reset the found rows count if there're no tables as
FOUND_ROWS() may be called. Never reset the examined row count here.
It must be accumulated from all join iterations of all join parts.
*/
if (tables)
session->limit_found_rows= 0;
if (zero_result_cause)
{
(void) return_zero_rows(this, result, select_lex->leaf_tables,
*columns_list,
send_row_on_empty_set(),
select_options,
zero_result_cause,
having);
return;
}
if ((this->select_lex->options & OPTION_SCHEMA_TABLE) && get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
return;
if (select_options & SELECT_DESCRIBE)
{
/*
Check if we managed to optimize order_st BY away and don't use temporary
table to resolve order_st BY: in that case, we only may need to do
filesort for GROUP BY.
*/
if (!order && !no_order && (!skip_sort_order || !need_tmp))
{
/* Reset 'order' to 'group_list' and reinit variables describing 'order' */
order= group_list;
simple_order= simple_group;
skip_sort_order= 0;
}
if (order && (order != group_list || !(select_options & SELECT_BIG_RESULT)))
{
if (const_tables == tables
|| ((simple_order || skip_sort_order)
&& test_if_skip_sort_order(&join_tab[const_tables], order, select_limit, 0, &join_tab[const_tables].table->keys_in_use_for_query)))
order= 0;
}
having= tmp_having;
select_describe(this, need_tmp, order != 0 && !skip_sort_order, select_distinct, !tables ? "No tables used" : NULL);
return;
}
JOIN *curr_join= this;
List<Item> *curr_all_fields= &all_fields;
List<Item> *curr_fields_list= &fields_list;
Table *curr_tmp_table= 0;
/*
Initialize examined rows here because the values from all join parts
must be accumulated in examined_row_count. Hence every join
iteration must count from zero.
*/
curr_join->examined_rows= 0;
/* Create a tmp table if distinct or if the sort is too complicated */
if (need_tmp)
{
if (tmp_join)
{
/*
We are in a non cacheable sub query. Get the saved join structure
after optimization.
(curr_join may have been modified during last exection and we need
to reset it)
*/
curr_join= tmp_join;
}
curr_tmp_table= exec_tmp_table1;
/* Copy data to the temporary table */
session->set_proc_info("Copying to tmp table");
if (! curr_join->sort_and_group && curr_join->const_tables != curr_join->tables)
curr_join->join_tab[curr_join->const_tables].sorted= 0;
if ((tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table)))
{
error= tmp_error;
return;
}
curr_tmp_table->file->info(HA_STATUS_VARIABLE);
if (curr_join->having)
curr_join->having= curr_join->tmp_having= 0; // Allready done
/* Change sum_fields reference to calculated fields in tmp_table */
curr_join->all_fields= *curr_all_fields;
if (!items1)
{
items1= items0 + all_fields.elements;
if (sort_and_group || curr_tmp_table->group)
{
if (change_to_use_tmp_fields(session, items1,
tmp_fields_list1, tmp_all_fields1,
fields_list.elements, all_fields))
return;
}
else
{
if (change_refs_to_tmp_fields(session, items1,
tmp_fields_list1, tmp_all_fields1,
fields_list.elements, all_fields))
return;
}
curr_join->tmp_all_fields1= tmp_all_fields1;
curr_join->tmp_fields_list1= tmp_fields_list1;
curr_join->items1= items1;
}
curr_all_fields= &tmp_all_fields1;
curr_fields_list= &tmp_fields_list1;
curr_join->set_items_ref_array(items1);
if (sort_and_group || curr_tmp_table->group)
{
curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.sum_func_count
+ curr_join->tmp_table_param.func_count;
curr_join->tmp_table_param.sum_func_count= 0;
curr_join->tmp_table_param.func_count= 0;
}
else
{
curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.func_count;
curr_join->tmp_table_param.func_count= 0;
}
if (curr_tmp_table->group)
{ // Already grouped
if (!curr_join->order && !curr_join->no_order && !skip_sort_order)
curr_join->order= curr_join->group_list; /* order by group */
curr_join->group_list= 0;
}
/*
If we have different sort & group then we must sort the data by group
and copy it to another tmp table
This code is also used if we are using distinct something
we haven't been able to store in the temporary table yet
like SEC_TO_TIME(SUM(...)).
*/
if ((curr_join->group_list && (!test_if_subpart(curr_join->group_list, curr_join->order) || curr_join->select_distinct))
|| (curr_join->select_distinct && curr_join->tmp_table_param.using_indirect_summary_function))
{ /* Must copy to another table */
/* Free first data from old join */
curr_join->join_free();
if (make_simple_join(curr_join, curr_tmp_table))
return;
calc_group_buffer(curr_join, group_list);
count_field_types(select_lex, &curr_join->tmp_table_param,
curr_join->tmp_all_fields1,
curr_join->select_distinct && !curr_join->group_list);
curr_join->tmp_table_param.hidden_field_count= curr_join->tmp_all_fields1.elements
- curr_join->tmp_fields_list1.elements;
if (exec_tmp_table2)
curr_tmp_table= exec_tmp_table2;
else
{
/* group data to new table */
/*
If the access method is loose index scan then all MIN/MAX
functions are precomputed, and should be treated as regular
functions. See extended comment in JOIN::exec.
*/
if (curr_join->join_tab->is_using_loose_index_scan())
curr_join->tmp_table_param.precomputed_group_by= true;
if (!(curr_tmp_table=
exec_tmp_table2= create_tmp_table(session,
&curr_join->tmp_table_param,
*curr_all_fields,
(order_st*) 0,
curr_join->select_distinct &&
!curr_join->group_list,
1, curr_join->select_options,
HA_POS_ERROR,
(char *) "")))
return;
curr_join->exec_tmp_table2= exec_tmp_table2;
}
if (curr_join->group_list)
{
session->set_proc_info("Creating sort index");
if (curr_join->join_tab == join_tab && save_join_tab())
{
return;
}
if (create_sort_index(session, curr_join, curr_join->group_list,
HA_POS_ERROR, HA_POS_ERROR, false) ||
make_group_fields(this, curr_join))
{
return;
}
sortorder= curr_join->sortorder;
}
session->set_proc_info("Copying to group table");
tmp_error= -1;
if (curr_join != this)
{
if (sum_funcs2)
{
curr_join->sum_funcs= sum_funcs2;
curr_join->sum_funcs_end= sum_funcs_end2;
}
else
{
curr_join->alloc_func_list();
sum_funcs2= curr_join->sum_funcs;
sum_funcs_end2= curr_join->sum_funcs_end;
}
}
if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list, 1, true))
return;
curr_join->group_list= 0;
if (!curr_join->sort_and_group && (curr_join->const_tables != curr_join->tables))
curr_join->join_tab[curr_join->const_tables].sorted= 0;
if (setup_sum_funcs(curr_join->session, curr_join->sum_funcs)
|| (tmp_error= do_select(curr_join, (List<Item> *) 0, curr_tmp_table)))
{
error= tmp_error;
return;
}
end_read_record(&curr_join->join_tab->read_record);
curr_join->const_tables= curr_join->tables; // Mark free for cleanup()
curr_join->join_tab[0].table= 0; // Table is freed
// No sum funcs anymore
if (!items2)
{
items2= items1 + all_fields.elements;
if (change_to_use_tmp_fields(session, items2,
tmp_fields_list2, tmp_all_fields2,
fields_list.elements, tmp_all_fields1))
return;
curr_join->tmp_fields_list2= tmp_fields_list2;
curr_join->tmp_all_fields2= tmp_all_fields2;
}
curr_fields_list= &curr_join->tmp_fields_list2;
curr_all_fields= &curr_join->tmp_all_fields2;
curr_join->set_items_ref_array(items2);
curr_join->tmp_table_param.field_count+= curr_join->tmp_table_param.sum_func_count;
curr_join->tmp_table_param.sum_func_count= 0;
}
if (curr_tmp_table->distinct)
curr_join->select_distinct=0; /* Each row is unique */
curr_join->join_free(); /* Free quick selects */
if (curr_join->select_distinct && ! curr_join->group_list)
{
session->set_proc_info("Removing duplicates");
if (curr_join->tmp_having)
curr_join->tmp_having->update_used_tables();
if (remove_duplicates(curr_join, curr_tmp_table,
*curr_fields_list, curr_join->tmp_having))
return;
curr_join->tmp_having=0;
curr_join->select_distinct=0;
}
curr_tmp_table->reginfo.lock_type= TL_UNLOCK;
if (make_simple_join(curr_join, curr_tmp_table))
return;
calc_group_buffer(curr_join, curr_join->group_list);
count_field_types(select_lex, &curr_join->tmp_table_param, *curr_all_fields, 0);
}
if (curr_join->group || curr_join->tmp_table_param.sum_func_count)
{
if (make_group_fields(this, curr_join))
return;
if (! items3)
{
if (! items0)
init_items_ref_array();
items3= ref_pointer_array + (all_fields.elements*4);
setup_copy_fields(session, &curr_join->tmp_table_param,
items3, tmp_fields_list3, tmp_all_fields3,
curr_fields_list->elements, *curr_all_fields);
tmp_table_param.save_copy_funcs= curr_join->tmp_table_param.copy_funcs;
tmp_table_param.save_copy_field= curr_join->tmp_table_param.copy_field;
tmp_table_param.save_copy_field_end= curr_join->tmp_table_param.copy_field_end;
curr_join->tmp_all_fields3= tmp_all_fields3;
curr_join->tmp_fields_list3= tmp_fields_list3;
}
else
{
curr_join->tmp_table_param.copy_funcs= tmp_table_param.save_copy_funcs;
curr_join->tmp_table_param.copy_field= tmp_table_param.save_copy_field;
curr_join->tmp_table_param.copy_field_end= tmp_table_param.save_copy_field_end;
}
curr_fields_list= &tmp_fields_list3;
curr_all_fields= &tmp_all_fields3;
curr_join->set_items_ref_array(items3);
if (curr_join->make_sum_func_list(*curr_all_fields, *curr_fields_list,
1, true) ||
setup_sum_funcs(curr_join->session, curr_join->sum_funcs) ||
session->is_fatal_error)
return;
}
if (curr_join->group_list || curr_join->order)
{
session->set_proc_info("Sorting result");
/* If we have already done the group, add HAVING to sorted table */
if (curr_join->tmp_having && ! curr_join->group_list && ! curr_join->sort_and_group)
{
// Some tables may have been const
curr_join->tmp_having->update_used_tables();
JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables];
table_map used_tables= (curr_join->const_table_map |
curr_table->table->map);
Item* sort_table_cond= make_cond_for_table(curr_join->tmp_having, used_tables, used_tables, 0);
if (sort_table_cond)
{
if (!curr_table->select)
if (!(curr_table->select= new SQL_SELECT))
return;
if (!curr_table->select->cond)
curr_table->select->cond= sort_table_cond;
else // This should never happen
{
if (!(curr_table->select->cond=
new Item_cond_and(curr_table->select->cond,
sort_table_cond)))
return;
/*
Item_cond_and do not need fix_fields for execution, its parameters
are fixed or do not need fix_fields, too
*/
curr_table->select->cond->quick_fix_field();
}
curr_table->select_cond= curr_table->select->cond;
curr_table->select_cond->top_level_item();
curr_join->tmp_having= make_cond_for_table(curr_join->tmp_having,
~ (table_map) 0,
~used_tables, 0);
}
}
{
if (group)
curr_join->select_limit= HA_POS_ERROR;
else
{
/*
We can abort sorting after session->select_limit rows if we there is no
WHERE clause for any tables after the sorted one.
*/
JOIN_TAB *curr_table= &curr_join->join_tab[curr_join->const_tables+1];
JOIN_TAB *end_table= &curr_join->join_tab[curr_join->tables];
for (; curr_table < end_table ; curr_table++)
{
/*
table->keyuse is set in the case there was an original WHERE clause
on the table that was optimized away.
*/
if (curr_table->select_cond ||
(curr_table->keyuse && !curr_table->first_inner))
{
/* We have to sort all rows */
curr_join->select_limit= HA_POS_ERROR;
break;
}
}
}
if (curr_join->join_tab == join_tab && save_join_tab())
return;
/*
Here we sort rows for order_st BY/GROUP BY clause, if the optimiser
chose FILESORT to be faster than INDEX SCAN or there is no
suitable index present.
Note, that create_sort_index calls test_if_skip_sort_order and may
finally replace sorting with index scan if there is a LIMIT clause in
the query. XXX: it's never shown in EXPLAIN!
OPTION_FOUND_ROWS supersedes LIMIT and is taken into account.
*/
if (create_sort_index(session, curr_join,
curr_join->group_list ?
curr_join->group_list : curr_join->order,
curr_join->select_limit,
(select_options & OPTION_FOUND_ROWS ?
HA_POS_ERROR : unit->select_limit_cnt),
curr_join->group_list ? true : false))
return;
sortorder= curr_join->sortorder;
if (curr_join->const_tables != curr_join->tables &&
!curr_join->join_tab[curr_join->const_tables].table->sort.io_cache)
{
/*
If no IO cache exists for the first table then we are using an
INDEX SCAN and no filesort. Thus we should not remove the sorted
attribute on the INDEX SCAN.
*/
skip_sort_order= 1;
}
}
}
/* XXX: When can we have here session->is_error() not zero? */
if (session->is_error())
{
error= session->is_error();
return;
}
curr_join->having= curr_join->tmp_having;
curr_join->fields= curr_fields_list;
session->set_proc_info("Sending data");
result->send_fields(*curr_fields_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
error= do_select(curr_join, curr_fields_list, NULL);
session->limit_found_rows= curr_join->send_records;
/* Accumulate the counts from all join iterations of all join parts. */
session->examined_row_count+= curr_join->examined_rows;
/*
With EXPLAIN EXTENDED we have to restore original ref_array
for a derived table which is always materialized.
Otherwise we would not be able to print the query correctly.
*/
if (items0 && (session->lex->describe & DESCRIBE_EXTENDED) && select_lex->linkage == DERIVED_TABLE_TYPE)
set_items_ref_array(items0);
return;
}
/**
Clean up join.
@return
Return error that hold JOIN.
*/
int JOIN::destroy()
{
select_lex->join= 0;
if (tmp_join)
{
if (join_tab != tmp_join->join_tab)
{
JOIN_TAB *tab, *end;
for (tab= join_tab, end= tab+tables ; tab != end ; tab++)
tab->cleanup();
}
tmp_join->tmp_join= 0;
tmp_table_param.copy_field=0;
return(tmp_join->destroy());
}
cond_equal= 0;
cleanup(1);
if (exec_tmp_table1)
exec_tmp_table1->free_tmp_table(session);
if (exec_tmp_table2)
exec_tmp_table2->free_tmp_table(session);
delete select;
delete_dynamic(&keyuse);
return(error);
}
/**
An entry point to single-unit select (a select without UNION).
@param session thread handler
@param rref_pointer_array a reference to ref_pointer_array of
the top-level select_lex for this query
@param tables list of all tables used in this query.
The tables have been pre-opened.
@param wild_num number of wildcards used in the top level
select of this query.
For example statement
SELECT *, t1.*, catalog.t2.* FROM t0, t1, t2;
has 3 wildcards.
@param fields list of items in SELECT list of the top-level
select
e.g. SELECT a, b, c FROM t1 will have Item_field
for a, b and c in this list.
@param conds top level item of an expression representing
WHERE clause of the top level select
@param og_num total number of order_st BY and GROUP BY clauses
arguments
@param order linked list of order_st BY agruments
@param group linked list of GROUP BY arguments
@param having top level item of HAVING expression
@param select_options select options (BIG_RESULT, etc)
@param result an instance of result set handling class.
This object is responsible for send result
set rows to the client or inserting them
into a table.
@param select_lex the only Select_Lex of this query
@param unit top-level UNIT of this query
UNIT is an artificial object created by the
parser for every SELECT clause.
e.g.
SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2)
has 2 unions.
@retval
false success
@retval
true an error
*/
bool
mysql_select(Session *session, Item ***rref_pointer_array,
TableList *tables, uint32_t wild_num, List<Item> &fields,
COND *conds, uint32_t og_num, order_st *order, order_st *group,
Item *having, uint64_t select_options,
select_result *result, Select_Lex_Unit *unit,
Select_Lex *select_lex)
{
bool err;
bool free_join= 1;
select_lex->context.resolve_in_select_list= true;
JOIN *join;
if (select_lex->join != 0)
{
join= select_lex->join;
/*
is it single SELECT in derived table, called in derived table
creation
*/
if (select_lex->linkage != DERIVED_TABLE_TYPE ||
(select_options & SELECT_DESCRIBE))
{
if (select_lex->linkage != GLOBAL_OPTIONS_TYPE)
{
//here is EXPLAIN of subselect or derived table
if (join->change_result(result))
{
return(true);
}
}
else
{
if ((err= join->prepare(rref_pointer_array, tables, wild_num,
conds, og_num, order, group, having, select_lex, unit)))
{
goto err;
}
}
}
free_join= 0;
join->select_options= select_options;
}
else
{
if (!(join= new JOIN(session, fields, select_options, result)))
return(true);
session->set_proc_info("init");
session->used_tables=0; // Updated by setup_fields
if ((err= join->prepare(rref_pointer_array, tables, wild_num,
conds, og_num, order, group, having,
select_lex, unit)) == true)
{
goto err;
}
}
if (join->flatten_subqueries())
{
err= 1;
goto err;
}
if ((err= join->optimize()))
{
goto err; // 1
}
if (session->lex->describe & DESCRIBE_EXTENDED)
{
join->conds_history= join->conds;
join->having_history= (join->having?join->having:join->tmp_having);
}
if (session->is_error())
goto err;
join->exec();
if (session->lex->describe & DESCRIBE_EXTENDED)
{
select_lex->where= join->conds_history;
select_lex->having= join->having_history;
}
err:
if (free_join)
{
session->set_proc_info("end");
err|= select_lex->cleanup();
return(err || session->is_error());
}
return(join->error);
}
int subq_sj_candidate_cmp(Item_in_subselect* const *el1,
Item_in_subselect* const *el2)
{
return ((*el1)->sj_convert_priority < (*el2)->sj_convert_priority) ? 1 :
( ((*el1)->sj_convert_priority == (*el2)->sj_convert_priority)? 0 : -1);
}
inline Item * and_items(Item* cond, Item *item)
{
return (cond? (new Item_cond_and(cond, item)) : item);
}
static TableList *alloc_join_nest(Session *session)
{
TableList *tbl;
if (!(tbl= (TableList*) session->calloc(ALIGN_SIZE(sizeof(TableList))+
sizeof(nested_join_st))))
return NULL;
tbl->nested_join= (nested_join_st*) ((unsigned char*)tbl +
ALIGN_SIZE(sizeof(TableList)));
return tbl;
}
void fix_list_after_tbl_changes(Select_Lex *new_parent, List<TableList> *tlist)
{
List_iterator<TableList> it(*tlist);
TableList *table;
while ((table= it++))
{
if (table->on_expr)
table->on_expr->fix_after_pullout(new_parent, &table->on_expr);
if (table->nested_join)
fix_list_after_tbl_changes(new_parent, &table->nested_join->join_list);
}
}
/*
Convert a subquery predicate into a TableList semi-join nest
SYNOPSIS
convert_subq_to_sj()
parent_join Parent join, the one that has subq_pred in its WHERE/ON
clause
subq_pred Subquery predicate to be converted
DESCRIPTION
Convert a subquery predicate into a TableList semi-join nest. All the
prerequisites are already checked, so the conversion is always successfull.
Prepared Statements: the transformation is permanent:
- Changes in TableList structures are naturally permanent
- Item tree changes are performed on statement MEM_ROOT:
= we activate statement MEM_ROOT
= this function is called before the first fix_prepare_information
call.
This is intended because the criteria for subquery-to-sj conversion remain
constant for the lifetime of the Prepared Statement.
RETURN
false OK
true Out of memory error
*/
bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred)
{
Select_Lex *parent_lex= parent_join->select_lex;
TableList *emb_tbl_nest= NULL;
List<TableList> *emb_join_list= &parent_lex->top_join_list;
Session *session= parent_join->session;
/*
1. Find out where to put the predicate into.
Note: for "t1 LEFT JOIN t2" this will be t2, a leaf.
*/
if ((void*)subq_pred->expr_join_nest != (void*)1)
{
if (subq_pred->expr_join_nest->nested_join)
{
/*
We're dealing with
... [LEFT] JOIN ( ... ) ON (subquery AND whatever) ...
The sj-nest will be inserted into the brackets nest.
*/
emb_tbl_nest= subq_pred->expr_join_nest;
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->expr_join_nest->outer_join)
{
/*
We're dealing with
... INNER JOIN tblX ON (subquery AND whatever) ...
The sj-nest will be tblX's "sibling", i.e. another child of its
parent. This is ok because tblX is joined as an inner join.
*/
emb_tbl_nest= subq_pred->expr_join_nest->embedding;
if (emb_tbl_nest)
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->expr_join_nest->nested_join)
{
TableList *outer_tbl= subq_pred->expr_join_nest;
TableList *wrap_nest;
/*
We're dealing with
... LEFT JOIN tbl ON (on_expr AND subq_pred) ...
we'll need to convert it into:
... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
| |
|<----- wrap_nest ---->|
Q: other subqueries may be pointing to this element. What to do?
A1: simple solution: copy *subq_pred->expr_join_nest= *parent_nest.
But we'll need to fix other pointers.
A2: Another way: have TableList::next_ptr so the following
subqueries know the table has been nested.
A3: changes in the TableList::outer_join will make everything work
automatically.
*/
if (!(wrap_nest= alloc_join_nest(parent_join->session)))
{
return(true);
}
wrap_nest->embedding= outer_tbl->embedding;
wrap_nest->join_list= outer_tbl->join_list;
wrap_nest->alias= (char*) "(sj-wrap)";
wrap_nest->nested_join->join_list.empty();
wrap_nest->nested_join->join_list.push_back(outer_tbl);
outer_tbl->embedding= wrap_nest;
outer_tbl->join_list= &wrap_nest->nested_join->join_list;
/*
wrap_nest will take place of outer_tbl, so move the outer join flag
and on_expr
*/
wrap_nest->outer_join= outer_tbl->outer_join;
outer_tbl->outer_join= 0;
wrap_nest->on_expr= outer_tbl->on_expr;
outer_tbl->on_expr= NULL;
List_iterator<TableList> li(*wrap_nest->join_list);
TableList *tbl;
while ((tbl= li++))
{
if (tbl == outer_tbl)
{
li.replace(wrap_nest);
break;
}
}
/*
Ok now wrap_nest 'contains' outer_tbl and we're ready to add the
semi-join nest into it
*/
emb_join_list= &wrap_nest->nested_join->join_list;
emb_tbl_nest= wrap_nest;
}
}
TableList *sj_nest;
nested_join_st *nested_join;
if (!(sj_nest= alloc_join_nest(parent_join->session)))
{
return(true);
}
nested_join= sj_nest->nested_join;
sj_nest->join_list= emb_join_list;
sj_nest->embedding= emb_tbl_nest;
sj_nest->alias= (char*) "(sj-nest)";
/* Nests do not participate in those 'chains', so: */
/* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
emb_join_list->push_back(sj_nest);
/*
nested_join->used_tables and nested_join->not_null_tables are
initialized in simplify_joins().
*/
/*
2. Walk through subquery's top list and set 'embedding' to point to the
sj-nest.
*/
Select_Lex *subq_lex= subq_pred->unit->first_select();
nested_join->join_list.empty();
List_iterator_fast<TableList> li(subq_lex->top_join_list);
TableList *tl, *last_leaf;
while ((tl= li++))
{
tl->embedding= sj_nest;
tl->join_list= &nested_join->join_list;
nested_join->join_list.push_back(tl);
}
/*
Reconnect the next_leaf chain.
TODO: Do we have to put subquery's tables at the end of the chain?
Inserting them at the beginning would be a bit faster.
NOTE: We actually insert them at the front! That's because the order is
reversed in this list.
*/
for (tl= parent_lex->leaf_tables; tl->next_leaf; tl= tl->next_leaf) {};
tl->next_leaf= subq_lex->leaf_tables;
last_leaf= tl;
/*
Same as above for next_local chain
(a theory: a next_local chain always starts with ::leaf_tables
because view's tables are inserted after the view)
*/
for (tl= parent_lex->leaf_tables; tl->next_local; tl= tl->next_local) {};
tl->next_local= subq_lex->leaf_tables;
/* A theory: no need to re-connect the next_global chain */
/* 3. Remove the original subquery predicate from the WHERE/ON */
// The subqueries were replaced for Item_int(1) earlier
subq_pred->exec_method= Item_in_subselect::SEMI_JOIN; // for subsequent executions
/*TODO: also reset the 'with_subselect' there. */
/* n. Adjust the parent_join->tables counter */
uint32_t table_no= parent_join->tables;
/* n. Walk through child's tables and adjust table->map */
for (tl= subq_lex->leaf_tables; tl; tl= tl->next_leaf, table_no++)
{
tl->table->tablenr= table_no;
tl->table->map= ((table_map)1) << table_no;
Select_Lex *old_sl= tl->select_lex;
tl->select_lex= parent_join->select_lex;
for(TableList *emb= tl->embedding; emb && emb->select_lex == old_sl; emb= emb->embedding)
emb->select_lex= parent_join->select_lex;
}
parent_join->tables += subq_lex->join->tables;
/*
Put the subquery's WHERE into semi-join's sj_on_expr
Add the subquery-induced equalities too.
*/
Select_Lex *save_lex= session->lex->current_select;
session->lex->current_select=subq_lex;
if (!subq_pred->left_expr->fixed &&
subq_pred->left_expr->fix_fields(session, &subq_pred->left_expr))
return(true);
session->lex->current_select=save_lex;
sj_nest->nested_join->sj_corr_tables= subq_pred->used_tables();
sj_nest->nested_join->sj_depends_on= subq_pred->used_tables() |
subq_pred->left_expr->used_tables();
sj_nest->sj_on_expr= subq_lex->where;
/*
Create the IN-equalities and inject them into semi-join's ON expression.
Additionally, for InsideOut strategy
- Record the number of IN-equalities.
- Create list of pointers to (oe1, ..., ieN). We'll need the list to
see which of the expressions are bound and which are not (for those
we'll produce a distinct stream of (ie_i1,...ie_ik).
(TODO: can we just create a list of pointers and hope the expressions
will not substitute themselves on fix_fields()? or we need to wrap
them into Item_direct_view_refs and store pointers to those. The
pointers to Item_direct_view_refs are guaranteed to be stable as
Item_direct_view_refs doesn't substitute itself with anything in
Item_direct_view_ref::fix_fields.
*/
sj_nest->sj_in_exprs= subq_pred->left_expr->cols();
sj_nest->nested_join->sj_outer_expr_list.empty();
if (subq_pred->left_expr->cols() == 1)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr);
Item *item_eq= new Item_func_eq(subq_pred->left_expr,
subq_lex->ref_pointer_array[0]);
item_eq->name= (char*)subq_sj_cond_name;
sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
}
else
{
for (uint32_t i= 0; i < subq_pred->left_expr->cols(); i++)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr->
element_index(i));
Item *item_eq=
new Item_func_eq(subq_pred->left_expr->element_index(i),
subq_lex->ref_pointer_array[i]);
item_eq->name= (char*)subq_sj_cond_name + (i % 64);
sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
}
}
/* Fix the created equality and AND */
sj_nest->sj_on_expr->fix_fields(parent_join->session, &sj_nest->sj_on_expr);
/*
Walk through sj nest's WHERE and ON expressions and call
item->fix_table_changes() for all items.
*/
sj_nest->sj_on_expr->fix_after_pullout(parent_lex, &sj_nest->sj_on_expr);
fix_list_after_tbl_changes(parent_lex, &sj_nest->nested_join->join_list);
/* Unlink the child select_lex so it doesn't show up in EXPLAIN: */
subq_lex->master_unit()->exclude_level();
/* Inject sj_on_expr into the parent's WHERE or ON */
if (emb_tbl_nest)
{
emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr,
sj_nest->sj_on_expr);
emb_tbl_nest->on_expr->fix_fields(parent_join->session, &emb_tbl_nest->on_expr);
}
else
{
/* Inject into the WHERE */
parent_join->conds= and_items(parent_join->conds, sj_nest->sj_on_expr);
parent_join->conds->fix_fields(parent_join->session, &parent_join->conds);
parent_join->select_lex->where= parent_join->conds;
}
return(false);
}
/*
Convert candidate subquery predicates to semi-joins
SYNOPSIS
JOIN::flatten_subqueries()
DESCRIPTION
Convert candidate subquery predicates to semi-joins.
RETURN
false OK
true Error
*/
bool JOIN::flatten_subqueries()
{
Item_in_subselect **in_subq;
Item_in_subselect **in_subq_end;
if (sj_subselects.elements() == 0)
return(false);
/* 1. Fix children subqueries */
for (in_subq= sj_subselects.front(), in_subq_end= sj_subselects.back();
in_subq != in_subq_end; in_subq++)
{
JOIN *child_join= (*in_subq)->unit->first_select()->join;
child_join->outer_tables = child_join->tables;
if (child_join->flatten_subqueries())
return(true);
(*in_subq)->sj_convert_priority=
(*in_subq)->is_correlated * MAX_TABLES + child_join->outer_tables;
}
bool outer_join_disable_semi_join= false;
/*
* Temporary measure: disable semi-joins when they are together with outer
* joins.
*
* @see LP Bug #314911
*/
for (TableList *tbl= select_lex->leaf_tables; tbl; tbl=tbl->next_leaf)
{
TableList *embedding= tbl->embedding;
if (tbl->on_expr || (tbl->embedding && !(embedding->sj_on_expr &&
!embedding->embedding)))
{
in_subq= sj_subselects.front();
outer_join_disable_semi_join= true;
}
}
if (! outer_join_disable_semi_join)
{
/*
2. Pick which subqueries to convert:
sort the subquery array
- prefer correlated subqueries over uncorrelated;
- prefer subqueries that have greater number of outer tables;
*/
sj_subselects.sort(subq_sj_candidate_cmp);
// #tables-in-parent-query + #tables-in-subquery < MAX_TABLES
/* Replace all subqueries to be flattened with Item_int(1) */
for (in_subq= sj_subselects.front();
in_subq != in_subq_end &&
tables + ((*in_subq)->sj_convert_priority % MAX_TABLES) < MAX_TABLES;
in_subq++)
{
if (replace_where_subcondition(this, *in_subq, new Item_int(1), false))
return(true);
}
for (in_subq= sj_subselects.front();
in_subq != in_subq_end &&
tables + ((*in_subq)->sj_convert_priority % MAX_TABLES) < MAX_TABLES;
in_subq++)
{
if (convert_subq_to_sj(this, *in_subq))
return(true);
}
}
/* 3. Finalize those we didn't convert */
for (; in_subq!= in_subq_end; in_subq++)
{
JOIN *child_join= (*in_subq)->unit->first_select()->join;
Item_subselect::trans_res res;
(*in_subq)->changed= 0;
(*in_subq)->fixed= 0;
res= (*in_subq)->select_transformer(child_join);
if (res == Item_subselect::RES_ERROR)
return(true);
(*in_subq)->changed= 1;
(*in_subq)->fixed= 1;
Item *substitute= (*in_subq)->substitution;
bool do_fix_fields= !(*in_subq)->substitution->fixed;
if (replace_where_subcondition(this, *in_subq, substitute, do_fix_fields))
return(true);
//if ((*in_subq)->fix_fields(session, (*in_subq)->ref_ptr))
// return(true);
}
sj_subselects.clear();
return(false);
}
/**
Setup for execution all subqueries of a query, for which the optimizer
chose hash semi-join.
@details Iterate over all subqueries of the query, and if they are under an
IN predicate, and the optimizer chose to compute it via hash semi-join:
- try to initialize all data structures needed for the materialized execution
of the IN predicate,
- if this fails, then perform the IN=>EXISTS transformation which was
previously blocked during JOIN::prepare.
This method is part of the "code generation" query processing phase.
This phase must be called after substitute_for_best_equal_field() because
that function may replace items with other items from a multiple equality,
and we need to reference the correct items in the index access method of the
IN predicate.
@return Operation status
@retval false success.
@retval true error occurred.
*/
bool JOIN::setup_subquery_materialization()
{
for (Select_Lex_Unit *un= select_lex->first_inner_unit(); un;
un= un->next_unit())
{
for (Select_Lex *sl= un->first_select(); sl; sl= sl->next_select())
{
Item_subselect *subquery_predicate= sl->master_unit()->item;
if (subquery_predicate &&
subquery_predicate->substype() == Item_subselect::IN_SUBS)
{
Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate;
if (in_subs->exec_method == Item_in_subselect::MATERIALIZATION &&
in_subs->setup_engine())
return true;
}
}
}
return false;
}
/*
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
SYNOPSIS
find_eq_ref_candidate()
table Table to be checked
sj_inner_tables Bitmap of inner tables. eq_ref(inner_table) doesn't
count.
DESCRIPTION
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
TODO
Check again if it is feasible to factor common parts with constant table
search
RETURN
true - There exists an eq_ref(outer-tables) candidate
false - Otherwise
*/
bool find_eq_ref_candidate(Table *table, table_map sj_inner_tables)
{
KEYUSE *keyuse= table->reginfo.join_tab->keyuse;
uint32_t key;
if (keyuse)
{
while (1) /* For each key */
{
key= keyuse->key;
KEY *keyinfo= table->key_info + key;
key_part_map bound_parts= 0;
if ((keyinfo->flags & HA_NOSAME) == HA_NOSAME)
{
do /* For all equalities on all key parts */
{
/* Check if this is "t.keypart = expr(outer_tables) */
if (!(keyuse->used_tables & sj_inner_tables) &&
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
{
bound_parts |= 1 << keyuse->keypart;
}
keyuse++;
} while (keyuse->key == key && keyuse->table == table);
if (bound_parts == PREV_BITS(uint, keyinfo->key_parts))
return true;
if (keyuse->table != table)
return false;
}
else
{
do
{
keyuse++;
if (keyuse->table != table)
return false;
}
while (keyuse->key == key);
}
}
}
return false;
}
/*
Pull tables out of semi-join nests, if possible
SYNOPSIS
pull_out_semijoin_tables()
join The join where to do the semi-join flattening
DESCRIPTION
Try to pull tables out of semi-join nests.
PRECONDITIONS
When this function is called, the join may have several semi-join nests
(possibly within different semi-join nests), but it is guaranteed that
one semi-join nest does not contain another.
ACTION
A table can be pulled out of the semi-join nest if
- It is a constant table
- It is accessed
POSTCONDITIONS
* Pulled out tables have JOIN_TAB::emb_sj_nest == NULL (like the outer
tables)
* Tables that were not pulled out have JOIN_TAB::emb_sj_nest.
* Semi-join nests TableList::sj_inner_tables
This operation is (and should be) performed at each PS execution since
tables may become/cease to be constant across PS reexecutions.
RETURN
0 - OK
1 - Out of memory error
*/
int pull_out_semijoin_tables(JOIN *join)
{
TableList *sj_nest;
List_iterator<TableList> sj_list_it(join->select_lex->sj_nests);
/* Try pulling out of the each of the semi-joins */
while ((sj_nest= sj_list_it++))
{
/* Action #1: Mark the constant tables to be pulled out */
table_map pulled_tables= 0;
List_iterator<TableList> child_li(sj_nest->nested_join->join_list);
TableList *tbl;
while ((tbl= child_li++))
{
if (tbl->table)
{
tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
if (tbl->table->map & join->const_table_map)
{
pulled_tables |= tbl->table->map;
}
}
}
/*
Action #2: Find which tables we can pull out based on
update_ref_and_keys() data. Note that pulling one table out can allow
us to pull out some other tables too.
*/
bool pulled_a_table;
do
{
pulled_a_table= false;
child_li.rewind();
while ((tbl= child_li++))
{
if (tbl->table && !(pulled_tables & tbl->table->map))
{
if (find_eq_ref_candidate(tbl->table,
sj_nest->nested_join->used_tables &
~pulled_tables))
{
pulled_a_table= true;
pulled_tables |= tbl->table->map;
}
}
}
} while (pulled_a_table);
child_li.rewind();
if ((sj_nest)->nested_join->used_tables == pulled_tables)
{
(sj_nest)->sj_inner_tables= 0;
while ((tbl= child_li++))
{
if (tbl->table)
tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
}
}
else
{
/* Record the bitmap of inner tables, mark the inner tables */
table_map inner_tables=(sj_nest)->nested_join->used_tables &
~pulled_tables;
(sj_nest)->sj_inner_tables= inner_tables;
while ((tbl= child_li++))
{
if (tbl->table)
{
if (inner_tables & tbl->table->map)
tbl->table->reginfo.join_tab->emb_sj_nest= (sj_nest);
else
tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
}
}
}
}
return(0);
}
/*****************************************************************************
Create JOIN_TABS, make a guess about the table types,
Approximate how many records will be used in each table
*****************************************************************************/
static ha_rows get_quick_record_count(Session *session, SQL_SELECT *select,
Table *table,
const key_map *keys,ha_rows limit)
{
int error;
if (check_stack_overrun(session, STACK_MIN_SIZE, NULL))
return(0); // Fatal error flag is set
if (select)
{
select->head=table;
table->reginfo.impossible_range=0;
if ((error= select->test_quick_select(session, *(key_map *)keys,(table_map) 0,
limit, 0, false)) == 1)
return(select->quick->records);
if (error == -1)
{
table->reginfo.impossible_range=1;
return(0);
}
}
return(HA_POS_ERROR); /* This shouldn't happend */
}
/*
This structure is used to collect info on potentially sargable
predicates in order to check whether they become sargable after
reading const tables.
We form a bitmap of indexes that can be used for sargable predicates.
Only such indexes are involved in range analysis.
*/
typedef struct st_sargable_param
{
Field *field; /* field against which to check sargability */
Item **arg_value; /* values of potential keys for lookups */
uint32_t num_values; /* number of values in the above array */
} SARGABLE_PARAM;
/**
Calculate the best possible join and initialize the join structure.
@retval
0 ok
@retval
1 Fatal error
*/
static bool
make_join_statistics(JOIN *join, TableList *tables, COND *conds,
DYNAMIC_ARRAY *keyuse_array)
{
int error;
Table *table;
uint32_t i,table_count,const_count,key;
table_map found_const_table_map, all_table_map, found_ref, refs;
key_map const_ref, eq_part;
Table **table_vector;
JOIN_TAB *stat,*stat_end,*s,**stat_ref;
KEYUSE *keyuse,*start_keyuse;
table_map outer_join=0;
SARGABLE_PARAM *sargables= 0;
JOIN_TAB *stat_vector[MAX_TABLES+1];
table_count=join->tables;
stat=(JOIN_TAB*) join->session->calloc(sizeof(JOIN_TAB)*table_count);
stat_ref=(JOIN_TAB**) join->session->alloc(sizeof(JOIN_TAB*)*MAX_TABLES);
table_vector=(Table**) join->session->alloc(sizeof(Table*)*(table_count*2));
if (!stat || !stat_ref || !table_vector)
return(1); // Eom /* purecov: inspected */
join->best_ref=stat_vector;
stat_end=stat+table_count;
found_const_table_map= all_table_map=0;
const_count=0;
for (s= stat, i= 0;
tables;
s++, tables= tables->next_leaf, i++)
{
TableList *embedding= tables->embedding;
stat_vector[i]=s;
s->keys.reset();
s->const_keys.reset();
s->checked_keys.reset();
s->needed_reg.reset();
table_vector[i]=s->table=table=tables->table;
table->pos_in_table_list= tables;
error= table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
if(error)
{
table->file->print_error(error, MYF(0));
return(1);
}
table->quick_keys.reset();
table->reginfo.join_tab=s;
table->reginfo.not_exists_optimize=0;
memset(table->const_key_parts, 0,
sizeof(key_part_map)*table->s->keys);
all_table_map|= table->map;
s->join=join;
s->info=0; // For describe
s->dependent= tables->dep_tables;
s->key_dependent= 0;
if (tables->schema_table)
table->file->stats.records= 2;
table->quick_condition_rows= table->file->stats.records;
s->on_expr_ref= &tables->on_expr;
if (*s->on_expr_ref)
{
/* s is the only inner table of an outer join */
if (!table->file->stats.records && !embedding)
{ // Empty table
s->dependent= 0; // Ignore LEFT JOIN depend.
set_position(join,const_count++,s,(KEYUSE*) 0);
continue;
}
outer_join|= table->map;
s->embedding_map= 0;
for (;embedding; embedding= embedding->embedding)
s->embedding_map|= embedding->nested_join->nj_map;
continue;
}
if (embedding && !(embedding->sj_on_expr && ! embedding->embedding))
{
/* s belongs to a nested join, maybe to several embedded joins */
s->embedding_map= 0;
do
{
nested_join_st *nested_join= embedding->nested_join;
s->embedding_map|=nested_join->nj_map;
s->dependent|= embedding->dep_tables;
embedding= embedding->embedding;
outer_join|= nested_join->used_tables;
}
while (embedding);
continue;
}
if ((table->file->stats.records <= 1) &&
!s->dependent &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) && !join->no_const_tables)
{
set_position(join,const_count++,s,(KEYUSE*) 0);
}
}
stat_vector[i]=0;
join->outer_join=outer_join;
if (join->outer_join)
{
/*
Build transitive closure for relation 'to be dependent on'.
This will speed up the plan search for many cases with outer joins,
as well as allow us to catch illegal cross references/
Warshall's algorithm is used to build the transitive closure.
As we use bitmaps to represent the relation the complexity
of the algorithm is O((number of tables)^2).
*/
for (i= 0, s= stat ; i < table_count ; i++, s++)
{
for (uint32_t j= 0 ; j < table_count ; j++)
{
table= stat[j].table;
if (s->dependent & table->map)
s->dependent |= table->reginfo.join_tab->dependent;
}
if (s->dependent)
s->table->maybe_null= 1;
}
/* Catch illegal cross references for outer joins */
for (i= 0, s= stat ; i < table_count ; i++, s++)
{
if (s->dependent & s->table->map)
{
join->tables=0; // Don't use join->table
my_message(ER_WRONG_OUTER_JOIN, ER(ER_WRONG_OUTER_JOIN), MYF(0));
return(1);
}
s->key_dependent= s->dependent;
}
}
if (conds || outer_join)
if (update_ref_and_keys(join->session, keyuse_array, stat, join->tables,
conds, join->cond_equal,
~outer_join, join->select_lex, &sargables))
return(1);
/* Read tables with 0 or 1 rows (system tables) */
join->const_table_map= 0;
for (POSITION *p_pos=join->positions, *p_end=p_pos+const_count;
p_pos < p_end ;
p_pos++)
{
int tmp;
s= p_pos->table;
s->type=JT_SYSTEM;
join->const_table_map|=s->table->map;
if ((tmp=join_read_const_table(s, p_pos)))
{
if (tmp > 0)
return(1); // Fatal error
}
else
found_const_table_map|= s->table->map;
}
/* loop until no more const tables are found */
int ref_changed;
do
{
more_const_tables_found:
ref_changed = 0;
found_ref=0;
/*
We only have to loop from stat_vector + const_count as
set_position() will move all const_tables first in stat_vector
*/
for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
{
table=s->table;
/*
If equi-join condition by a key is null rejecting and after a
substitution of a const table the key value happens to be null
then we can state that there are no matches for this equi-join.
*/
if ((keyuse= s->keyuse) && *s->on_expr_ref && !s->embedding_map)
{
/*
When performing an outer join operation if there are no matching rows
for the single row of the outer table all the inner tables are to be
null complemented and thus considered as constant tables.
Here we apply this consideration to the case of outer join operations
with a single inner table only because the case with nested tables
would require a more thorough analysis.
TODO. Apply single row substitution to null complemented inner tables
for nested outer join operations.
*/
while (keyuse->table == table)
{
if (!(keyuse->val->used_tables() & ~join->const_table_map) &&
keyuse->val->is_null() && keyuse->null_rejecting)
{
s->type= JT_CONST;
table->mark_as_null_row();
found_const_table_map|= table->map;
join->const_table_map|= table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
goto more_const_tables_found;
}
keyuse++;
}
}
if (s->dependent) // If dependent on some table
{
// All dep. must be constants
if (s->dependent & ~(found_const_table_map))
continue;
if (table->file->stats.records <= 1L &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
!table->pos_in_table_list->embedding)
{ // system table
int tmp= 0;
s->type=JT_SYSTEM;
join->const_table_map|=table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
if ((tmp= join_read_const_table(s, join->positions+const_count-1)))
{
if (tmp > 0)
return(1); // Fatal error
}
else
found_const_table_map|= table->map;
continue;
}
}
/* check if table can be read by key or table only uses const refs */
if ((keyuse=s->keyuse))
{
s->type= JT_REF;
while (keyuse->table == table)
{
start_keyuse=keyuse;
key=keyuse->key;
s->keys.set(key); // QQ: remove this ?
refs=0;
const_ref.reset();
eq_part.reset();
do
{
if (keyuse->val->type() != Item::NULL_ITEM && !keyuse->optimize)
{
if (!((~found_const_table_map) & keyuse->used_tables))
const_ref.set(keyuse->keypart);
else
refs|=keyuse->used_tables;
eq_part.set(keyuse->keypart);
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key);
if (is_keymap_prefix(eq_part, table->key_info[key].key_parts) &&
!table->pos_in_table_list->embedding)
{
if ((table->key_info[key].flags & (HA_NOSAME))
== HA_NOSAME)
{
if (const_ref == eq_part)
{ // Found everything for ref.
int tmp;
ref_changed = 1;
s->type= JT_CONST;
join->const_table_map|= table->map;
set_position(join,const_count++,s,start_keyuse);
if (create_ref_for_key(join, s, start_keyuse,
found_const_table_map))
return(1);
if ((tmp=join_read_const_table(s,
join->positions+const_count-1)))
{
if (tmp > 0)
return(1); // Fatal error
}
else
found_const_table_map|= table->map;
break;
}
else
found_ref|= refs; // Table is const if all refs are const
}
else if (const_ref == eq_part)
s->const_keys.set(key);
}
}
}
}
} while (join->const_table_map & found_ref && ref_changed);
/*
Update info on indexes that can be used for search lookups as
reading const tables may has added new sargable predicates.
*/
if (const_count && sargables)
{
for( ; sargables->field ; sargables++)
{
Field *field= sargables->field;
JOIN_TAB *join_tab= field->table->reginfo.join_tab;
key_map possible_keys= field->key_start;
possible_keys&= field->table->keys_in_use_for_query;
bool is_const= 1;
for (uint32_t j=0; j < sargables->num_values; j++)
is_const&= sargables->arg_value[j]->const_item();
if (is_const)
join_tab[0].const_keys|= possible_keys;
}
}
if (pull_out_semijoin_tables(join))
return(true);
/* Calc how many (possible) matched records in each table */
for (s=stat ; s < stat_end ; s++)
{
if (s->type == JT_SYSTEM || s->type == JT_CONST)
{
/* Only one matching row */
s->found_records=s->records=s->read_time=1; s->worst_seeks=1.0;
continue;
}
/* Approximate found rows and time to read them */
s->found_records=s->records=s->table->file->stats.records;
s->read_time=(ha_rows) s->table->file->scan_time();
/*
Set a max range of how many seeks we can expect when using keys
This is can't be to high as otherwise we are likely to use
table scan.
*/
s->worst_seeks= cmin((double) s->found_records / 10,
(double) s->read_time*3);
if (s->worst_seeks < 2.0) // Fix for small tables
s->worst_seeks=2.0;
/*
Add to stat->const_keys those indexes for which all group fields or
all select distinct fields participate in one index.
*/
add_group_and_distinct_keys(join, s);
if (s->const_keys.any() &&
!s->table->pos_in_table_list->embedding)
{
ha_rows records;
SQL_SELECT *select;
select= make_select(s->table, found_const_table_map,
found_const_table_map,
*s->on_expr_ref ? *s->on_expr_ref : conds,
1, &error);
if (!select)
return(1);
records= get_quick_record_count(join->session, select, s->table,
&s->const_keys, join->row_limit);
s->quick=select->quick;
s->needed_reg=select->needed_reg;
select->quick=0;
if (records == 0 && s->table->reginfo.impossible_range)
{
/*
Impossible WHERE or ON expression
In case of ON, we mark that the we match one empty NULL row.
In case of WHERE, don't set found_const_table_map to get the
caller to abort with a zero row result.
*/
join->const_table_map|= s->table->map;
set_position(join,const_count++,s,(KEYUSE*) 0);
s->type= JT_CONST;
if (*s->on_expr_ref)
{
/* Generate empty row */
s->info= "Impossible ON condition";
found_const_table_map|= s->table->map;
s->type= JT_CONST;
s->table->mark_as_null_row(); // All fields are NULL
}
}
if (records != HA_POS_ERROR)
{
s->found_records=records;
s->read_time= (ha_rows) (s->quick ? s->quick->read_time : 0.0);
}
delete select;
}
}
join->join_tab=stat;
join->map2table=stat_ref;
join->table= join->all_tables=table_vector;
join->const_tables=const_count;
join->found_const_table_map=found_const_table_map;
/* Find an optimal join order of the non-constant tables. */
if (join->const_tables != join->tables)
{
optimize_keyuse(join, keyuse_array);
if (choose_plan(join, all_table_map & ~join->const_table_map))
return(true);
}
else
{
memcpy(join->best_positions, join->positions,
sizeof(POSITION)*join->const_tables);
join->best_read=1.0;
}
/* Generate an execution plan from the found optimal join order. */
return(join->session->killed || get_best_combination(join));
}
/*****************************************************************************
Check with keys are used and with tables references with tables
Updates in stat:
keys Bitmap of all used keys
const_keys Bitmap of all keys with may be used with quick_select
keyuse Pointer to possible keys
*****************************************************************************/
/// Used when finding key fields
typedef struct key_field_t {
Field *field;
Item *val; ///< May be empty if diff constant
uint level;
uint optimize; // KEY_OPTIMIZE_*
bool eq_func;
/**
If true, the condition this struct represents will not be satisfied
when val IS NULL.
*/
bool null_rejecting;
bool *cond_guard; /* See KEYUSE::cond_guard */
uint32_t sj_pred_no; /* See KEYUSE::sj_pred_no */
} KEY_FIELD;
/**
Merge new key definitions to old ones, remove those not used in both.
This is called for OR between different levels.
To be able to do 'ref_or_null' we merge a comparison of a column
and 'column IS NULL' to one test. This is useful for sub select queries
that are internally transformed to something like:.
@code
SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL
@endcode
KEY_FIELD::null_rejecting is processed as follows: @n
result has null_rejecting=true if it is set for both ORed references.
for example:
- (t2.key = t1.field OR t2.key = t1.field) -> null_rejecting=true
- (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false
@todo
The result of this is that we're missing some 'ref' accesses.
OptimizerTeam: Fix this
*/
static KEY_FIELD *
merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
uint32_t and_level)
{
if (start == new_fields)
return start; // Impossible or
if (new_fields == end)
return start; // No new fields, skip all
KEY_FIELD *first_free=new_fields;
/* Mark all found fields in old array */
for (; new_fields != end ; new_fields++)
{
for (KEY_FIELD *old=start ; old != first_free ; old++)
{
if (old->field == new_fields->field)
{
/*
NOTE: below const_item() call really works as "!used_tables()", i.e.
it can return false where it is feasible to make it return true.
The cause is as follows: Some of the tables are already known to be
const tables (the detection code is in make_join_statistics(),
above the update_ref_and_keys() call), but we didn't propagate
information about this: Table::const_table is not set to true, and
Item::update_used_tables() hasn't been called for each item.
The result of this is that we're missing some 'ref' accesses.
TODO: OptimizerTeam: Fix this
*/
if (!new_fields->val->const_item())
{
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->val->eq(new_fields->val, old->field->binary()))
{
old->level= and_level;
old->optimize= ((old->optimize & new_fields->optimize &
KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting= (old->null_rejecting &&
new_fields->null_rejecting);
}
}
else if (old->eq_func && new_fields->eq_func &&
old->val->eq_by_collation(new_fields->val,
old->field->binary(),
old->field->charset()))
{
old->level= and_level;
old->optimize= ((old->optimize & new_fields->optimize &
KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting= (old->null_rejecting &&
new_fields->null_rejecting);
}
else if (old->eq_func && new_fields->eq_func &&
((old->val->const_item() && old->val->is_null()) ||
new_fields->val->is_null()))
{
/* field = expression OR field IS NULL */
old->level= and_level;
old->optimize= KEY_OPTIMIZE_REF_OR_NULL;
/*
Remember the NOT NULL value unless the value does not depend
on other tables.
*/
if (!old->val->used_tables() && old->val->is_null())
old->val= new_fields->val;
/* The referred expression can be NULL: */
old->null_rejecting= 0;
}
else
{
/*
We are comparing two different const. In this case we can't
use a key-lookup on this so it's better to remove the value
and let the range optimzier handle it
*/
if (old == --first_free) // If last item
break;
*old= *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/* Remove all not used items */
for (KEY_FIELD *old=start ; old != first_free ;)
{
if (old->level != and_level)
{ // Not used in all levels
if (old == --first_free)
break;
*old= *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/**
Add a possible key to array of possible keys if it's usable as a key
@param key_fields Pointer to add key, if usable
@param and_level And level, to be stored in KEY_FIELD
@param cond Condition predicate
@param field Field used in comparision
@param eq_func True if we used =, <=> or IS NULL
@param value Value used for comparison with field
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates
@note
If we are doing a NOT NULL comparison on a NOT NULL field in a outer join
table, we store this to be able to do not exists optimization later.
@returns
*key_fields is incremented if we stored a key in the array
*/
static void
add_key_field(KEY_FIELD **key_fields,uint32_t and_level, Item_func *cond,
Field *field, bool eq_func, Item **value, uint32_t num_values,
table_map usable_tables, SARGABLE_PARAM **sargables)
{
uint32_t exists_optimize= 0;
if (!(field->flags & PART_KEY_FLAG))
{
// Don't remove column IS NULL on a LEFT JOIN table
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
!field->table->maybe_null || field->null_ptr)
return; // Not a key. Skip it
exists_optimize= KEY_OPTIMIZE_EXISTS;
assert(num_values == 1);
}
else
{
table_map used_tables=0;
bool optimizable=0;
for (uint32_t i=0; i<num_values; i++)
{
used_tables|=(value[i])->used_tables();
if (!((value[i])->used_tables() & (field->table->map | RAND_TABLE_BIT)))
optimizable=1;
}
if (!optimizable)
return;
if (!(usable_tables & field->table->map))
{
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
!field->table->maybe_null || field->null_ptr)
return; // Can't use left join optimize
exists_optimize= KEY_OPTIMIZE_EXISTS;
}
else
{
JOIN_TAB *stat=field->table->reginfo.join_tab;
key_map possible_keys= field->key_start;
possible_keys&= field->table->keys_in_use_for_query;
stat[0].keys|= possible_keys; // Add possible keys
/*
Save the following cases:
Field op constant
Field LIKE constant where constant doesn't start with a wildcard
Field = field2 where field2 is in a different table
Field op formula
Field IS NULL
Field IS NOT NULL
Field BETWEEN ...
Field IN ...
*/
stat[0].key_dependent|= used_tables;
bool is_const=1;
for (uint32_t i=0; i<num_values; i++)
{
if (!(is_const&= value[i]->const_item()))
break;
}
if (is_const)
stat[0].const_keys|= possible_keys;
else if (!eq_func)
{
/*
Save info to be able check whether this predicate can be
considered as sargable for range analisis after reading const tables.
We do not save info about equalities as update_const_equal_items
will take care of updating info on keys from sargable equalities.
*/
(*sargables)--;
(*sargables)->field= field;
(*sargables)->arg_value= value;
(*sargables)->num_values= num_values;
}
/*
We can't always use indexes when comparing a string index to a
number. cmp_type() is checked to allow compare of dates to numbers.
eq_func is NEVER true when num_values > 1
*/
if (!eq_func)
{
/*
Additional optimization: if we're processing
"t.key BETWEEN c1 AND c1" then proceed as if we were processing
"t.key = c1".
TODO: This is a very limited fix. A more generic fix is possible.
There are 2 options:
A) Make equality propagation code be able to handle BETWEEN
(including cases like t1.key BETWEEN t2.key AND t3.key)
B) Make range optimizer to infer additional "t.key = c" equalities
and use them in equality propagation process (see details in
OptimizerKBAndTodo)
*/
if ((cond->functype() != Item_func::BETWEEN) ||
((Item_func_between*) cond)->negated ||
!value[0]->eq(value[1], field->binary()))
return;
eq_func= true;
}
if (field->result_type() == STRING_RESULT)
{
if ((*value)->result_type() != STRING_RESULT)
{
if (field->cmp_type() != (*value)->result_type())
return;
}
else
{
/*
We can't use indexes if the effective collation
of the operation differ from the field collation.
*/
if (field->cmp_type() == STRING_RESULT &&
((Field_str*)field)->charset() != cond->compare_collation())
return;
}
}
}
}
/*
For the moment eq_func is always true. This slot is reserved for future
extensions where we want to remembers other things than just eq comparisons
*/
assert(eq_func);
/* Store possible eq field */
(*key_fields)->field= field;
(*key_fields)->eq_func= eq_func;
(*key_fields)->val= *value;
(*key_fields)->level= and_level;
(*key_fields)->optimize= exists_optimize;
/*
If the condition has form "tbl.keypart = othertbl.field" and
othertbl.field can be NULL, there will be no matches if othertbl.field
has NULL value.
We use null_rejecting in add_not_null_conds() to add
'othertbl.field IS NOT NULL' to tab->select_cond.
*/
(*key_fields)->null_rejecting= ((cond->functype() == Item_func::EQ_FUNC ||
cond->functype() == Item_func::MULT_EQUAL_FUNC) &&
((*value)->type() == Item::FIELD_ITEM) &&
((Item_field*)*value)->field->maybe_null());
(*key_fields)->cond_guard= NULL;
(*key_fields)->sj_pred_no= (cond->name >= subq_sj_cond_name &&
cond->name < subq_sj_cond_name + 64)?
cond->name - subq_sj_cond_name: UINT_MAX;
(*key_fields)++;
}
/**
Add possible keys to array of possible keys originated from a simple
predicate.
@param key_fields Pointer to add key, if usable
@param and_level And level, to be stored in KEY_FIELD
@param cond Condition predicate
@param field Field used in comparision
@param eq_func True if we used =, <=> or IS NULL
@param value Value used for comparison with field
Is NULL for BETWEEN and IN
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates
@note
If field items f1 and f2 belong to the same multiple equality and
a key is added for f1, the the same key is added for f2.
@returns
*key_fields is incremented if we stored a key in the array
*/
static void
add_key_equal_fields(KEY_FIELD **key_fields, uint32_t and_level,
Item_func *cond, Item_field *field_item,
bool eq_func, Item **val,
uint32_t num_values, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
Field *field= field_item->field;
add_key_field(key_fields, and_level, cond, field,
eq_func, val, num_values, usable_tables, sargables);
Item_equal *item_equal= field_item->item_equal;
if (item_equal)
{
/*
Add to the set of possible key values every substitution of
the field for an equal field included into item_equal
*/
Item_equal_iterator it(*item_equal);
Item_field *item;
while ((item= it++))
{
if (!field->eq(item->field))
{
add_key_field(key_fields, and_level, cond, item->field,
eq_func, val, num_values, usable_tables,
sargables);
}
}
}
}
static void
add_key_fields(JOIN *join, KEY_FIELD **key_fields, uint32_t *and_level,
COND *cond, table_map usable_tables,
SARGABLE_PARAM **sargables)
{
if (cond->type() == Item_func::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
KEY_FIELD *org_key_fields= *key_fields;
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item *item;
while ((item=li++))
add_key_fields(join, key_fields, and_level, item, usable_tables,
sargables);
for (; org_key_fields != *key_fields ; org_key_fields++)
org_key_fields->level= *and_level;
}
else
{
(*and_level)++;
add_key_fields(join, key_fields, and_level, li++, usable_tables,
sargables);
Item *item;
while ((item=li++))
{
KEY_FIELD *start_key_fields= *key_fields;
(*and_level)++;
add_key_fields(join, key_fields, and_level, item, usable_tables,
sargables);
*key_fields=merge_key_fields(org_key_fields,start_key_fields,
*key_fields,++(*and_level));
}
}
return;
}
/*
Subquery optimization: Conditions that are pushed down into subqueries
are wrapped into Item_func_trig_cond. We process the wrapped condition
but need to set cond_guard for KEYUSE elements generated from it.
*/
{
if (cond->type() == Item::FUNC_ITEM &&
((Item_func*)cond)->functype() == Item_func::TRIG_COND_FUNC)
{
Item *cond_arg= ((Item_func*)cond)->arguments()[0];
if (!join->group_list && !join->order &&
join->unit->item &&
join->unit->item->substype() == Item_subselect::IN_SUBS &&
!join->unit->is_union())
{
KEY_FIELD *save= *key_fields;
add_key_fields(join, key_fields, and_level, cond_arg, usable_tables,
sargables);
// Indicate that this ref access candidate is for subquery lookup:
for (; save != *key_fields; save++)
save->cond_guard= ((Item_func_trig_cond*)cond)->get_trig_var();
}
return;
}
}
/* If item is of type 'field op field/constant' add it to key_fields */
if (cond->type() != Item::FUNC_ITEM)
return;
Item_func *cond_func= (Item_func*) cond;
switch (cond_func->select_optimize()) {
case Item_func::OPTIMIZE_NONE:
break;
case Item_func::OPTIMIZE_KEY:
{
Item **values;
// BETWEEN, IN, NE
if (cond_func->key_item()->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->used_tables() & OUTER_REF_TABLE_BIT))
{
values= cond_func->arguments()+1;
if (cond_func->functype() == Item_func::NE_FUNC &&
cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->arguments()[0]->used_tables() & OUTER_REF_TABLE_BIT))
values--;
assert(cond_func->functype() != Item_func::IN_FUNC ||
cond_func->argument_count() != 2);
add_key_equal_fields(key_fields, *and_level, cond_func,
(Item_field*) (cond_func->key_item()->real_item()),
0, values,
cond_func->argument_count()-1,
usable_tables, sargables);
}
if (cond_func->functype() == Item_func::BETWEEN)
{
values= cond_func->arguments();
for (uint32_t i= 1 ; i < cond_func->argument_count() ; i++)
{
Item_field *field_item;
if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM
&&
!(cond_func->arguments()[i]->used_tables() & OUTER_REF_TABLE_BIT))
{
field_item= (Item_field *) (cond_func->arguments()[i]->real_item());
add_key_equal_fields(key_fields, *and_level, cond_func,
field_item, 0, values, 1, usable_tables,
sargables);
}
}
}
break;
}
case Item_func::OPTIMIZE_OP:
{
bool equal_func=(cond_func->functype() == Item_func::EQ_FUNC ||
cond_func->functype() == Item_func::EQUAL_FUNC);
if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->arguments()[0]->used_tables() & OUTER_REF_TABLE_BIT))
{
add_key_equal_fields(key_fields, *and_level, cond_func,
(Item_field*) (cond_func->arguments()[0])->real_item(),
equal_func,
cond_func->arguments()+1, 1, usable_tables,
sargables);
}
if (cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM &&
cond_func->functype() != Item_func::LIKE_FUNC &&
!(cond_func->arguments()[1]->used_tables() & OUTER_REF_TABLE_BIT))
{
add_key_equal_fields(key_fields, *and_level, cond_func,
(Item_field*) (cond_func->arguments()[1])->real_item(),
equal_func,
cond_func->arguments(),1,usable_tables,
sargables);
}
break;
}
case Item_func::OPTIMIZE_NULL:
/* column_name IS [NOT] NULL */
if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->used_tables() & OUTER_REF_TABLE_BIT))
{
Item *tmp=new Item_null;
if (unlikely(!tmp)) // Should never be true
return;
add_key_equal_fields(key_fields, *and_level, cond_func,
(Item_field*) (cond_func->arguments()[0])->real_item(),
cond_func->functype() == Item_func::ISNULL_FUNC,
&tmp, 1, usable_tables, sargables);
}
break;
case Item_func::OPTIMIZE_EQUAL:
Item_equal *item_equal= (Item_equal *) cond;
Item *const_item= item_equal->get_const();
Item_equal_iterator it(*item_equal);
Item_field *item;
if (const_item)
{
/*
For each field field1 from item_equal consider the equality
field1=const_item as a condition allowing an index access of the table
with field1 by the keys value of field1.
*/
while ((item= it++))
{
add_key_field(key_fields, *and_level, cond_func, item->field,
true, &const_item, 1, usable_tables, sargables);
}
}
else
{
/*
Consider all pairs of different fields included into item_equal.
For each of them (field1, field1) consider the equality
field1=field2 as a condition allowing an index access of the table
with field1 by the keys value of field2.
*/
Item_equal_iterator fi(*item_equal);
while ((item= fi++))
{
Field *field= item->field;
while ((item= it++))
{
if (!field->eq(item->field))
{
add_key_field(key_fields, *and_level, cond_func, field,
true, (Item **) &item, 1, usable_tables,
sargables);
}
}
it.rewind();
}
}
break;
}
}
/**
Add all keys with uses 'field' for some keypart.
If field->and_level != and_level then only mark key_part as const_part.
*/
static uint
max_part_bit(key_part_map bits)
{
uint32_t found;
for (found=0; bits & 1 ; found++,bits>>=1) ;
return found;
}
static void
add_key_part(DYNAMIC_ARRAY *keyuse_array,KEY_FIELD *key_field)
{
Field *field=key_field->field;
Table *form= field->table;
KEYUSE keyuse;
if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS))
{
for (uint32_t key= 0 ; key < form->sizeKeys() ; key++)
{
if (!(form->keys_in_use_for_query.test(key)))
continue;
uint32_t key_parts= (uint32_t) form->key_info[key].key_parts;
for (uint32_t part=0 ; part < key_parts ; part++)
{
if (field->eq(form->key_info[key].key_part[part].field))
{
keyuse.table= field->table;
keyuse.val = key_field->val;
keyuse.key = key;
keyuse.keypart=part;
keyuse.keypart_map= (key_part_map) 1 << part;
keyuse.used_tables=key_field->val->used_tables();
keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL;
keyuse.null_rejecting= key_field->null_rejecting;
keyuse.cond_guard= key_field->cond_guard;
keyuse.sj_pred_no= key_field->sj_pred_no;
insert_dynamic(keyuse_array,(unsigned char*) &keyuse);
}
}
}
}
}
static int
sort_keyuse(KEYUSE *a,KEYUSE *b)
{
int res;
if (a->table->tablenr != b->table->tablenr)
return (int) (a->table->tablenr - b->table->tablenr);
if (a->key != b->key)
return (int) (a->key - b->key);
if (a->keypart != b->keypart)
return (int) (a->keypart - b->keypart);
// Place const values before other ones
if ((res= test((a->used_tables & ~OUTER_REF_TABLE_BIT)) -
test((b->used_tables & ~OUTER_REF_TABLE_BIT))))
return res;
/* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
return (int) ((a->optimize & KEY_OPTIMIZE_REF_OR_NULL) -
(b->optimize & KEY_OPTIMIZE_REF_OR_NULL));
}
/*
Add to KEY_FIELD array all 'ref' access candidates within nested join.
This function populates KEY_FIELD array with entries generated from the
ON condition of the given nested join, and does the same for nested joins
contained within this nested join.
@param[in] nested_join_table Nested join pseudo-table to process
@param[in,out] end End of the key field array
@param[in,out] and_level And-level
@param[in,out] sargables Array of found sargable candidates
@note
We can add accesses to the tables that are direct children of this nested
join (1), and are not inner tables w.r.t their neighbours (2).
Example for #1 (outer brackets pair denotes nested join this function is
invoked for):
@code
... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond
@endcode
Example for #2:
@code
... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond
@endcode
In examples 1-2 for condition cond, we can add 'ref' access candidates to
t1 only.
Example #3:
@code
... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond
@endcode
Here we can add 'ref' access candidates for t1 and t2, but not for t3.
*/
static void add_key_fields_for_nj(JOIN *join, TableList *nested_join_table,
KEY_FIELD **end, uint32_t *and_level,
SARGABLE_PARAM **sargables)
{
List_iterator<TableList> li(nested_join_table->nested_join->join_list);
List_iterator<TableList> li2(nested_join_table->nested_join->join_list);
bool have_another = false;
table_map tables= 0;
TableList *table;
assert(nested_join_table->nested_join);
while ((table= li++) || (have_another && (li=li2, have_another=false,
(table= li++))))
{
if (table->nested_join)
{
if (!table->on_expr)
{
/* It's a semi-join nest. Walk into it as if it wasn't a nest */
have_another= true;
li2= li;
li= List_iterator<TableList>(table->nested_join->join_list);
}
else
add_key_fields_for_nj(join, table, end, and_level, sargables);
}
else
if (!table->on_expr)
tables |= table->table->map;
}
if (nested_join_table->on_expr)
add_key_fields(join, end, and_level, nested_join_table->on_expr, tables,
sargables);
}
/**
Update keyuse array with all possible keys we can use to fetch rows.
@param session
@param[out] keyuse Put here ordered array of KEYUSE structures
@param join_tab Array in tablenr_order
@param tables Number of tables in join
@param cond WHERE condition (note that the function analyzes
join_tab[i]->on_expr too)
@param normal_tables Tables not inner w.r.t some outer join (ones
for which we can make ref access based the WHERE
clause)
@param select_lex current SELECT
@param[out] sargables Array of found sargable candidates
@retval
0 OK
@retval
1 Out of memory.
*/
static bool
update_ref_and_keys(Session *session, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
uint32_t tables, COND *cond, COND_EQUAL *,
table_map normal_tables, Select_Lex *select_lex,
SARGABLE_PARAM **sargables)
{
uint and_level,i,found_eq_constant;
KEY_FIELD *key_fields, *end, *field;
uint32_t sz;
uint32_t m= cmax(select_lex->max_equal_elems,(uint32_t)1);
/*
We use the same piece of memory to store both KEY_FIELD
and SARGABLE_PARAM structure.
KEY_FIELD values are placed at the beginning this memory
while SARGABLE_PARAM values are put at the end.
All predicates that are used to fill arrays of KEY_FIELD
and SARGABLE_PARAM structures have at most 2 arguments
except BETWEEN predicates that have 3 arguments and
IN predicates.
This any predicate if it's not BETWEEN/IN can be used
directly to fill at most 2 array elements, either of KEY_FIELD
or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements
can be filled as this predicate is considered as
saragable with respect to each of its argument.
An IN predicate can require at most 1 element as currently
it is considered as sargable only for its first argument.
Multiple equality can add elements that are filled after
substitution of field arguments by equal fields. There
can be not more than select_lex->max_equal_elems such
substitutions.
*/
sz= cmax(sizeof(KEY_FIELD),sizeof(SARGABLE_PARAM))*
(((session->lex->current_select->cond_count+1)*2 +
session->lex->current_select->between_count)*m+1);
if (!(key_fields=(KEY_FIELD*) session->alloc(sz)))
return true; /* purecov: inspected */
and_level= 0;
field= end= key_fields;
*sargables= (SARGABLE_PARAM *) key_fields +
(sz - sizeof((*sargables)[0].field))/sizeof(SARGABLE_PARAM);
/* set a barrier for the array of SARGABLE_PARAM */
(*sargables)[0].field= 0;
if (my_init_dynamic_array(keyuse,sizeof(KEYUSE),20,64))
return true;
if (cond)
{
add_key_fields(join_tab->join, &end, &and_level, cond, normal_tables,
sargables);
for (; field != end ; field++)
{
add_key_part(keyuse,field);
/* Mark that we can optimize LEFT JOIN */
if (field->val->type() == Item::NULL_ITEM &&
!field->field->real_maybe_null())
field->field->table->reginfo.not_exists_optimize=1;
}
}
for (i=0 ; i < tables ; i++)
{
/*
Block the creation of keys for inner tables of outer joins.
Here only the outer joins that can not be converted to
inner joins are left and all nests that can be eliminated
are flattened.
In the future when we introduce conditional accesses
for inner tables in outer joins these keys will be taken
into account as well.
*/
if (*join_tab[i].on_expr_ref)
add_key_fields(join_tab->join, &end, &and_level,
*join_tab[i].on_expr_ref,
join_tab[i].table->map, sargables);
}
/* Process ON conditions for the nested joins */
{
List_iterator<TableList> li(*join_tab->join->join_list);
TableList *table;
while ((table= li++))
{
if (table->nested_join)
add_key_fields_for_nj(join_tab->join, table, &end, &and_level,
sargables);
}
}
/* fill keyuse with found key parts */
for ( ; field != end ; field++)
add_key_part(keyuse,field);
/*
Sort the array of possible keys and remove the following key parts:
- ref if there is a keypart which is a ref and a const.
(e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
then we skip the key part corresponding to b=t2.d)
- keyparts without previous keyparts
(e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
used in the query, we drop the partial key parts from consideration).
*/
if (keyuse->elements)
{
KEYUSE key_end,*prev,*save_pos,*use;
my_qsort(keyuse->buffer,keyuse->elements,sizeof(KEYUSE),
(qsort_cmp) sort_keyuse);
memset(&key_end, 0, sizeof(key_end)); /* Add for easy testing */
insert_dynamic(keyuse,(unsigned char*) &key_end);
use=save_pos=dynamic_element(keyuse,0,KEYUSE*);
prev= &key_end;
found_eq_constant=0;
for (i=0 ; i < keyuse->elements-1 ; i++,use++)
{
if (!use->used_tables && use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
use->table->const_key_parts[use->key]|= use->keypart_map;
{
if (use->key == prev->key && use->table == prev->table)
{
if (prev->keypart+1 < use->keypart || ((prev->keypart == use->keypart) && found_eq_constant))
continue; /* remove */
}
else if (use->keypart != 0) // First found must be 0
continue;
}
#ifdef HAVE_purify
/* Valgrind complains about overlapped memcpy when save_pos==use. */
if (save_pos != use)
#endif
*save_pos= *use;
prev=use;
found_eq_constant= !use->used_tables;
/* Save ptr to first use */
if (!use->table->reginfo.join_tab->keyuse)
use->table->reginfo.join_tab->keyuse=save_pos;
use->table->reginfo.join_tab->checked_keys.set(use->key);
save_pos++;
}
i=(uint32_t) (save_pos-(KEYUSE*) keyuse->buffer);
set_dynamic(keyuse,(unsigned char*) &key_end,i);
keyuse->elements=i;
}
return false;
}
/**
Update some values in keyuse for faster choose_plan() loop.
*/
static void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array)
{
KEYUSE *end,*keyuse= dynamic_element(keyuse_array, 0, KEYUSE*);
for (end= keyuse+ keyuse_array->elements ; keyuse < end ; keyuse++)
{
table_map map;
/*
If we find a ref, assume this table matches a proportional
part of this table.
For example 100 records matching a table with 5000 records
gives 5000/100 = 50 records per key
Constant tables are ignored.
To avoid bad matches, we don't make ref_table_rows less than 100.
*/
keyuse->ref_table_rows= ~(ha_rows) 0; // If no ref
if (keyuse->used_tables &
(map= (keyuse->used_tables & ~join->const_table_map &
~OUTER_REF_TABLE_BIT)))
{
uint32_t tablenr;
for (tablenr=0 ; ! (map & 1) ; map>>=1, tablenr++) ;
if (map == 1) // Only one table
{
Table *tmp_table=join->all_tables[tablenr];
keyuse->ref_table_rows= cmax(tmp_table->file->stats.records, (ha_rows)100);
}
}
/*
Outer reference (external field) is constant for single executing
of subquery
*/
if (keyuse->used_tables == OUTER_REF_TABLE_BIT)
keyuse->ref_table_rows= 1;
}
}
/**
Discover the indexes that can be used for GROUP BY or DISTINCT queries.
If the query has a GROUP BY clause, find all indexes that contain all
GROUP BY fields, and add those indexes to join->const_keys.
If the query has a DISTINCT clause, find all indexes that contain all
SELECT fields, and add those indexes to join->const_keys.
This allows later on such queries to be processed by a
QUICK_GROUP_MIN_MAX_SELECT.
@param join
@param join_tab
@return
None
*/
static void
add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab)
{
List<Item_field> indexed_fields;
List_iterator<Item_field> indexed_fields_it(indexed_fields);
order_st *cur_group;
Item_field *cur_item;
key_map possible_keys(0);
if (join->group_list)
{ /* Collect all query fields referenced in the GROUP clause. */
for (cur_group= join->group_list; cur_group; cur_group= cur_group->next)
(*cur_group->item)->walk(&Item::collect_item_field_processor, 0,
(unsigned char*) &indexed_fields);
}
else if (join->select_distinct)
{ /* Collect all query fields referenced in the SELECT clause. */
List<Item> &select_items= join->fields_list;
List_iterator<Item> select_items_it(select_items);
Item *item;
while ((item= select_items_it++))
item->walk(&Item::collect_item_field_processor, 0,
(unsigned char*) &indexed_fields);
}
else
return;
if (indexed_fields.elements == 0)
return;
/* Intersect the keys of all group fields. */
cur_item= indexed_fields_it++;
possible_keys|= cur_item->field->part_of_key;
while ((cur_item= indexed_fields_it++))
{
possible_keys&= cur_item->field->part_of_key;
}
if (possible_keys.any())
join_tab->const_keys|= possible_keys;
}
/*****************************************************************************
Go through all combinations of not marked tables and find the one
which uses least records
*****************************************************************************/
/** Save const tables first as used tables. */
static void
set_position(JOIN *join,uint32_t idx,JOIN_TAB *table,KEYUSE *key)
{
join->positions[idx].table= table;
join->positions[idx].key=key;
join->positions[idx].records_read=1.0; /* This is a const table */
join->positions[idx].ref_depend_map= 0;
/* Move the const table as down as possible in best_ref */
JOIN_TAB **pos=join->best_ref+idx+1;
JOIN_TAB *next=join->best_ref[idx];
for (;next != table ; pos++)
{
JOIN_TAB *tmp=pos[0];
pos[0]=next;
next=tmp;
}
join->best_ref[idx]=table;
}
/*
Given a semi-join nest, find out which of the IN-equalities are bound
SYNOPSIS
get_bound_sj_equalities()
sj_nest Semi-join nest
remaining_tables Tables that are not yet bound
DESCRIPTION
Given a semi-join nest, find out which of the IN-equalities have their
left part expression bound (i.e. the said expression doesn't refer to
any of remaining_tables and can be evaluated).
RETURN
Bitmap of bound IN-equalities.
*/
uint64_t get_bound_sj_equalities(TableList *sj_nest,
table_map remaining_tables)
{
List_iterator<Item> li(sj_nest->nested_join->sj_outer_expr_list);
Item *item;
uint32_t i= 0;
uint64_t res= 0;
while ((item= li++))
{
/*
Q: should this take into account equality propagation and how?
A: If e->outer_side is an Item_field, walk over the equality
class and see if there is an element that is bound?
(this is an optional feature)
*/
if (!(item->used_tables() & remaining_tables))
{
res |= 1UL < i;
}
}
return res;
}
/**
Find the best access path for an extension of a partial execution
plan and add this path to the plan.
The function finds the best access path to table 's' from the passed
partial plan where an access path is the general term for any means to
access the data in 's'. An access path may use either an index or a scan,
whichever is cheaper. The input partial plan is passed via the array
'join->positions' of length 'idx'. The chosen access method for 's' and its
cost are stored in 'join->positions[idx]'.
@param join pointer to the structure providing all context info
for the query
@param s the table to be joined by the function
@param session thread for the connection that submitted the query
@param remaining_tables set of tables not included into the partial plan yet
@param idx the length of the partial plan
@param record_count estimate for the number of records returned by the
partial plan
@param read_time the cost of the partial plan
@return
None
*/
static void
best_access_path(JOIN *join,
JOIN_TAB *s,
Session *session,
table_map remaining_tables,
uint32_t idx,
double record_count,
double)
{
KEYUSE *best_key= 0;
uint32_t best_max_key_part= 0;
bool found_constraint= 0;
double best= DBL_MAX;
double best_time= DBL_MAX;
double records= DBL_MAX;
table_map best_ref_depends_map= 0;
double tmp;
ha_rows rec;
uint32_t best_is_sj_inside_out= 0;
if (s->keyuse)
{ /* Use key if possible */
Table *table= s->table;
KEYUSE *keyuse,*start_key=0;
double best_records= DBL_MAX;
uint32_t max_key_part=0;
uint64_t bound_sj_equalities= 0;
bool try_sj_inside_out= false;
/*
Discover the bound equalites. We need to do this, if
1. The next table is an SJ-inner table, and
2. It is the first table from that semijoin, and
3. We're not within a semi-join range (i.e. all semi-joins either have
all or none of their tables in join_table_map), except
s->emb_sj_nest (which we've just entered).
3. All correlation references from this sj-nest are bound
*/
if (s->emb_sj_nest && // (1)
s->emb_sj_nest->sj_in_exprs < 64 &&
((remaining_tables & s->emb_sj_nest->sj_inner_tables) == // (2)
s->emb_sj_nest->sj_inner_tables) && // (2)
join->cur_emb_sj_nests == s->emb_sj_nest->sj_inner_tables && // (3)
!(remaining_tables & s->emb_sj_nest->nested_join->sj_corr_tables)) // (4)
{
/* This table is an InsideOut scan candidate */
bound_sj_equalities= get_bound_sj_equalities(s->emb_sj_nest,
remaining_tables);
try_sj_inside_out= true;
}
/* Test how we can use keys */
rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE; // Assumed records/key
for (keyuse=s->keyuse ; keyuse->table == table ;)
{
key_part_map found_part= 0;
table_map found_ref= 0;
uint32_t key= keyuse->key;
KEY *keyinfo= table->key_info+key;
/* Bitmap of keyparts where the ref access is over 'keypart=const': */
key_part_map const_part= 0;
/* The or-null keypart in ref-or-null access: */
key_part_map ref_or_null_part= 0;
/* Calculate how many key segments of the current key we can use */
start_key= keyuse;
uint64_t handled_sj_equalities=0;
key_part_map sj_insideout_map= 0;
do /* For each keypart */
{
uint32_t keypart= keyuse->keypart;
table_map best_part_found_ref= 0;
double best_prev_record_reads= DBL_MAX;
do /* For each way to access the keypart */
{
/*
if 1. expression doesn't refer to forward tables
2. we won't get two ref-or-null's
*/
if (!(remaining_tables & keyuse->used_tables) &&
!(ref_or_null_part && (keyuse->optimize &
KEY_OPTIMIZE_REF_OR_NULL)))
{
found_part|= keyuse->keypart_map;
if (!(keyuse->used_tables & ~join->const_table_map))
const_part|= keyuse->keypart_map;
double tmp2= prev_record_reads(join, idx, (found_ref |
keyuse->used_tables));
if (tmp2 < best_prev_record_reads)
{
best_part_found_ref= keyuse->used_tables & ~join->const_table_map;
best_prev_record_reads= tmp2;
}
if (rec > keyuse->ref_table_rows)
rec= keyuse->ref_table_rows;
/*
If there is one 'key_column IS NULL' expression, we can
use this ref_or_null optimisation of this field
*/
if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
ref_or_null_part |= keyuse->keypart_map;
}
if (try_sj_inside_out && keyuse->sj_pred_no != UINT_MAX)
{
if (!(remaining_tables & keyuse->used_tables))
bound_sj_equalities |= 1UL << keyuse->sj_pred_no;
else
{
handled_sj_equalities |= 1UL << keyuse->sj_pred_no;
sj_insideout_map |= ((key_part_map)1) << keyuse->keypart;
}
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key &&
keyuse->keypart == keypart);
found_ref|= best_part_found_ref;
} while (keyuse->table == table && keyuse->key == key);
/*
Assume that that each key matches a proportional part of table.
*/
if (!found_part && !handled_sj_equalities)
continue; // Nothing usable found
if (rec < MATCHING_ROWS_IN_OTHER_TABLE)
rec= MATCHING_ROWS_IN_OTHER_TABLE; // Fix for small tables
bool sj_inside_out_scan= false;
{
found_constraint= 1;
/*
Check if InsideOut scan is applicable:
1. All IN-equalities are either "bound" or "handled"
2. Index keyparts are
...
*/
if (try_sj_inside_out &&
table->covering_keys.test(key) &&
(handled_sj_equalities | bound_sj_equalities) == // (1)
PREV_BITS(uint64_t, s->emb_sj_nest->sj_in_exprs)) // (1)
{
uint32_t n_fixed_parts= max_part_bit(found_part);
if (n_fixed_parts != keyinfo->key_parts &&
(PREV_BITS(uint, n_fixed_parts) | sj_insideout_map) ==
PREV_BITS(uint, keyinfo->key_parts))
{
/*
Not all parts are fixed. Produce bitmap of remaining bits and
check if all of them are covered.
*/
sj_inside_out_scan= true;
if (!n_fixed_parts)
{
/*
It's a confluent ref scan.
That is, all found KEYUSE elements refer to IN-equalities,
and there is really no ref access because there is no
t.keypart0 = {bound expression}
Calculate the cost of complete loose index scan.
*/
records= (double)s->table->file->stats.records;
/* The cost is entire index scan cost (divided by 2) */
best_time= s->table->file->index_only_read_time(key, records);
/* Now figure how many different keys we will get */
ulong rpc;
if ((rpc= keyinfo->rec_per_key[keyinfo->key_parts-1]))
records= records / rpc;
start_key= NULL;
}
}
}
/*
Check if we found full key
*/
if (found_part == PREV_BITS(uint,keyinfo->key_parts) &&
!ref_or_null_part)
{ /* use eq key */
max_key_part= UINT32_MAX;
if ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME)
{
tmp = prev_record_reads(join, idx, found_ref);
records=1.0;
}
else
{
if (!found_ref)
{ /* We found a const key */
/*
ReuseRangeEstimateForRef-1:
We get here if we've found a ref(const) (c_i are constants):
"(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond]
If range optimizer was able to construct a "range"
access on this index, then its condition "quick_cond" was
eqivalent to ref_const_cond (*), and we can re-use E(#rows)
from the range optimizer.
Proof of (*): By properties of range and ref optimizers
quick_cond will be equal or tighther than ref_const_cond.
ref_const_cond already covers "smallest" possible interval -
a singlepoint interval over all keyparts. Therefore,
quick_cond is equivalent to ref_const_cond (if it was an
empty interval we wouldn't have got here).
*/
if (table->quick_keys.test(key))
records= (double) table->quick_rows[key];
else
{
/* quick_range couldn't use key! */
records= (double) s->records/rec;
}
}
else
{
if (!(records=keyinfo->rec_per_key[keyinfo->key_parts-1]))
{ /* Prefer longer keys */
records=
((double) s->records / (double) rec *
(1.0 +
((double) (table->s->max_key_length-keyinfo->key_length) /
(double) table->s->max_key_length)));
if (records < 2.0)
records=2.0; /* Can't be as good as a unique */
}
/*
ReuseRangeEstimateForRef-2: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make an adjustment. The criteria of when we
can make an adjustment is a special case of the criteria used
in ReuseRangeEstimateForRef-3.
*/
if (table->quick_keys.test(key) &&
const_part & (1 << table->quick_key_parts[key]) &&
table->quick_n_ranges[key] == 1 &&
records > (double) table->quick_rows[key])
{
records= (double) table->quick_rows[key];
}
}
/* Limit the number of matched rows */
tmp= records;
set_if_smaller(tmp, (double) session->variables.max_seeks_for_key);
if (table->covering_keys.test(key))
{
/* we can use only index tree */
tmp= record_count * table->file->index_only_read_time(key, tmp);
}
else
tmp= record_count*cmin(tmp,s->worst_seeks);
}
}
else
{
/*
Use as much key-parts as possible and a uniq key is better
than a not unique key
Set tmp to (previous record count) * (records / combination)
*/
if ((found_part & 1) &&
(!(table->file->index_flags(key, 0, 0) & HA_ONLY_WHOLE_INDEX) ||
found_part == PREV_BITS(uint,keyinfo->key_parts)))
{
max_key_part= max_part_bit(found_part);
/*
ReuseRangeEstimateForRef-3:
We're now considering a ref[or_null] access via
(t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL")] (**)
Try re-using E(#rows) from "range" optimizer:
We can do so if "range" optimizer used the same intervals as
in (**). The intervals used by range optimizer may be not
available at this point (as "range" access might have choosen to
create quick select over another index), so we can't compare
them to (**). We'll make indirect judgements instead.
The sufficient conditions for re-use are:
(C1) All e_i in (**) are constants, i.e. found_ref==false. (if
this is not satisfied we have no way to know which ranges
will be actually scanned by 'ref' until we execute the
join)
(C2) max #key parts in 'range' access == K == max_key_part (this
is apparently a necessary requirement)
We also have a property that "range optimizer produces equal or
tighter set of scan intervals than ref(const) optimizer". Each
of the intervals in (**) are "tightest possible" intervals when
one limits itself to using keyparts 1..K (which we do in #2).
From here it follows that range access used either one, or
both of the (I1) and (I2) intervals:
(t.keypart1=c1 AND ... AND t.keypartK=eK) (I1)
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL") (I2)
The remaining part is to exclude the situation where range
optimizer used one interval while we're considering
ref-or-null and looking for estimate for two intervals. This
is done by last limitation:
(C3) "range optimizer used (have ref_or_null?2:1) intervals"
*/
if (table->quick_keys.test(key) && !found_ref && //(C1)
table->quick_key_parts[key] == max_key_part && //(C2)
table->quick_n_ranges[key] == 1+((ref_or_null_part)?1:0)) //(C3)
{
tmp= records= (double) table->quick_rows[key];
}
else
{
/* Check if we have statistic about the distribution */
if ((records= keyinfo->rec_per_key[max_key_part-1]))
{
/*
Fix for the case where the index statistics is too
optimistic: If
(1) We're considering ref(const) and there is quick select
on the same index,
(2) and that quick select uses more keyparts (i.e. it will
scan equal/smaller interval then this ref(const))
(3) and E(#rows) for quick select is higher then our
estimate,
Then
We'll use E(#rows) from quick select.
Q: Why do we choose to use 'ref'? Won't quick select be
cheaper in some cases ?
TODO: figure this out and adjust the plan choice if needed.
*/
if (!found_ref && table->quick_keys.test(key) && // (1)
table->quick_key_parts[key] > max_key_part && // (2)
records < (double)table->quick_rows[key]) // (3)
records= (double)table->quick_rows[key];
tmp= records;
}
else
{
/*
Assume that the first key part matches 1% of the file
and that the whole key matches 10 (duplicates) or 1
(unique) records.
Assume also that more key matches proportionally more
records
This gives the formula:
records = (x * (b-a) + a*c-b)/(c-1)
b = records matched by whole key
a = records matched by first key part (1% of all records?)
c = number of key parts in key
x = used key parts (1 <= x <= c)
*/
double rec_per_key;
if (!(rec_per_key=(double)
keyinfo->rec_per_key[keyinfo->key_parts-1]))
rec_per_key=(double) s->records/rec+1;
if (!s->records)
tmp = 0;
else if (rec_per_key/(double) s->records >= 0.01)
tmp = rec_per_key;
else
{
double a=s->records*0.01;
if (keyinfo->key_parts > 1)
tmp= (max_key_part * (rec_per_key - a) +
a*keyinfo->key_parts - rec_per_key)/
(keyinfo->key_parts-1);
else
tmp= a;
set_if_bigger(tmp,1.0);
}
records = (uint32_t) tmp;
}
if (ref_or_null_part)
{
/* We need to do two key searches to find key */
tmp *= 2.0;
records *= 2.0;
}
/*
ReuseRangeEstimateForRef-4: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make the adjustment.
The decision whether we can re-use the estimate from the range
optimizer is the same as in ReuseRangeEstimateForRef-3,
applied to first table->quick_key_parts[key] key parts.
*/
if (table->quick_keys.test(key) &&
table->quick_key_parts[key] <= max_key_part &&
const_part & (1 << table->quick_key_parts[key]) &&
table->quick_n_ranges[key] == 1 + ((ref_or_null_part &
const_part) ? 1 : 0) &&
records > (double) table->quick_rows[key])
{
tmp= records= (double) table->quick_rows[key];
}
}
/* Limit the number of matched rows */
set_if_smaller(tmp, (double) session->variables.max_seeks_for_key);
if (table->covering_keys.test(key))
{
/* we can use only index tree */
tmp= record_count * table->file->index_only_read_time(key, tmp);
}
else
tmp= record_count * cmin(tmp,s->worst_seeks);
}
else
tmp= best_time; // Do nothing
}
if (sj_inside_out_scan && !start_key)
{
tmp= tmp/2;
if (records)
records= records/2;
}
}
if (tmp < best_time - records/(double) TIME_FOR_COMPARE)
{
best_time= tmp + records/(double) TIME_FOR_COMPARE;
best= tmp;
best_records= records;
best_key= start_key;
best_max_key_part= max_key_part;
best_ref_depends_map= found_ref;
best_is_sj_inside_out= sj_inside_out_scan;
}
}
records= best_records;
}
/*
Don't test table scan if it can't be better.
Prefer key lookup if we would use the same key for scanning.
Don't do a table scan on InnoDB tables, if we can read the used
parts of the row from any of the used index.
This is because table scans uses index and we would not win
anything by using a table scan.
A word for word translation of the below if-statement in sergefp's
understanding: we check if we should use table scan if:
(1) The found 'ref' access produces more records than a table scan
(or index scan, or quick select), or 'ref' is more expensive than
any of them.
(2) This doesn't hold: the best way to perform table scan is to to perform
'range' access using index IDX, and the best way to perform 'ref'
access is to use the same index IDX, with the same or more key parts.
(note: it is not clear how this rule is/should be extended to
index_merge quick selects)
(3) See above note about InnoDB.
(4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access
path, but there is no quick select)
If the condition in the above brackets holds, then the only possible
"table scan" access method is ALL/index (there is no quick select).
Since we have a 'ref' access path, and FORCE INDEX instructs us to
choose it over ALL/index, there is no need to consider a full table
scan.
*/
if ((records >= s->found_records || best > s->read_time) && // (1)
!(s->quick && best_key && s->quick->index == best_key->key && // (2)
best_max_key_part >= s->table->quick_key_parts[best_key->key]) &&// (2)
!((s->table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX) && // (3)
! s->table->covering_keys.none() && best_key && !s->quick) &&// (3)
!(s->table->force_index && best_key && !s->quick)) // (4)
{ // Check full join
ha_rows rnd_records= s->found_records;
/*
If there is a filtering condition on the table (i.e. ref analyzer found
at least one "table.keyXpartY= exprZ", where exprZ refers only to tables
preceding this table in the join order we're now considering), then
assume that 25% of the rows will be filtered out by this condition.
This heuristic is supposed to force tables used in exprZ to be before
this table in join order.
*/
if (found_constraint)
rnd_records-= rnd_records/4;
/*
If applicable, get a more accurate estimate. Don't use the two
heuristics at once.
*/
if (s->table->quick_condition_rows != s->found_records)
rnd_records= s->table->quick_condition_rows;
/*
Range optimizer never proposes a RANGE if it isn't better
than FULL: so if RANGE is present, it's always preferred to FULL.
Here we estimate its cost.
*/
if (s->quick)
{
/*
For each record we:
- read record range through 'quick'
- skip rows which does not satisfy WHERE constraints
TODO:
We take into account possible use of join cache for ALL/index
access (see first else-branch below), but we don't take it into
account here for range/index_merge access. Find out why this is so.
*/
tmp= record_count *
(s->quick->read_time +
(s->found_records - rnd_records)/(double) TIME_FOR_COMPARE);
}
else
{
/* Estimate cost of reading table. */
tmp= s->table->file->scan_time();
if (s->table->map & join->outer_join) // Can't use join cache
{
/*
For each record we have to:
- read the whole table record
- skip rows which does not satisfy join condition
*/
tmp= record_count *
(tmp +
(s->records - rnd_records)/(double) TIME_FOR_COMPARE);
}
else
{
/* We read the table as many times as join buffer becomes full. */
tmp*= (1.0 + floor((double) cache_record_length(join,idx) *
record_count /
(double) session->variables.join_buff_size));
/*
We don't make full cartesian product between rows in the scanned
table and existing records because we skip all rows from the
scanned table, which does not satisfy join condition when
we read the table (see flush_cached_records for details). Here we
take into account cost to read and skip these records.
*/
tmp+= (s->records - rnd_records)/(double) TIME_FOR_COMPARE;
}
}
/*
We estimate the cost of evaluating WHERE clause for found records
as record_count * rnd_records / TIME_FOR_COMPARE. This cost plus
tmp give us total cost of using Table SCAN
*/
if (best == DBL_MAX ||
(tmp + record_count/(double) TIME_FOR_COMPARE*rnd_records <
best + record_count/(double) TIME_FOR_COMPARE*records))
{
/*
If the table has a range (s->quick is set) make_join_select()
will ensure that this will be used
*/
best= tmp;
records= rows2double(rnd_records);
best_key= 0;
/* range/index_merge/ALL/index access method are "independent", so: */
best_ref_depends_map= 0;
best_is_sj_inside_out= false;
}
}
/* Update the cost information for the current partial plan */
join->positions[idx].records_read= records;
join->positions[idx].read_time= best;
join->positions[idx].key= best_key;
join->positions[idx].table= s;
join->positions[idx].ref_depend_map= best_ref_depends_map;
join->positions[idx].use_insideout_scan= best_is_sj_inside_out;
if (!best_key &&
idx == join->const_tables &&
s->table == join->sort_by_table &&
join->unit->select_limit_cnt >= records)
join->sort_by_table= (Table*) 1; // Must use temporary table
return;
}
/**
Selects and invokes a search strategy for an optimal query plan.
The function checks user-configurable parameters that control the search
strategy for an optimal plan, selects the search method and then invokes
it. Each specific optimization procedure stores the final optimal plan in
the array 'join->best_positions', and the cost of the plan in
'join->best_read'.
@param join pointer to the structure providing all context info for
the query
@param join_tables set of the tables in the query
@todo
'MAX_TABLES+2' denotes the old implementation of find_best before
the greedy version. Will be removed when greedy_search is approved.
@retval
false ok
@retval
true Fatal error
*/
static bool
choose_plan(JOIN *join, table_map join_tables)
{
uint32_t search_depth= join->session->variables.optimizer_search_depth;
uint32_t prune_level= join->session->variables.optimizer_prune_level;
bool straight_join= test(join->select_options & SELECT_STRAIGHT_JOIN);
join->cur_embedding_map= 0;
reset_nj_counters(join->join_list);
/*
if (SELECT_STRAIGHT_JOIN option is set)
reorder tables so dependent tables come after tables they depend
on, otherwise keep tables in the order they were specified in the query
else
Apply heuristic: pre-sort all access plans with respect to the number of
records accessed.
*/
my_qsort(join->best_ref + join->const_tables,
join->tables - join->const_tables, sizeof(JOIN_TAB*),
straight_join ? join_tab_cmp_straight : join_tab_cmp);
join->cur_emb_sj_nests= 0;
if (straight_join)
{
optimize_straight_join(join, join_tables);
}
else
{
if (search_depth == MAX_TABLES+2)
{ /*
TODO: 'MAX_TABLES+2' denotes the old implementation of find_best before
the greedy version. Will be removed when greedy_search is approved.
*/
join->best_read= DBL_MAX;
if (find_best(join, join_tables, join->const_tables, 1.0, 0.0))
return(true);
}
else
{
if (search_depth == 0)
/* Automatically determine a reasonable value for 'search_depth' */
search_depth= determine_search_depth(join);
if (greedy_search(join, join_tables, search_depth, prune_level))
return(true);
}
}
/*
Store the cost of this query into a user variable
Don't update last_query_cost for statements that are not "flat joins" :
i.e. they have subqueries, unions or call stored procedures.
TODO: calculate a correct cost for a query with subqueries and UNIONs.
*/
if (join->session->lex->is_single_level_stmt())
join->session->status_var.last_query_cost= join->best_read;
return(false);
}
/**
Compare two JOIN_TAB objects based on the number of accessed records.
@param ptr1 pointer to first JOIN_TAB object
@param ptr2 pointer to second JOIN_TAB object
NOTES
The order relation implemented by join_tab_cmp() is not transitive,
i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
but (c < a). This implies that result of a sort using the relation
implemented by join_tab_cmp() depends on the order in which
elements are compared, i.e. the result is implementation-specific.
Example:
a: dependent = 0x0 table->map = 0x1 found_records = 3 ptr = 0x907e6b0
b: dependent = 0x0 table->map = 0x2 found_records = 3 ptr = 0x907e838
c: dependent = 0x6 table->map = 0x10 found_records = 2 ptr = 0x907ecd0
@retval
1 if first is bigger
@retval
-1 if second is bigger
@retval
0 if equal
*/
int join_tab_cmp(const void* ptr1, const void* ptr2)
{
JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;
if (jt1->dependent & jt2->table->map)
return 1;
if (jt2->dependent & jt1->table->map)
return -1;
if (jt1->found_records > jt2->found_records)
return 1;
if (jt1->found_records < jt2->found_records)
return -1;
return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}
/**
Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN.
*/
int join_tab_cmp_straight(const void* ptr1, const void* ptr2)
{
JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;
if (jt1->dependent & jt2->table->map)
return 1;
if (jt2->dependent & jt1->table->map)
return -1;
return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}
/**
Heuristic procedure to automatically guess a reasonable degree of
exhaustiveness for the greedy search procedure.
The procedure estimates the optimization time and selects a search depth
big enough to result in a near-optimal QEP, that doesn't take too long to
find. If the number of tables in the query exceeds some constant, then
search_depth is set to this constant.
@param join pointer to the structure providing all context info for
the query
@note
This is an extremely simplistic implementation that serves as a stub for a
more advanced analysis of the join. Ideally the search depth should be
determined by learning from previous query optimizations, because it will
depend on the CPU power (and other factors).
@todo
this value should be determined dynamically, based on statistics:
uint32_t max_tables_for_exhaustive_opt= 7;
@todo
this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
@return
A positive integer that specifies the search depth (and thus the
exhaustiveness) of the depth-first search algorithm used by
'greedy_search'.
*/
static uint
determine_search_depth(JOIN *join)
{
uint32_t table_count= join->tables - join->const_tables;
uint32_t search_depth;
/* TODO: this value should be determined dynamically, based on statistics: */
uint32_t max_tables_for_exhaustive_opt= 7;
if (table_count <= max_tables_for_exhaustive_opt)
search_depth= table_count+1; // use exhaustive for small number of tables
else
/*
TODO: this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
*/
search_depth= max_tables_for_exhaustive_opt; // use greedy search
return search_depth;
}
/**
Select the best ways to access the tables in a query without reordering them.
Find the best access paths for each query table and compute their costs
according to their order in the array 'join->best_ref' (thus without
reordering the join tables). The function calls sequentially
'best_access_path' for each table in the query to select the best table
access method. The final optimal plan is stored in the array
'join->best_positions', and the corresponding cost in 'join->best_read'.
@param join pointer to the structure providing all context info for
the query
@param join_tables set of the tables in the query
@note
This function can be applied to:
- queries with STRAIGHT_JOIN
- internally to compute the cost of an arbitrary QEP
@par
Thus 'optimize_straight_join' can be used at any stage of the query
optimization process to finalize a QEP as it is.
*/
static void
optimize_straight_join(JOIN *join, table_map join_tables)
{
JOIN_TAB *s;
uint32_t idx= join->const_tables;
double record_count= 1.0;
double read_time= 0.0;
for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
{
/* Find the best access method from 's' to the current partial plan */
advance_sj_state(join_tables, s);
best_access_path(join, s, join->session, join_tables, idx,
record_count, read_time);
/* compute the cost of the new plan extended with 's' */
record_count*= join->positions[idx].records_read;
read_time+= join->positions[idx].read_time;
join_tables&= ~(s->table->map);
++idx;
}
read_time+= record_count / (double) TIME_FOR_COMPARE;
if (join->sort_by_table &&
join->sort_by_table != join->positions[join->const_tables].table->table)
read_time+= record_count; // We have to make a temp table
memcpy(join->best_positions, join->positions, sizeof(POSITION)*idx);
join->best_read= read_time;
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a greedy search.
The search procedure uses a hybrid greedy/exhaustive search with controlled
exhaustiveness. The search is performed in N = card(remaining_tables)
steps. Each step evaluates how promising is each of the unoptimized tables,
selects the most promising table, and extends the current partial QEP with
that table. Currenly the most 'promising' table is the one with least
expensive extension.\
There are two extreme cases:
-# When (card(remaining_tables) < search_depth), the estimate finds the
best complete continuation of the partial QEP. This continuation can be
used directly as a result of the search.
-# When (search_depth == 1) the 'best_extension_by_limited_search'
consideres the extension of the current QEP with each of the remaining
unoptimized tables.
All other cases are in-between these two extremes. Thus the parameter
'search_depth' controlls the exhaustiveness of the search. The higher the
value, the longer the optimizaton time and possibly the better the
resulting plan. The lower the value, the fewer alternative plans are
estimated, but the more likely to get a bad QEP.
All intermediate and final results of the procedure are stored in 'join':
- join->positions : modified for every partial QEP that is explored
- join->best_positions: modified for the current best complete QEP
- join->best_read : modified for the current best complete QEP
- join->best_ref : might be partially reordered
The final optimal plan is stored in 'join->best_positions', and its
corresponding cost in 'join->best_read'.
@note
The following pseudocode describes the algorithm of 'greedy_search':
@code
procedure greedy_search
input: remaining_tables
output: pplan;
{
pplan = <>;
do {
(t, a) = best_extension(pplan, remaining_tables);
pplan = concat(pplan, (t, a));
remaining_tables = remaining_tables - t;
} while (remaining_tables != {})
return pplan;
}
@endcode
where 'best_extension' is a placeholder for a procedure that selects the
most "promising" of all tables in 'remaining_tables'.
Currently this estimate is performed by calling
'best_extension_by_limited_search' to evaluate all extensions of the
current QEP of size 'search_depth', thus the complexity of 'greedy_search'
mainly depends on that of 'best_extension_by_limited_search'.
@par
If 'best_extension()' == 'best_extension_by_limited_search()', then the
worst-case complexity of this algorithm is <=
O(N*N^search_depth/search_depth). When serch_depth >= N, then the
complexity of greedy_search is O(N!).
@par
In the future, 'greedy_search' might be extended to support other
implementations of 'best_extension', e.g. some simpler quadratic procedure.
@param join pointer to the structure providing all context info
for the query
@param remaining_tables set of tables not included into the partial plan yet
@param search_depth controlls the exhaustiveness of the search
@param prune_level the pruning heuristics that should be applied during
search
@retval
false ok
@retval
true Fatal error
*/
static bool
greedy_search(JOIN *join,
table_map remaining_tables,
uint32_t search_depth,
uint32_t prune_level)
{
double record_count= 1.0;
double read_time= 0.0;
uint32_t idx= join->const_tables; // index into 'join->best_ref'
uint32_t best_idx;
uint32_t size_remain; // cardinality of remaining_tables
POSITION best_pos;
JOIN_TAB *best_table; // the next plan node to be added to the curr QEP
/* number of tables that remain to be optimized */
size_remain= my_count_bits(remaining_tables);
do {
/* Find the extension of the current QEP with the lowest cost */
join->best_read= DBL_MAX;
if (best_extension_by_limited_search(join, remaining_tables, idx, record_count,
read_time, search_depth, prune_level))
return(true);
if (size_remain <= search_depth)
{
/*
'join->best_positions' contains a complete optimal extension of the
current partial QEP.
*/
return(false);
}
/* select the first table in the optimal extension as most promising */
best_pos= join->best_positions[idx];
best_table= best_pos.table;
/*
Each subsequent loop of 'best_extension_by_limited_search' uses
'join->positions' for cost estimates, therefore we have to update its
value.
*/
join->positions[idx]= best_pos;
/* find the position of 'best_table' in 'join->best_ref' */
best_idx= idx;
JOIN_TAB *pos= join->best_ref[best_idx];
while (pos && best_table != pos)
pos= join->best_ref[++best_idx];
assert((pos != NULL)); // should always find 'best_table'
/* move 'best_table' at the first free position in the array of joins */
std::swap(join->best_ref[idx], join->best_ref[best_idx]);
/* compute the cost of the new plan extended with 'best_table' */
record_count*= join->positions[idx].records_read;
read_time+= join->positions[idx].read_time;
remaining_tables&= ~(best_table->table->map);
--size_remain;
++idx;
} while (true);
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a possibly
exhaustive search.
The procedure searches for the optimal ordering of the query tables in set
'remaining_tables' of size N, and the corresponding optimal access paths to
each table. The choice of a table order and an access path for each table
constitutes a query execution plan (QEP) that fully specifies how to
execute the query.
The maximal size of the found plan is controlled by the parameter
'search_depth'. When search_depth == N, the resulting plan is complete and
can be used directly as a QEP. If search_depth < N, the found plan consists
of only some of the query tables. Such "partial" optimal plans are useful
only as input to query optimization procedures, and cannot be used directly
to execute a query.
The algorithm begins with an empty partial plan stored in 'join->positions'
and a set of N tables - 'remaining_tables'. Each step of the algorithm
evaluates the cost of the partial plan extended by all access plans for
each of the relations in 'remaining_tables', expands the current partial
plan with the access plan that results in lowest cost of the expanded
partial plan, and removes the corresponding relation from
'remaining_tables'. The algorithm continues until it either constructs a
complete optimal plan, or constructs an optimal plartial plan with size =
search_depth.
The final optimal plan is stored in 'join->best_positions'. The
corresponding cost of the optimal plan is in 'join->best_read'.
@note
The procedure uses a recursive depth-first search where the depth of the
recursion (and thus the exhaustiveness of the search) is controlled by the
parameter 'search_depth'.
@note
The pseudocode below describes the algorithm of
'best_extension_by_limited_search'. The worst-case complexity of this
algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then
the complexity of greedy_search is O(N!).
@code
procedure best_extension_by_limited_search(
pplan in, // in, partial plan of tables-joined-so-far
pplan_cost, // in, cost of pplan
remaining_tables, // in, set of tables not referenced in pplan
best_plan_so_far, // in/out, best plan found so far
best_plan_so_far_cost,// in/out, cost of best_plan_so_far
search_depth) // in, maximum size of the plans being considered
{
for each table T from remaining_tables
{
// Calculate the cost of using table T as above
cost = complex-series-of-calculations;
// Add the cost to the cost so far.
pplan_cost+= cost;
if (pplan_cost >= best_plan_so_far_cost)
// pplan_cost already too great, stop search
continue;
pplan= expand pplan by best_access_method;
remaining_tables= remaining_tables - table T;
if (remaining_tables is not an empty set
and
search_depth > 1)
{
best_extension_by_limited_search(pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
}
else
{
best_plan_so_far_cost= pplan_cost;
best_plan_so_far= pplan;
}
}
}
@endcode
@note
When 'best_extension_by_limited_search' is called for the first time,
'join->best_read' must be set to the largest possible value (e.g. DBL_MAX).
The actual implementation provides a way to optionally use pruning
heuristic (controlled by the parameter 'prune_level') to reduce the search
space by skipping some partial plans.
@note
The parameter 'search_depth' provides control over the recursion
depth, and thus the size of the resulting optimal plan.
@param join pointer to the structure providing all context info
for the query
@param remaining_tables set of tables not included into the partial plan yet
@param idx length of the partial QEP in 'join->positions';
since a depth-first search is used, also corresponds
to the current depth of the search tree;
also an index in the array 'join->best_ref';
@param record_count estimate for the number of records returned by the
best partial plan
@param read_time the cost of the best partial plan
@param search_depth maximum depth of the recursion and thus size of the
found optimal plan
(0 < search_depth <= join->tables+1).
@param prune_level pruning heuristics that should be applied during
optimization
(values: 0 = EXHAUSTIVE, 1 = PRUNE_BY_TIME_OR_ROWS)
@retval
false ok
@retval
true Fatal error
*/
static bool
best_extension_by_limited_search(JOIN *join,
table_map remaining_tables,
uint32_t idx,
double record_count,
double read_time,
uint32_t search_depth,
uint32_t prune_level)
{
Session *session= join->session;
if (session->killed) // Abort
return(true);
/*
'join' is a partial plan with lower cost than the best plan so far,
so continue expanding it further with the tables in 'remaining_tables'.
*/
JOIN_TAB *s;
double best_record_count= DBL_MAX;
double best_read_time= DBL_MAX;
for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
{
table_map real_table_bit= s->table->map;
if ((remaining_tables & real_table_bit) &&
!(remaining_tables & s->dependent) &&
(!idx || !check_interleaving_with_nj(join->positions[idx-1].table, s)))
{
double current_record_count, current_read_time;
advance_sj_state(remaining_tables, s);
/*
psergey-insideout-todo:
when best_access_path() detects it could do an InsideOut scan or
some other scan, have it return an insideout scan and a flag that
requests to "fork" this loop iteration. (Q: how does that behave
when the depth is insufficient??)
*/
/* Find the best access method from 's' to the current partial plan */
best_access_path(join, s, session, remaining_tables, idx,
record_count, read_time);
/* Compute the cost of extending the plan with 's' */
current_record_count= record_count * join->positions[idx].records_read;
current_read_time= read_time + join->positions[idx].read_time;
/* Expand only partial plans with lower cost than the best QEP so far */
if ((current_read_time +
current_record_count / (double) TIME_FOR_COMPARE) >= join->best_read)
{
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s);
continue;
}
/*
Prune some less promising partial plans. This heuristic may miss
the optimal QEPs, thus it results in a non-exhaustive search.
*/
if (prune_level == 1)
{
if (best_record_count > current_record_count ||
best_read_time > current_read_time ||
(idx == join->const_tables && s->table == join->sort_by_table)) // 's' is the first table in the QEP
{
if (best_record_count >= current_record_count &&
best_read_time >= current_read_time &&
/* TODO: What is the reasoning behind this condition? */
(!(s->key_dependent & remaining_tables) ||
join->positions[idx].records_read < 2.0))
{
best_record_count= current_record_count;
best_read_time= current_read_time;
}
}
else
{
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s);
continue;
}
}
if ( (search_depth > 1) && (remaining_tables & ~real_table_bit) )
{ /* Recursively expand the current partial plan */
std::swap(join->best_ref[idx], *pos);
if (best_extension_by_limited_search(join,
remaining_tables & ~real_table_bit,
idx + 1,
current_record_count,
current_read_time,
search_depth - 1,
prune_level))
return(true);
std::swap(join->best_ref[idx], *pos);
}
else
{ /*
'join' is either the best partial QEP with 'search_depth' relations,
or the best complete QEP so far, whichever is smaller.
*/
current_read_time+= current_record_count / (double) TIME_FOR_COMPARE;
if (join->sort_by_table &&
join->sort_by_table !=
join->positions[join->const_tables].table->table)
/* We have to make a temp table */
current_read_time+= current_record_count;
if ((search_depth == 1) || (current_read_time < join->best_read))
{
memcpy(join->best_positions, join->positions,
sizeof(POSITION) * (idx + 1));
join->best_read= current_read_time - 0.001;
}
}
restore_prev_nj_state(s);
restore_prev_sj_state(remaining_tables, s);
}
}
return(false);
}
/**
@todo
- TODO: this function is here only temporarily until 'greedy_search' is
tested and accepted.
RETURN VALUES
false ok
true Fatal error
*/
static bool
find_best(JOIN *join,table_map rest_tables,uint32_t idx,double record_count,
double read_time)
{
Session *session= join->session;
if (session->killed)
return(true);
if (!rest_tables)
{
read_time+=record_count/(double) TIME_FOR_COMPARE;
if (join->sort_by_table &&
join->sort_by_table !=
join->positions[join->const_tables].table->table)
read_time+=record_count; // We have to make a temp table
if (read_time < join->best_read)
{
memcpy(join->best_positions, join->positions, sizeof(POSITION)*idx);
join->best_read= read_time - 0.001;
}
return(false);
}
if (read_time+record_count/(double) TIME_FOR_COMPARE >= join->best_read)
return(false); /* Found better before */
JOIN_TAB *s;
double best_record_count=DBL_MAX,best_read_time=DBL_MAX;
for (JOIN_TAB **pos=join->best_ref+idx ; (s=*pos) ; pos++)
{
table_map real_table_bit=s->table->map;
if ((rest_tables & real_table_bit) && !(rest_tables & s->dependent) &&
(!idx|| !check_interleaving_with_nj(join->positions[idx-1].table, s)))
{
double records, best;
advance_sj_state(rest_tables, s);
best_access_path(join, s, session, rest_tables, idx, record_count,
read_time);
records= join->positions[idx].records_read;
best= join->positions[idx].read_time;
/*
Go to the next level only if there hasn't been a better key on
this level! This will cut down the search for a lot simple cases!
*/
double current_record_count=record_count*records;
double current_read_time=read_time+best;
if (best_record_count > current_record_count ||
best_read_time > current_read_time ||
(idx == join->const_tables && s->table == join->sort_by_table))
{
if (best_record_count >= current_record_count &&
best_read_time >= current_read_time &&
(!(s->key_dependent & rest_tables) || records < 2.0))
{
best_record_count=current_record_count;
best_read_time=current_read_time;
}
std::swap(join->best_ref[idx], *pos);
if (find_best(join,rest_tables & ~real_table_bit,idx+1,
current_record_count,current_read_time))
return(true);
std::swap(join->best_ref[idx], *pos);
}
restore_prev_nj_state(s);
restore_prev_sj_state(rest_tables, s);
if (join->select_options & SELECT_STRAIGHT_JOIN)
break; // Don't test all combinations
}
}
return(false);
}
/**
Find how much space the prevous read not const tables takes in cache.
*/
static void calc_used_field_length(Session *, JOIN_TAB *join_tab)
{
uint32_t null_fields,blobs,fields,rec_length;
Field **f_ptr,*field;
null_fields= blobs= fields= rec_length=0;
for (f_ptr=join_tab->table->field ; (field= *f_ptr) ; f_ptr++)
{
if (field->isReadSet())
{
uint32_t flags=field->flags;
fields++;
rec_length+=field->pack_length();
if (flags & BLOB_FLAG)
blobs++;
if (!(flags & NOT_NULL_FLAG))
null_fields++;
}
}
if (null_fields)
rec_length+=(join_tab->table->getNullFields() + 7)/8;
if (join_tab->table->maybe_null)
rec_length+=sizeof(bool);
if (blobs)
{
uint32_t blob_length=(uint32_t) (join_tab->table->file->stats.mean_rec_length-
(join_tab->table->getRecordLength()- rec_length));
rec_length+=(uint32_t) cmax((uint32_t)4,blob_length);
}
join_tab->used_fields= fields;
join_tab->used_fieldlength= rec_length;
join_tab->used_blobs= blobs;
}
static uint
cache_record_length(JOIN *join,uint32_t idx)
{
uint32_t length=0;
JOIN_TAB **pos,**end;
Session *session=join->session;
for (pos=join->best_ref+join->const_tables,end=join->best_ref+idx ;
pos != end ;
pos++)
{
JOIN_TAB *join_tab= *pos;
if (!join_tab->used_fieldlength) /* Not calced yet */
calc_used_field_length(session, join_tab);
length+=join_tab->used_fieldlength;
}
return length;
}
/*
Get the number of different row combinations for subset of partial join
SYNOPSIS
prev_record_reads()
join The join structure
idx Number of tables in the partial join order (i.e. the
partial join order is in join->positions[0..idx-1])
found_ref Bitmap of tables for which we need to find # of distinct
row combinations.
DESCRIPTION
Given a partial join order (in join->positions[0..idx-1]) and a subset of
tables within that join order (specified in found_ref), find out how many
distinct row combinations of subset tables will be in the result of the
partial join order.
This is used as follows: Suppose we have a table accessed with a ref-based
method. The ref access depends on current rows of tables in found_ref.
We want to count # of different ref accesses. We assume two ref accesses
will be different if at least one of access parameters is different.
Example: consider a query
SELECT * FROM t1, t2, t3 WHERE t1.key=c1 AND t2.key=c2 AND t3.key=t1.field
and a join order:
t1, ref access on t1.key=c1
t2, ref access on t2.key=c2
t3, ref access on t3.key=t1.field
For t1: n_ref_scans = 1, n_distinct_ref_scans = 1
For t2: n_ref_scans = records_read(t1), n_distinct_ref_scans=1
For t3: n_ref_scans = records_read(t1)*records_read(t2)
n_distinct_ref_scans = #records_read(t1)
The reason for having this function (at least the latest version of it)
is that we need to account for buffering in join execution.
An edge-case example: if we have a non-first table in join accessed via
ref(const) or ref(param) where there is a small number of different
values of param, then the access will likely hit the disk cache and will
not require any disk seeks.
The proper solution would be to assume an LRU disk cache of some size,
calculate probability of cache hits, etc. For now we just count
identical ref accesses as one.
RETURN
Expected number of row combinations
*/
static double
prev_record_reads(JOIN *join, uint32_t idx, table_map found_ref)
{
double found=1.0;
POSITION *pos_end= join->positions - 1;
for (POSITION *pos= join->positions + idx - 1; pos != pos_end; pos--)
{
if (pos->table->table->map & found_ref)
{
found_ref|= pos->ref_depend_map;
/*
For the case of "t1 LEFT JOIN t2 ON ..." where t2 is a const table
with no matching row we will get position[t2].records_read==0.
Actually the size of output is one null-complemented row, therefore
we will use value of 1 whenever we get records_read==0.
Note
- the above case can't occur if inner part of outer join has more
than one table: table with no matches will not be marked as const.
- Ideally we should add 1 to records_read for every possible null-
complemented row. We're not doing it because: 1. it will require
non-trivial code and add overhead. 2. The value of records_read
is an inprecise estimate and adding 1 (or, in the worst case,
#max_nested_outer_joins=64-1) will not make it any more precise.
*/
if (pos->records_read > DBL_EPSILON)
found*= pos->records_read;
}
}
return found;
}
/**
Set up join struct according to best position.
*/
static bool
get_best_combination(JOIN *join)
{
uint32_t i,tablenr;
table_map used_tables;
JOIN_TAB *join_tab,*j;
KEYUSE *keyuse;
uint32_t table_count;
Session *session=join->session;
table_count=join->tables;
if (!(join->join_tab=join_tab=
(JOIN_TAB*) session->alloc(sizeof(JOIN_TAB)*table_count)))
return(true);
join->full_join=0;
used_tables= OUTER_REF_TABLE_BIT; // Outer row is already read
for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
{
Table *form;
*j= *join->best_positions[tablenr].table;
form=join->table[tablenr]=j->table;
used_tables|= form->map;
form->reginfo.join_tab=j;
if (!*j->on_expr_ref)
form->reginfo.not_exists_optimize=0; // Only with LEFT JOIN
if (j->type == JT_CONST)
continue; // Handled in make_join_stat..
j->ref.key = -1;
j->ref.key_parts=0;
if (j->type == JT_SYSTEM)
continue;
if (j->keys.none() || !(keyuse= join->best_positions[tablenr].key))
{
j->type=JT_ALL;
if (tablenr != join->const_tables)
join->full_join=1;
}
else if (create_ref_for_key(join, j, keyuse, used_tables))
return(true); // Something went wrong
}
for (i=0 ; i < table_count ; i++)
join->map2table[join->join_tab[i].table->tablenr]=join->join_tab+i;
update_depend_map(join);
return(0);
}
static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
table_map used_tables)
{
KEYUSE *keyuse=org_keyuse;
Session *session= join->session;
uint32_t keyparts,length,key;
Table *table;
KEY *keyinfo;
/* Use best key from find_best */
table=j->table;
key=keyuse->key;
keyinfo=table->key_info+key;
{
keyparts=length=0;
uint32_t found_part_ref_or_null= 0;
/*
Calculate length for the used key
Stop if there is a missing key part or when we find second key_part
with KEY_OPTIMIZE_REF_OR_NULL
*/
do
{
if (!(~used_tables & keyuse->used_tables))
{
if (keyparts == keyuse->keypart &&
!(found_part_ref_or_null & keyuse->optimize))
{
keyparts++;
length+= keyinfo->key_part[keyuse->keypart].store_length;
found_part_ref_or_null|= keyuse->optimize;
}
}
keyuse++;
} while (keyuse->table == table && keyuse->key == key);
}
/* set up fieldref */
keyinfo=table->key_info+key;
j->ref.key_parts=keyparts;
j->ref.key_length=length;
j->ref.key=(int) key;
if (!(j->ref.key_buff= (unsigned char*) session->calloc(ALIGN_SIZE(length)*2)) ||
!(j->ref.key_copy= (store_key**) session->alloc((sizeof(store_key*) *
(keyparts+1)))) ||
!(j->ref.items= (Item**) session->alloc(sizeof(Item*)*keyparts)) ||
!(j->ref.cond_guards= (bool**) session->alloc(sizeof(uint*)*keyparts)))
{
return(true);
}
j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length);
j->ref.key_err=1;
j->ref.null_rejecting= 0;
j->ref.disable_cache= false;
keyuse=org_keyuse;
store_key **ref_key= j->ref.key_copy;
unsigned char *key_buff=j->ref.key_buff, *null_ref_key= 0;
bool keyuse_uses_no_tables= true;
{
uint32_t i;
for (i=0 ; i < keyparts ; keyuse++,i++)
{
while (keyuse->keypart != i ||
((~used_tables) & keyuse->used_tables))
keyuse++; /* Skip other parts */
uint32_t maybe_null= test(keyinfo->key_part[i].null_bit);
j->ref.items[i]=keyuse->val; // Save for cond removal
j->ref.cond_guards[i]= keyuse->cond_guard;
if (keyuse->null_rejecting)
j->ref.null_rejecting |= 1 << i;
keyuse_uses_no_tables= keyuse_uses_no_tables && !keyuse->used_tables;
if (!keyuse->used_tables &&
!(join->select_options & SELECT_DESCRIBE))
{ // Compare against constant
store_key_item tmp(session, keyinfo->key_part[i].field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
keyinfo->key_part[i].length, keyuse->val);
if (session->is_fatal_error)
return(true);
tmp.copy();
}
else
*ref_key++= get_store_key(session,
keyuse,join->const_table_map,
&keyinfo->key_part[i],
key_buff, maybe_null);
/*
Remember if we are going to use REF_OR_NULL
But only if field _really_ can be null i.e. we force JT_REF
instead of JT_REF_OR_NULL in case if field can't be null
*/
if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null)
null_ref_key= key_buff;
key_buff+=keyinfo->key_part[i].store_length;
}
}
*ref_key=0; // end_marker
if (j->type == JT_CONST)
j->table->const_table= 1;
else if (((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) != HA_NOSAME) ||
keyparts != keyinfo->key_parts || null_ref_key)
{
/* Must read with repeat */
j->type= null_ref_key ? JT_REF_OR_NULL : JT_REF;
j->ref.null_ref_key= null_ref_key;
}
else if (keyuse_uses_no_tables)
{
/*
This happen if we are using a constant expression in the ON part
of an LEFT JOIN.
SELECT * FROM a LEFT JOIN b ON b.key=30
Here we should not mark the table as a 'const' as a field may
have a 'normal' value or a NULL value.
*/
j->type=JT_CONST;
}
else
j->type=JT_EQ_REF;
return(0);
}
static store_key *
get_store_key(Session *session, KEYUSE *keyuse, table_map used_tables,
KEY_PART_INFO *key_part, unsigned char *key_buff, uint32_t maybe_null)
{
if (!((~used_tables) & keyuse->used_tables)) // if const item
{
return new store_key_const_item(session,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
keyuse->val);
}
else if (keyuse->val->type() == Item::FIELD_ITEM ||
(keyuse->val->type() == Item::REF_ITEM &&
((Item_ref*)keyuse->val)->ref_type() == Item_ref::OUTER_REF &&
(*(Item_ref**)((Item_ref*)keyuse->val)->ref)->ref_type() ==
Item_ref::DIRECT_REF &&
keyuse->val->real_item()->type() == Item::FIELD_ITEM))
return new store_key_field(session,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
((Item_field*) keyuse->val->real_item())->field,
keyuse->val->full_name());
return new store_key_item(session,
key_part->field,
key_buff + maybe_null,
maybe_null ? key_buff : 0,
key_part->length,
keyuse->val);
}
/**
This function is only called for const items on fields which are keys.
@return
returns 1 if there was some conversion made when the field was stored.
*/
bool
store_val_in_field(Field *field, Item *item, enum_check_fields check_flag)
{
bool error;
Table *table= field->table;
Session *session= table->in_use;
ha_rows cuted_fields=session->cuted_fields;
/*
we should restore old value of count_cuted_fields because
store_val_in_field can be called from mysql_insert
with select_insert, which make count_cuted_fields= 1
*/
enum_check_fields old_count_cuted_fields= session->count_cuted_fields;
session->count_cuted_fields= check_flag;
error= item->save_in_field(field, 1);
session->count_cuted_fields= old_count_cuted_fields;
return error || cuted_fields != session->cuted_fields;
}
static bool
make_simple_join(JOIN *join,Table *tmp_table)
{
Table **tableptr;
JOIN_TAB *join_tab;
/*
Reuse Table * and JOIN_TAB if already allocated by a previous call
to this function through JOIN::exec (may happen for sub-queries).
*/
if (!join->table_reexec)
{
if (!(join->table_reexec= (Table**) join->session->alloc(sizeof(Table*))))
return(true); /* purecov: inspected */
if (join->tmp_join)
join->tmp_join->table_reexec= join->table_reexec;
}
if (!join->join_tab_reexec)
{
if (!(join->join_tab_reexec=
(JOIN_TAB*) join->session->alloc(sizeof(JOIN_TAB))))
return(true); /* purecov: inspected */
if (join->tmp_join)
join->tmp_join->join_tab_reexec= join->join_tab_reexec;
}
tableptr= join->table_reexec;
join_tab= join->join_tab_reexec;
join->join_tab=join_tab;
join->table=tableptr; tableptr[0]=tmp_table;
join->tables=1;
join->const_tables=0;
join->const_table_map=0;
join->tmp_table_param.field_count= join->tmp_table_param.sum_func_count=
join->tmp_table_param.func_count=0;
join->tmp_table_param.copy_field=join->tmp_table_param.copy_field_end=0;
join->first_record=join->sort_and_group=0;
join->send_records=(ha_rows) 0;
join->group=0;
join->row_limit=join->unit->select_limit_cnt;
join->do_send_rows = (join->row_limit) ? 1 : 0;
join_tab->cache.buff=0; /* No caching */
join_tab->table=tmp_table;
join_tab->select=0;
join_tab->select_cond=0;
join_tab->quick=0;
join_tab->type= JT_ALL; /* Map through all records */
join_tab->keys.set(); /* test everything in quick */
join_tab->info=0;
join_tab->on_expr_ref=0;
join_tab->last_inner= 0;
join_tab->first_unmatched= 0;
join_tab->ref.key = -1;
join_tab->not_used_in_distinct=0;
join_tab->read_first_record= join_init_read_record;
join_tab->join=join;
join_tab->ref.key_parts= 0;
join_tab->flush_weedout_table= join_tab->check_weed_out_table= NULL;
join_tab->do_firstmatch= NULL;
memset(&join_tab->read_record, 0, sizeof(join_tab->read_record));
tmp_table->status=0;
tmp_table->null_row=0;
return(false);
}
inline void add_cond_and_fix(Item **e1, Item *e2)
{
if (*e1)
{
Item *res;
if ((res= new Item_cond_and(*e1, e2)))
{
*e1= res;
res->quick_fix_field();
}
}
else
*e1= e2;
}
/**
Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions
we've inferred from ref/eq_ref access performed.
This function is a part of "Early NULL-values filtering for ref access"
optimization.
Example of this optimization:
For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
and plan " any-access(t1), ref(t2.key=t1.field) " @n
add "t1.field IS NOT NULL" to t1's table condition. @n
Description of the optimization:
We look through equalities choosen to perform ref/eq_ref access,
pick equalities that have form "tbl.part_of_key = othertbl.field"
(where othertbl is a non-const table and othertbl.field may be NULL)
and add them to conditions on correspoding tables (othertbl in this
example).
Exception from that is the case when referred_tab->join != join.
I.e. don't add NOT NULL constraints from any embedded subquery.
Consider this query:
@code
SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
WHERE A.f3=(SELECT MIN(f3) FROM t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
@endocde
Here condition A.f3 IS NOT NULL is going to be added to the WHERE
condition of the embedding query.
Another example:
SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
WHERE t12.b = t10.a ));
Here condition t10.a IS NOT NULL is going to be added.
In both cases addition of NOT NULL condition will erroneously reject
some rows of the result set.
referred_tab->join != join constraint would disallow such additions.
This optimization doesn't affect the choices that ref, range, or join
optimizer make. This was intentional because this was added after 4.1
was GA.
Implementation overview
1. update_ref_and_keys() accumulates info about null-rejecting
predicates in in KEY_FIELD::null_rejecting
1.1 add_key_part saves these to KEYUSE.
2. create_ref_for_key copies them to TABLE_REF.
3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of
appropiate JOIN_TAB members.
*/
static void add_not_null_conds(JOIN *join)
{
for (uint32_t i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
if ((tab->type == JT_REF || tab->type == JT_EQ_REF ||
tab->type == JT_REF_OR_NULL) &&
!tab->table->maybe_null)
{
for (uint32_t keypart= 0; keypart < tab->ref.key_parts; keypart++)
{
if (tab->ref.null_rejecting & (1 << keypart))
{
Item *item= tab->ref.items[keypart];
Item *notnull;
assert(item->type() == Item::FIELD_ITEM);
Item_field *not_null_item= (Item_field*)item;
JOIN_TAB *referred_tab= not_null_item->field->table->reginfo.join_tab;
/*
For UPDATE queries such as:
UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
not_null_item is the t1.f1, but it's referred_tab is 0.
*/
if (!referred_tab || referred_tab->join != join)
continue;
if (!(notnull= new Item_func_isnotnull(not_null_item)))
return;
/*
We need to do full fix_fields() call here in order to have correct
notnull->const_item(). This is needed e.g. by test_quick_select
when it is called from make_join_select after this function is
called.
*/
if (notnull->fix_fields(join->session, ¬null))
return;
add_cond_and_fix(&referred_tab->select_cond, notnull);
}
}
}
}
return;
}
/**
Build a predicate guarded by match variables for embedding outer joins.
The function recursively adds guards for predicate cond
assending from tab to the first inner table next embedding
nested outer join and so on until it reaches root_tab
(root_tab can be 0).
@param tab the first inner table for most nested outer join
@param cond the predicate to be guarded (must be set)
@param root_tab the first inner table to stop
@return
- pointer to the guarded predicate, if success
- 0, otherwise
*/
static COND*
add_found_match_trig_cond(JOIN_TAB *tab, COND *cond, JOIN_TAB *root_tab)
{
COND *tmp;
assert(cond != 0);
if (tab == root_tab)
return cond;
if ((tmp= add_found_match_trig_cond(tab->first_upper, cond, root_tab)))
tmp= new Item_func_trig_cond(tmp, &tab->found);
if (tmp)
{
tmp->quick_fix_field();
tmp->update_used_tables();
}
return tmp;
}
/**
Fill in outer join related info for the execution plan structure.
For each outer join operation left after simplification of the
original query the function set up the following pointers in the linear
structure join->join_tab representing the selected execution plan.
The first inner table t0 for the operation is set to refer to the last
inner table tk through the field t0->last_inner.
Any inner table ti for the operation are set to refer to the first
inner table ti->first_inner.
The first inner table t0 for the operation is set to refer to the
first inner table of the embedding outer join operation, if there is any,
through the field t0->first_upper.
The on expression for the outer join operation is attached to the
corresponding first inner table through the field t0->on_expr_ref.
Here ti are structures of the JOIN_TAB type.
EXAMPLE. For the query:
@code
SELECT * FROM t1
LEFT JOIN
(t2, t3 LEFT JOIN t4 ON t3.a=t4.a)
ON (t1.a=t2.a AND t1.b=t3.b)
WHERE t1.c > 5,
@endcode
given the execution plan with the table order t1,t2,t3,t4
is selected, the following references will be set;
t4->last_inner=[t4], t4->first_inner=[t4], t4->first_upper=[t2]
t2->last_inner=[t4], t2->first_inner=t3->first_inner=[t2],
on expression (t1.a=t2.a AND t1.b=t3.b) will be attached to
*t2->on_expr_ref, while t3.a=t4.a will be attached to *t4->on_expr_ref.
@param join reference to the info fully describing the query
@note
The function assumes that the simplification procedure has been
already applied to the join query (see simplify_joins).
This function can be called only after the execution plan
has been chosen.
*/
static void
make_outerjoin_info(JOIN *join)
{
for (uint32_t i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
Table *table=tab->table;
TableList *tbl= table->pos_in_table_list;
TableList *embedding= tbl->embedding;
if (tbl->outer_join)
{
/*
Table tab is the only one inner table for outer join.
(Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a
is in the query above.)
*/
tab->last_inner= tab->first_inner= tab;
tab->on_expr_ref= &tbl->on_expr;
tab->cond_equal= tbl->cond_equal;
if (embedding)
tab->first_upper= embedding->nested_join->first_nested;
}
for ( ; embedding ; embedding= embedding->embedding)
{
/* Ignore sj-nests: */
if (!embedding->on_expr)
continue;
nested_join_st *nested_join= embedding->nested_join;
if (!nested_join->counter_)
{
/*
Table tab is the first inner table for nested_join.
Save reference to it in the nested join structure.
*/
nested_join->first_nested= tab;
tab->on_expr_ref= &embedding->on_expr;
tab->cond_equal= tbl->cond_equal;
if (embedding->embedding)
tab->first_upper= embedding->embedding->nested_join->first_nested;
}
if (!tab->first_inner)
tab->first_inner= nested_join->first_nested;
if (++nested_join->counter_ < nested_join->join_list.elements)
break;
/* Table tab is the last inner table for nested join. */
nested_join->first_nested->last_inner= tab;
}
}
return;
}
static bool
make_join_select(JOIN *join,SQL_SELECT *select,COND *cond)
{
Session *session= join->session;
if (select)
{
add_not_null_conds(join);
table_map used_tables;
if (cond) /* Because of QUICK_GROUP_MIN_MAX_SELECT */
{ /* there may be a select without a cond. */
if (join->tables > 1)
cond->update_used_tables(); // Tablenr may have changed
if (join->const_tables == join->tables &&
session->lex->current_select->master_unit() ==
&session->lex->unit) // not upper level SELECT
join->const_table_map|=RAND_TABLE_BIT;
{ // Check const tables
COND *const_cond=
make_cond_for_table(cond,
join->const_table_map,
(table_map) 0, 1);
for (JOIN_TAB *tab= join->join_tab+join->const_tables;
tab < join->join_tab+join->tables ; tab++)
{
if (*tab->on_expr_ref)
{
JOIN_TAB *cond_tab= tab->first_inner;
COND *tmp= make_cond_for_table(*tab->on_expr_ref,
join->const_table_map,
( table_map) 0, 0);
if (!tmp)
continue;
tmp= new Item_func_trig_cond(tmp, &cond_tab->not_null_compl);
if (!tmp)
return(1);
tmp->quick_fix_field();
cond_tab->select_cond= !cond_tab->select_cond ? tmp :
new Item_cond_and(cond_tab->select_cond,
tmp);
if (!cond_tab->select_cond)
return(1);
cond_tab->select_cond->quick_fix_field();
}
}
if (const_cond && !const_cond->val_int())
{
return(1); // Impossible const condition
}
}
}
used_tables=((select->const_tables=join->const_table_map) |
OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
for (uint32_t i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
/*
first_inner is the X in queries like:
SELECT * FROM t1 LEFT OUTER JOIN (t2 JOIN t3) ON X
*/
JOIN_TAB *first_inner_tab= tab->first_inner;
table_map current_map= tab->table->map;
bool use_quick_range=0;
COND *tmp;
/*
Following force including random expression in last table condition.
It solve problem with select like SELECT * FROM t1 WHERE rand() > 0.5
*/
if (i == join->tables-1)
current_map|= OUTER_REF_TABLE_BIT | RAND_TABLE_BIT;
used_tables|=current_map;
if (tab->type == JT_REF && tab->quick &&
(uint32_t) tab->ref.key == tab->quick->index &&
tab->ref.key_length < tab->quick->max_used_key_length)
{
/* Range uses longer key; Use this instead of ref on key */
tab->type=JT_ALL;
use_quick_range=1;
tab->use_quick=1;
tab->ref.key= -1;
tab->ref.key_parts=0; // Don't use ref key.
join->best_positions[i].records_read= rows2double(tab->quick->records);
/*
We will use join cache here : prevent sorting of the first
table only and sort at the end.
*/
if (i != join->const_tables && join->tables > join->const_tables + 1)
join->full_join= 1;
}
tmp= NULL;
if (cond)
tmp= make_cond_for_table(cond,used_tables,current_map, 0);
if (cond && !tmp && tab->quick)
{ // Outer join
if (tab->type != JT_ALL)
{
/*
Don't use the quick method
We come here in the case where we have 'key=constant' and
the test is removed by make_cond_for_table()
*/
delete tab->quick;
tab->quick= 0;
}
else
{
/*
Hack to handle the case where we only refer to a table
in the ON part of an OUTER JOIN. In this case we want the code
below to check if we should use 'quick' instead.
*/
tmp= new Item_int((int64_t) 1,1); // Always true
}
}
if (tmp || !cond || tab->type == JT_REF || tab->type == JT_REF_OR_NULL ||
tab->type == JT_EQ_REF)
{
SQL_SELECT *sel= tab->select= ((SQL_SELECT*)
session->memdup((unsigned char*) select,
sizeof(*select)));
if (!sel)
return(1); // End of memory
/*
If tab is an inner table of an outer join operation,
add a match guard to the pushed down predicate.
The guard will turn the predicate on only after
the first match for outer tables is encountered.
*/
if (cond && tmp)
{
/*
Because of QUICK_GROUP_MIN_MAX_SELECT there may be a select without
a cond, so neutralize the hack above.
*/
if (!(tmp= add_found_match_trig_cond(first_inner_tab, tmp, 0)))
return(1);
tab->select_cond=sel->cond=tmp;
/* Push condition to storage engine if this is enabled
and the condition is not guarded */
tab->table->file->pushed_cond= NULL;
if (session->variables.engine_condition_pushdown)
{
COND *push_cond=
make_cond_for_table(tmp, current_map, current_map, 0);
if (push_cond)
{
/* Push condition to handler */
if (!tab->table->file->cond_push(push_cond))
tab->table->file->pushed_cond= push_cond;
}
}
}
else
tab->select_cond= sel->cond= NULL;
sel->head=tab->table;
if (tab->quick)
{
/* Use quick key read if it's a constant and it's not used
with key reading */
if (tab->needed_reg.none() && tab->type != JT_EQ_REF
&& (tab->type != JT_REF || (uint32_t) tab->ref.key == tab->quick->index))
{
sel->quick=tab->quick; // Use value from get_quick_...
sel->quick_keys.reset();
sel->needed_reg.reset();
}
else
{
delete tab->quick;
}
tab->quick=0;
}
uint32_t ref_key=(uint32_t) sel->head->reginfo.join_tab->ref.key+1;
if (i == join->const_tables && ref_key)
{
if (tab->const_keys.any() &&
tab->table->reginfo.impossible_range)
return(1);
}
else if (tab->type == JT_ALL && ! use_quick_range)
{
if (tab->const_keys.any() &&
tab->table->reginfo.impossible_range)
return(1); // Impossible range
/*
We plan to scan all rows.
Check again if we should use an index.
We could have used an column from a previous table in
the index if we are using limit and this is the first table
*/
if ((cond && (!((tab->keys & tab->const_keys) == tab->keys) && i > 0)) ||
(!tab->const_keys.none() && (i == join->const_tables) && (join->unit->select_limit_cnt < join->best_positions[i].records_read) && ((join->select_options & OPTION_FOUND_ROWS) == false)))
{
/* Join with outer join condition */
COND *orig_cond=sel->cond;
sel->cond= and_conds(sel->cond, *tab->on_expr_ref);
/*
We can't call sel->cond->fix_fields,
as it will break tab->on_expr if it's AND condition
(fix_fields currently removes extra AND/OR levels).
Yet attributes of the just built condition are not needed.
Thus we call sel->cond->quick_fix_field for safety.
*/
if (sel->cond && !sel->cond->fixed)
sel->cond->quick_fix_field();
if (sel->test_quick_select(session, tab->keys,
used_tables & ~ current_map,
(join->select_options &
OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->select_limit_cnt), 0,
false) < 0)
{
/*
Before reporting "Impossible WHERE" for the whole query
we have to check isn't it only "impossible ON" instead
*/
sel->cond=orig_cond;
if (!*tab->on_expr_ref ||
sel->test_quick_select(session, tab->keys,
used_tables & ~ current_map,
(join->select_options &
OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->select_limit_cnt),0,
false) < 0)
return(1); // Impossible WHERE
}
else
sel->cond=orig_cond;
/* Fix for EXPLAIN */
if (sel->quick)
join->best_positions[i].records_read= (double)sel->quick->records;
}
else
{
sel->needed_reg=tab->needed_reg;
sel->quick_keys.reset();
}
if (!((tab->checked_keys & sel->quick_keys) == sel->quick_keys) ||
!((tab->checked_keys & sel->needed_reg) == sel->needed_reg))
{
tab->keys= sel->quick_keys;
tab->keys|= sel->needed_reg;
tab->use_quick= (!sel->needed_reg.none() &&
(select->quick_keys.none() ||
(select->quick &&
(select->quick->records >= 100L)))) ?
2 : 1;
sel->read_tables= used_tables & ~current_map;
}
if (i != join->const_tables && tab->use_quick != 2)
{ /* Read with cache */
if (cond &&
(tmp=make_cond_for_table(cond,
join->const_table_map |
current_map,
current_map, 0)))
{
tab->cache.select=(SQL_SELECT*)
session->memdup((unsigned char*) sel, sizeof(SQL_SELECT));
tab->cache.select->cond=tmp;
tab->cache.select->read_tables=join->const_table_map;
}
}
}
}
/*
Push down conditions from all on expressions.
Each of these conditions are guarded by a variable
that turns if off just before null complemented row for
outer joins is formed. Thus, the condition from an
'on expression' are guaranteed not to be checked for
the null complemented row.
*/
/* First push down constant conditions from on expressions */
for (JOIN_TAB *join_tab= join->join_tab+join->const_tables;
join_tab < join->join_tab+join->tables ; join_tab++)
{
if (*join_tab->on_expr_ref)
{
JOIN_TAB *cond_tab= join_tab->first_inner;
tmp= make_cond_for_table(*join_tab->on_expr_ref,
join->const_table_map,
(table_map) 0, 0);
if (!tmp)
continue;
tmp= new Item_func_trig_cond(tmp, &cond_tab->not_null_compl);
if (!tmp)
return(1);
tmp->quick_fix_field();
cond_tab->select_cond= !cond_tab->select_cond ? tmp :
new Item_cond_and(cond_tab->select_cond,tmp);
if (!cond_tab->select_cond)
return(1);
cond_tab->select_cond->quick_fix_field();
}
}
/* Push down non-constant conditions from on expressions */
JOIN_TAB *last_tab= tab;
while (first_inner_tab && first_inner_tab->last_inner == last_tab)
{
/*
Table tab is the last inner table of an outer join.
An on expression is always attached to it.
*/
COND *on_expr= *first_inner_tab->on_expr_ref;
table_map used_tables2= (join->const_table_map |
OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
for (tab= join->join_tab+join->const_tables; tab <= last_tab ; tab++)
{
current_map= tab->table->map;
used_tables2|= current_map;
COND *tmp_cond= make_cond_for_table(on_expr, used_tables2,
current_map, 0);
if (tmp_cond)
{
JOIN_TAB *cond_tab= tab < first_inner_tab ? first_inner_tab : tab;
/*
First add the guards for match variables of
all embedding outer join operations.
*/
if (!(tmp_cond= add_found_match_trig_cond(cond_tab->first_inner,
tmp_cond,
first_inner_tab)))
return(1);
/*
Now add the guard turning the predicate off for
the null complemented row.
*/
tmp_cond= new Item_func_trig_cond(tmp_cond,
&first_inner_tab->
not_null_compl);
if (tmp_cond)
tmp_cond->quick_fix_field();
/* Add the predicate to other pushed down predicates */
cond_tab->select_cond= !cond_tab->select_cond ? tmp_cond :
new Item_cond_and(cond_tab->select_cond,
tmp_cond);
if (!cond_tab->select_cond)
return(1);
cond_tab->select_cond->quick_fix_field();
}
}
first_inner_tab= first_inner_tab->first_upper;
}
}
}
return(0);
}
/*
Check if given expression uses only table fields covered by the given index
SYNOPSIS
uses_index_fields_only()
item Expression to check
tbl The table having the index
keyno The index number
other_tbls_ok true <=> Fields of other non-const tables are allowed
DESCRIPTION
Check if given expression only uses fields covered by index #keyno in the
table tbl. The expression can use any fields in any other tables.
The expression is guaranteed not to be AND or OR - those constructs are
handled outside of this function.
RETURN
true Yes
false No
*/
bool uses_index_fields_only(Item *item, Table *tbl, uint32_t keyno,
bool other_tbls_ok)
{
if (item->const_item())
return true;
/*
Don't push down the triggered conditions. Nested outer joins execution
code may need to evaluate a condition several times (both triggered and
untriggered), and there is no way to put thi
TODO: Consider cloning the triggered condition and using the copies for:
1. push the first copy down, to have most restrictive index condition
possible
2. Put the second copy into tab->select_cond.
*/
if (item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype() == Item_func::TRIG_COND_FUNC)
return false;
if (!(item->used_tables() & tbl->map))
return other_tbls_ok;
Item::Type item_type= item->type();
switch (item_type) {
case Item::FUNC_ITEM:
{
/* This is a function, apply condition recursively to arguments */
Item_func *item_func= (Item_func*)item;
Item **child;
Item **item_end= (item_func->arguments()) + item_func->argument_count();
for (child= item_func->arguments(); child != item_end; child++)
{
if (!uses_index_fields_only(*child, tbl, keyno, other_tbls_ok))
return false;
}
return true;
}
case Item::COND_ITEM:
{
/* This is a function, apply condition recursively to arguments */
List_iterator<Item> li(*((Item_cond*)item)->argument_list());
Item *list_item;
while ((list_item=li++))
{
if (!uses_index_fields_only(item, tbl, keyno, other_tbls_ok))
return false;
}
return true;
}
case Item::FIELD_ITEM:
{
Item_field *item_field= (Item_field*)item;
if (item_field->field->table != tbl)
return true;
return item_field->field->part_of_key.test(keyno);
}
case Item::REF_ITEM:
return uses_index_fields_only(item->real_item(), tbl, keyno,
other_tbls_ok);
default:
return false; /* Play it safe, don't push unknown non-const items */
}
}
#define ICP_COND_USES_INDEX_ONLY 10
/*
Get a part of the condition that can be checked using only index fields
SYNOPSIS
make_cond_for_index()
cond The source condition
table The table that is partially available
keyno The index in the above table. Only fields covered by the index
are available
other_tbls_ok true <=> Fields of other non-const tables are allowed
DESCRIPTION
Get a part of the condition that can be checked when for the given table
we have values only of fields covered by some index. The condition may
refer to other tables, it is assumed that we have values of all of their
fields.
Example:
make_cond_for_index(
"cond(t1.field) AND cond(t2.key1) AND cond(t2.non_key) AND cond(t2.key2)",
t2, keyno(t2.key1))
will return
"cond(t1.field) AND cond(t2.key2)"
RETURN
Index condition, or NULL if no condition could be inferred.
*/
Item *make_cond_for_index(Item *cond, Table *table, uint32_t keyno,
bool other_tbls_ok)
{
if (!cond)
return NULL;
if (cond->type() == Item::COND_ITEM)
{
uint32_t n_marked= 0;
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item_cond_and *new_cond=new Item_cond_and;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_for_index(item, table, keyno, other_tbls_ok);
if (fix)
new_cond->argument_list()->push_back(fix);
n_marked += test(item->marker == ICP_COND_USES_INDEX_ONLY);
}
if (n_marked ==((Item_cond*)cond)->argument_list()->elements)
cond->marker= ICP_COND_USES_INDEX_ONLY;
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0;
case 1:
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
return new_cond;
}
}
else /* It's OR */
{
Item_cond_or *new_cond=new Item_cond_or;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_for_index(item, table, keyno, other_tbls_ok);
if (!fix)
return (COND*) 0;
new_cond->argument_list()->push_back(fix);
n_marked += test(item->marker == ICP_COND_USES_INDEX_ONLY);
}
if (n_marked ==((Item_cond*)cond)->argument_list()->elements)
cond->marker= ICP_COND_USES_INDEX_ONLY;
new_cond->quick_fix_field();
new_cond->top_level_item();
return new_cond;
}
}
if (!uses_index_fields_only(cond, table, keyno, other_tbls_ok))
return (COND*) 0;
cond->marker= ICP_COND_USES_INDEX_ONLY;
return cond;
}
Item *make_cond_remainder(Item *cond, bool exclude_index)
{
if (exclude_index && cond->marker == ICP_COND_USES_INDEX_ONLY)
return 0; /* Already checked */
if (cond->type() == Item::COND_ITEM)
{
table_map tbl_map= 0;
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
/* Create new top level AND item */
Item_cond_and *new_cond=new Item_cond_and;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_remainder(item, exclude_index);
if (fix)
{
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
}
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0;
case 1:
return new_cond->argument_list()->head();
default:
new_cond->quick_fix_field();
((Item_cond*)new_cond)->used_tables_cache= tbl_map;
return new_cond;
}
}
else /* It's OR */
{
Item_cond_or *new_cond=new Item_cond_or;
if (!new_cond)
return (COND*) 0;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix= make_cond_remainder(item, false);
if (!fix)
return (COND*) 0;
new_cond->argument_list()->push_back(fix);
tbl_map |= fix->used_tables();
}
new_cond->quick_fix_field();
((Item_cond*)new_cond)->used_tables_cache= tbl_map;
new_cond->top_level_item();
return new_cond;
}
}
return cond;
}
/*
Try to extract and push the index condition
SYNOPSIS
push_index_cond()
tab A join tab that has tab->table->file and its condition
in tab->select_cond
keyno Index for which extract and push the condition
other_tbls_ok true <=> Fields of other non-const tables are allowed
DESCRIPTION
Try to extract and push the index condition down to table handler
*/
static void push_index_cond(JOIN_TAB *tab, uint32_t keyno, bool other_tbls_ok)
{
Item *idx_cond;
if (tab->table->file->index_flags(keyno, 0, 1) & HA_DO_INDEX_COND_PUSHDOWN &&
tab->join->session->variables.engine_condition_pushdown)
{
idx_cond= make_cond_for_index(tab->select_cond, tab->table, keyno,
other_tbls_ok);
if (idx_cond)
{
tab->pre_idx_push_select_cond= tab->select_cond;
Item *idx_remainder_cond=
tab->table->file->idx_cond_push(keyno, idx_cond);
/*
Disable eq_ref's "lookup cache" if we've pushed down an index
condition.
TODO: This check happens to work on current ICP implementations, but
there may exist a compliant implementation that will not work
correctly with it. Sort this out when we stabilize the condition
pushdown APIs.
*/
if (idx_remainder_cond != idx_cond)
tab->ref.disable_cache= true;
Item *row_cond= make_cond_remainder(tab->select_cond, true);
if (row_cond)
{
if (!idx_remainder_cond)
tab->select_cond= row_cond;
else
{
tab->select_cond= new Item_cond_and(row_cond, idx_remainder_cond);
tab->select_cond->quick_fix_field();
((Item_cond_and*)tab->select_cond)->used_tables_cache=
row_cond->used_tables() | idx_remainder_cond->used_tables();
}
}
else
tab->select_cond= idx_remainder_cond;
if (tab->select)
{
tab->select->cond= tab->select_cond;
}
}
}
return;
}
/*
Determine if the set is already ordered for order_st BY, so it can
disable join cache because it will change the ordering of the results.
Code handles sort table that is at any location (not only first after
the const tables) despite the fact that it's currently prohibited.
We must disable join cache if the first non-const table alone is
ordered. If there is a temp table the ordering is done as a last
operation and doesn't prevent join cache usage.
*/
uint32_t make_join_orderinfo(JOIN *join)
{
uint32_t i;
if (join->need_tmp)
return join->tables;
for (i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
Table *table=tab->table;
if ((table == join->sort_by_table &&
(!join->order || join->skip_sort_order)) ||
(join->sort_by_table == (Table *) 1 && i != join->const_tables))
{
break;
}
}
return i;
}
/*
Plan refinement stage: do various set ups for the executioner
SYNOPSIS
make_join_readinfo()
join Join being processed
options Join's options (checking for SELECT_DESCRIBE,
SELECT_NO_JOIN_CACHE)
no_jbuf_after Don't use join buffering after table with this number.
DESCRIPTION
Plan refinement stage: do various set ups for the executioner
- set up use of join buffering
- push index conditions
- increment counters
- etc
RETURN
false - OK
true - Out of memory
*/
static bool
make_join_readinfo(JOIN *join, uint64_t options, uint32_t no_jbuf_after)
{
uint32_t i;
bool statistics= test(!(join->select_options & SELECT_DESCRIBE));
bool sorted= 1;
for (i=join->const_tables ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
Table *table=tab->table;
bool using_join_cache;
tab->read_record.table= table;
tab->read_record.file=table->file;
tab->next_select=sub_select; /* normal select */
/*
TODO: don't always instruct first table's ref/range access method to
produce sorted output.
*/
tab->sorted= sorted;
sorted= 0; // only first must be sorted
if (tab->insideout_match_tab)
{
if (!(tab->insideout_buf= (unsigned char*)join->session->alloc(tab->table->key_info
[tab->index].
key_length)))
return true;
}
switch (tab->type) {
case JT_SYSTEM: // Only happens with left join
table->status=STATUS_NO_RECORD;
tab->read_first_record= join_read_system;
tab->read_record.read_record= join_no_more_records;
break;
case JT_CONST: // Only happens with left join
table->status=STATUS_NO_RECORD;
tab->read_first_record= join_read_const;
tab->read_record.read_record= join_no_more_records;
if (table->covering_keys.test(tab->ref.key) &&
!table->no_keyread)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
break;
case JT_EQ_REF:
table->status=STATUS_NO_RECORD;
if (tab->select)
{
delete tab->select->quick;
tab->select->quick=0;
}
delete tab->quick;
tab->quick=0;
tab->read_first_record= join_read_key;
tab->read_record.read_record= join_no_more_records;
if (table->covering_keys.test(tab->ref.key) &&
!table->no_keyread)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
else
push_index_cond(tab, tab->ref.key, true);
break;
case JT_REF_OR_NULL:
case JT_REF:
table->status=STATUS_NO_RECORD;
if (tab->select)
{
delete tab->select->quick;
tab->select->quick=0;
}
delete tab->quick;
tab->quick=0;
if (table->covering_keys.test(tab->ref.key) &&
!table->no_keyread)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
else
push_index_cond(tab, tab->ref.key, true);
if (tab->type == JT_REF)
{
tab->read_first_record= join_read_always_key;
tab->read_record.read_record= tab->insideout_match_tab?
join_read_next_same_diff : join_read_next_same;
}
else
{
tab->read_first_record= join_read_always_key_or_null;
tab->read_record.read_record= join_read_next_same_or_null;
}
break;
case JT_ALL:
/*
If previous table use cache
If the incoming data set is already sorted don't use cache.
*/
table->status=STATUS_NO_RECORD;
using_join_cache= false;
if (i != join->const_tables && !(options & SELECT_NO_JOIN_CACHE) &&
tab->use_quick != 2 && !tab->first_inner && i <= no_jbuf_after &&
!tab->insideout_match_tab)
{
if ((options & SELECT_DESCRIBE) ||
!join_init_cache(join->session,join->join_tab+join->const_tables,
i-join->const_tables))
{
using_join_cache= true;
tab[-1].next_select=sub_select_cache; /* Patch previous */
}
}
/* These init changes read_record */
if (tab->use_quick == 2)
{
join->session->server_status|=SERVER_QUERY_NO_GOOD_INDEX_USED;
tab->read_first_record= join_init_quick_read_record;
if (statistics)
status_var_increment(join->session->status_var.select_range_check_count);
}
else
{
tab->read_first_record= join_init_read_record;
if (i == join->const_tables)
{
if (tab->select && tab->select->quick)
{
if (statistics)
status_var_increment(join->session->status_var.select_range_count);
}
else
{
join->session->server_status|=SERVER_QUERY_NO_INDEX_USED;
if (statistics)
status_var_increment(join->session->status_var.select_scan_count);
}
}
else
{
if (tab->select && tab->select->quick)
{
if (statistics)
status_var_increment(join->session->status_var.select_full_range_join_count);
}
else
{
join->session->server_status|=SERVER_QUERY_NO_INDEX_USED;
if (statistics)
status_var_increment(join->session->status_var.select_full_join_count);
}
}
if (!table->no_keyread)
{
if (tab->select && tab->select->quick &&
tab->select->quick->index != MAX_KEY && //not index_merge
table->covering_keys.test(tab->select->quick->index))
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
else if (!table->covering_keys.none() &&
!(tab->select && tab->select->quick))
{ // Only read index tree
if (!tab->insideout_match_tab)
{
/*
See bug #26447: "Using the clustered index for a table scan
is always faster than using a secondary index".
*/
if (table->s->primary_key != MAX_KEY &&
table->file->primary_key_is_clustered())
tab->index= table->s->primary_key;
else
tab->index= table->find_shortest_key(&table->covering_keys);
}
tab->read_first_record= join_read_first;
tab->type=JT_NEXT; // Read with index_first / index_next
}
}
if (tab->select && tab->select->quick &&
tab->select->quick->index != MAX_KEY && ! tab->table->key_read)
push_index_cond(tab, tab->select->quick->index, !using_join_cache);
}
break;
default:
break; /* purecov: deadcode */
case JT_UNKNOWN:
case JT_MAYBE_REF:
abort(); /* purecov: deadcode */
}
}
join->join_tab[join->tables-1].next_select=0; /* Set by do_select */
return(false);
}
/**
Give error if we some tables are done with a full join.
This is used by multi_table_update and multi_table_delete when running
in safe mode.
@param join Join condition
@retval
0 ok
@retval
1 Error (full join used)
*/
bool error_if_full_join(JOIN *join)
{
for (JOIN_TAB *tab=join->join_tab, *end=join->join_tab+join->tables;
tab < end;
tab++)
{
if (tab->type == JT_ALL && (!tab->select || !tab->select->quick))
{
my_message(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
ER(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE), MYF(0));
return(1);
}
}
return(0);
}
/**
cleanup JOIN_TAB.
*/
void JOIN_TAB::cleanup()
{
delete select;
select= 0;
delete quick;
quick= 0;
if (cache.buff)
free(cache.buff);
cache.buff= 0;
limit= 0;
if (table)
{
if (table->key_read)
{
table->key_read= 0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
table->file->ha_index_or_rnd_end();
/*
We need to reset this for next select
(Tested in part_of_refkey)
*/
table->reginfo.join_tab= 0;
}
end_read_record(&read_record);
}
/**
Partially cleanup JOIN after it has executed: close index or rnd read
(table cursors), free quick selects.
This function is called in the end of execution of a JOIN, before the used
tables are unlocked and closed.
For a join that is resolved using a temporary table, the first sweep is
performed against actual tables and an intermediate result is inserted
into the temprorary table.
The last sweep is performed against the temporary table. Therefore,
the base tables and associated buffers used to fill the temporary table
are no longer needed, and this function is called to free them.
For a join that is performed without a temporary table, this function
is called after all rows are sent, but before EOF packet is sent.
For a simple SELECT with no subqueries this function performs a full
cleanup of the JOIN and calls mysql_unlock_read_tables to free used base
tables.
If a JOIN is executed for a subquery or if it has a subquery, we can't
do the full cleanup and need to do a partial cleanup only.
- If a JOIN is not the top level join, we must not unlock the tables
because the outer select may not have been evaluated yet, and we
can't unlock only selected tables of a query.
- Additionally, if this JOIN corresponds to a correlated subquery, we
should not free quick selects and join buffers because they will be
needed for the next execution of the correlated subquery.
- However, if this is a JOIN for a [sub]select, which is not
a correlated subquery itself, but has subqueries, we can free it
fully and also free JOINs of all its subqueries. The exception
is a subquery in SELECT list, e.g: @n
SELECT a, (select cmax(b) from t1) group by c @n
This subquery will not be evaluated at first sweep and its value will
not be inserted into the temporary table. Instead, it's evaluated
when selecting from the temporary table. Therefore, it can't be freed
here even though it's not correlated.
@todo
Unlock tables even if the join isn't top level select in the tree
*/
void JOIN::join_free()
{
Select_Lex_Unit *tmp_unit;
Select_Lex *sl;
/*
Optimization: if not EXPLAIN and we are done with the JOIN,
free all tables.
*/
bool full= (!select_lex->uncacheable && !session->lex->describe);
bool can_unlock= full;
cleanup(full);
for (tmp_unit= select_lex->first_inner_unit();
tmp_unit;
tmp_unit= tmp_unit->next_unit())
for (sl= tmp_unit->first_select(); sl; sl= sl->next_select())
{
Item_subselect *subselect= sl->master_unit()->item;
bool full_local= full && (!subselect || subselect->is_evaluated());
/*
If this join is evaluated, we can fully clean it up and clean up all
its underlying joins even if they are correlated -- they will not be
used any more anyway.
If this join is not yet evaluated, we still must clean it up to
close its table cursors -- it may never get evaluated, as in case of
... HAVING false OR a IN (SELECT ...))
but all table cursors must be closed before the unlock.
*/
sl->cleanup_all_joins(full_local);
/* Can't unlock if at least one JOIN is still needed */
can_unlock= can_unlock && full_local;
}
/*
We are not using tables anymore
Unlock all tables. We may be in an INSERT .... SELECT statement.
*/
if (can_unlock && lock && session->lock &&
!(select_options & SELECT_NO_UNLOCK) &&
!select_lex->subquery_in_having &&
(select_lex == (session->lex->unit.fake_select_lex ?
session->lex->unit.fake_select_lex : &session->lex->select_lex)))
{
/*
TODO: unlock tables even if the join isn't top level select in the
tree.
*/
mysql_unlock_read_tables(session, lock); // Don't free join->lock
lock= 0;
}
return;
}
/**
Free resources of given join.
@param fill true if we should free all resources, call with full==1
should be last, before it this function can be called with
full==0
@note
With subquery this function definitely will be called several times,
but even for simple query it can be called several times.
*/
void JOIN::cleanup(bool full)
{
if (table)
{
JOIN_TAB *tab,*end;
/*
Only a sorted table may be cached. This sorted table is always the
first non const table in join->table
*/
if (tables > const_tables) // Test for not-const tables
{
free_io_cache(table[const_tables]);
filesort_free_buffers(table[const_tables],full);
}
if (full)
{
for (tab= join_tab, end= tab+tables; tab != end; tab++)
tab->cleanup();
table= 0;
}
else
{
for (tab= join_tab, end= tab+tables; tab != end; tab++)
{
if (tab->table)
tab->table->file->ha_index_or_rnd_end();
}
}
cleanup_sj_tmp_tables(this);//
}
/*
We are not using tables anymore
Unlock all tables. We may be in an INSERT .... SELECT statement.
*/
if (full)
{
if (tmp_join)
tmp_table_param.copy_field= 0;
group_fields.delete_elements();
/*
We can't call delete_elements() on copy_funcs as this will cause
problems in free_elements() as some of the elements are then deleted.
*/
tmp_table_param.copy_funcs.empty();
/*
If we have tmp_join and 'this' JOIN is not tmp_join and
tmp_table_param.copy_field's of them are equal then we have to remove
pointer to tmp_table_param.copy_field from tmp_join, because it qill
be removed in tmp_table_param.cleanup().
*/
if (tmp_join &&
tmp_join != this &&
tmp_join->tmp_table_param.copy_field ==
tmp_table_param.copy_field)
{
tmp_join->tmp_table_param.copy_field=
tmp_join->tmp_table_param.save_copy_field= 0;
}
tmp_table_param.cleanup();
}
return;
}
/**
Remove the following expressions from order_st BY and GROUP BY:
Constant expressions @n
Expression that only uses tables that are of type EQ_REF and the reference
is in the order_st list or if all refereed tables are of the above type.
In the following, the X field can be removed:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a order_st BY t1.a,t2.X
SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b order_st BY t1.a,t3.X
@endcode
These can't be optimized:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a order_st BY t2.X,t1.a
SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b order_st BY t1.a,t2.c
SELECT * FROM t1,t2 WHERE t1.a=t2.a order_st BY t2.b,t1.a
@endcode
*/
static bool
eq_ref_table(JOIN *join, order_st *start_order, JOIN_TAB *tab)
{
if (tab->cached_eq_ref_table) // If cached
return tab->eq_ref_table;
tab->cached_eq_ref_table=1;
/* We can skip const tables only if not an outer table */
if (tab->type == JT_CONST && !tab->first_inner)
return (tab->eq_ref_table=1); /* purecov: inspected */
if (tab->type != JT_EQ_REF || tab->table->maybe_null)
return (tab->eq_ref_table=0); // We must use this
Item **ref_item=tab->ref.items;
Item **end=ref_item+tab->ref.key_parts;
uint32_t found=0;
table_map map=tab->table->map;
for (; ref_item != end ; ref_item++)
{
if (! (*ref_item)->const_item())
{ // Not a const ref
order_st *order;
for (order=start_order ; order ; order=order->next)
{
if ((*ref_item)->eq(order->item[0],0))
break;
}
if (order)
{
found++;
assert(!(order->used & map));
order->used|=map;
continue; // Used in order_st BY
}
if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables()))
return (tab->eq_ref_table=0);
}
}
/* Check that there was no reference to table before sort order */
for (; found && start_order ; start_order=start_order->next)
{
if (start_order->used & map)
{
found--;
continue;
}
if (start_order->depend_map & map)
return (tab->eq_ref_table=0);
}
return tab->eq_ref_table=1;
}
static bool
only_eq_ref_tables(JOIN *join,order_st *order,table_map tables)
{
for (JOIN_TAB **tab=join->map2table ; tables ; tab++, tables>>=1)
{
if (tables & 1 && !eq_ref_table(join, order, *tab))
return 0;
}
return 1;
}
/** Update the dependency map for the tables. */
static void update_depend_map(JOIN *join)
{
JOIN_TAB *join_tab=join->join_tab, *end=join_tab+join->tables;
for (; join_tab != end ; join_tab++)
{
TABLE_REF *ref= &join_tab->ref;
table_map depend_map=0;
Item **item=ref->items;
uint32_t i;
for (i=0 ; i < ref->key_parts ; i++,item++)
depend_map|=(*item)->used_tables();
ref->depend_map=depend_map & ~OUTER_REF_TABLE_BIT;
depend_map&= ~OUTER_REF_TABLE_BIT;
for (JOIN_TAB **tab=join->map2table;
depend_map ;
tab++,depend_map>>=1 )
{
if (depend_map & 1)
ref->depend_map|=(*tab)->ref.depend_map;
}
}
}
/** Update the dependency map for the sort order. */
static void update_depend_map(JOIN *join, order_st *order)
{
for (; order ; order=order->next)
{
table_map depend_map;
order->item[0]->update_used_tables();
order->depend_map=depend_map=order->item[0]->used_tables();
// Not item_sum(), RAND() and no reference to table outside of sub select
if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))
&& !order->item[0]->with_sum_func)
{
for (JOIN_TAB **tab=join->map2table;
depend_map ;
tab++, depend_map>>=1)
{
if (depend_map & 1)
order->depend_map|=(*tab)->ref.depend_map;
}
}
}
}
/**
Remove all constants and check if order_st only contains simple
expressions.
simple_order is set to 1 if sort_order only uses fields from head table
and the head table is not a LEFT JOIN table.
@param join Join handler
@param first_order List of SORT or GROUP order
@param cond WHERE statement
@param change_list Set to 1 if we should remove things from list.
If this is not set, then only simple_order is
calculated.
@param simple_order Set to 1 if we are only using simple expressions
@return
Returns new sort order
*/
static order_st *
remove_constants(JOIN *join,order_st *first_order, COND *cond,
bool change_list, bool *simple_order)
{
if (join->tables == join->const_tables)
return change_list ? 0 : first_order; // No need to sort
order_st *order,**prev_ptr;
table_map first_table= join->join_tab[join->const_tables].table->map;
table_map not_const_tables= ~join->const_table_map;
table_map ref;
prev_ptr= &first_order;
*simple_order= *join->join_tab[join->const_tables].on_expr_ref ? 0 : 1;
/* NOTE: A variable of not_const_tables ^ first_table; breaks gcc 2.7 */
update_depend_map(join, first_order);
for (order=first_order; order ; order=order->next)
{
table_map order_tables=order->item[0]->used_tables();
if (order->item[0]->with_sum_func)
*simple_order=0; // Must do a temp table to sort
else if (!(order_tables & not_const_tables))
{
if (order->item[0]->with_subselect)
order->item[0]->val_str(&order->item[0]->str_value);
continue; // skip const item
}
else
{
if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))
*simple_order=0;
else
{
Item *comp_item=0;
if (cond && const_expression_in_where(cond,order->item[0], &comp_item))
{
continue;
}
if ((ref=order_tables & (not_const_tables ^ first_table)))
{
if (!(order_tables & first_table) &&
only_eq_ref_tables(join,first_order, ref))
{
continue;
}
*simple_order=0; // Must do a temp table to sort
}
}
}
if (change_list)
*prev_ptr= order; // use this entry
prev_ptr= &order->next;
}
if (change_list)
*prev_ptr=0;
if (prev_ptr == &first_order) // Nothing to sort/group
*simple_order=1;
return(first_order);
}
static int
return_zero_rows(JOIN *join, select_result *result,TableList *tables,
List<Item> &fields, bool send_row, uint64_t select_options,
const char *info, Item *having)
{
if (select_options & SELECT_DESCRIBE)
{
select_describe(join, false, false, false, info);
return(0);
}
join->join_free();
if (send_row)
{
for (TableList *table= tables; table; table= table->next_leaf)
table->table->mark_as_null_row(); // All fields are NULL
if (having && having->val_int() == 0)
send_row=0;
}
if (!(result->send_fields(fields,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)))
{
if (send_row)
{
List_iterator_fast<Item> it(fields);
Item *item;
while ((item= it++))
item->no_rows_in_result();
result->send_data(fields);
}
result->send_eof(); // Should be safe
}
/* Update results for FOUND_ROWS */
join->session->limit_found_rows= join->session->examined_row_count= 0;
return(0);
}
/*
used only in JOIN::clear
*/
static void clear_tables(JOIN *join)
{
/*
must clear only the non-const tables, as const tables
are not re-calculated.
*/
for (uint32_t i=join->const_tables ; i < join->tables ; i++)
join->table[i]->mark_as_null_row(); // All fields are NULL
}
/*****************************************************************************
Make som simple condition optimization:
If there is a test 'field = const' change all refs to 'field' to 'const'
Remove all dummy tests 'item = item', 'const op const'.
Remove all 'item is NULL', when item can never be null!
item->marker should be 0 for all items on entry
Return in cond_value false if condition is impossible (1 = 2)
*****************************************************************************/
class COND_CMP :public ilink {
public:
static void *operator new(size_t size)
{
return (void*) sql_alloc((uint32_t) size);
}
static void operator delete(void *, size_t)
{ TRASH(ptr, size); }
Item *and_level;
Item_func *cmp_func;
COND_CMP(Item *a,Item_func *b) :and_level(a),cmp_func(b) {}
};
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
template class I_List<COND_CMP>;
template class I_List_iterator<COND_CMP>;
#endif
/**
Find the multiple equality predicate containing a field.
The function retrieves the multiple equalities accessed through
the con_equal structure from current level and up looking for
an equality containing field. It stops retrieval as soon as the equality
is found and set up inherited_fl to true if it's found on upper levels.
@param cond_equal multiple equalities to search in
@param field field to look for
@param[out] inherited_fl set up to true if multiple equality is found
on upper levels (not on current level of
cond_equal)
@return
- Item_equal for the found multiple equality predicate if a success;
- NULL otherwise.
*/
Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
bool *inherited_fl)
{
Item_equal *item= 0;
bool in_upper_level= false;
while (cond_equal)
{
List_iterator_fast<Item_equal> li(cond_equal->current_level);
while ((item= li++))
{
if (item->contains(field))
goto finish;
}
in_upper_level= true;
cond_equal= cond_equal->upper_levels;
}
in_upper_level= false;
finish:
*inherited_fl= in_upper_level;
return item;
}
/**
Check whether an equality can be used to build multiple equalities.
This function first checks whether the equality (left_item=right_item)
is a simple equality i.e. the one that equates a field with another field
or a constant (field=field_item or field=const_item).
If this is the case the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds a multiple
equality that covers the predicate, i.e. the predicate can be inferred
from this multiple equality.
The built multiple equality could be obtained in such a way:
create a binary multiple equality equivalent to the predicate, then
merge it, if possible, with one of old multiple equalities.
This guarantees that the set of multiple equalities covering equality
predicates will be minimal.
EXAMPLE:
For the where condition
@code
WHERE a=b AND b=c AND
(b=2 OR f=e)
@endcode
the check_equality will be called for the following equality
predicates a=b, b=c, b=2 and f=e.
- For a=b it will be called with *cond_equal=(0,[]) and will transform
*cond_equal into (0,[Item_equal(a,b)]).
- For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
- For b=2 it will be called with *cond_equal=(ptr(CE),[])
and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
- For f=e it will be called with *cond_equal=(ptr(CE), [])
and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).
@note
Now only fields that have the same type definitions (verified by
the Field::eq_def method) are placed to the same multiple equalities.
Because of this some equality predicates are not eliminated and
can be used in the constant propagation procedure.
We could weeken the equlity test as soon as at least one of the
equal fields is to be equal to a constant. It would require a
more complicated implementation: we would have to store, in
general case, its own constant for each fields from the multiple
equality. But at the same time it would allow us to get rid
of constant propagation completely: it would be done by the call
to build_equal_items_for_cond.
The implementation does not follow exactly the above rules to
build a new multiple equality for the equality predicate.
If it processes the equality of the form field1=field2, it
looks for multiple equalities me1 containig field1 and me2 containing
field2. If only one of them is found the fuction expands it with
the lacking field. If multiple equalities for both fields are
found they are merged. If both searches fail a new multiple equality
containing just field1 and field2 is added to the existing
multiple equalities.
If the function processes the predicate of the form field1=const,
it looks for a multiple equality containing field1. If found, the
function checks the constant of the multiple equality. If the value
is unknown, it is setup to const. Otherwise the value is compared with
const and the evaluation of the equality predicate is performed.
When expanding/merging equality predicates from the upper levels
the function first copies them for the current level. It looks
acceptable, as this happens rarely. The implementation without
copying would be much more complicated.
@param left_item left term of the quality to be checked
@param right_item right term of the equality to be checked
@param item equality item if the equality originates from a condition
predicate, 0 if the equality is the result of row
elimination
@param cond_equal multiple equalities that must hold together with the
equality
@retval
true if the predicate is a simple equality predicate to be used
for building multiple equalities
@retval
false otherwise
*/
static bool check_simple_equality(Item *left_item, Item *right_item,
Item *item, COND_EQUAL *cond_equal)
{
if (left_item->type() == Item::FIELD_ITEM &&
right_item->type() == Item::FIELD_ITEM &&
!((Item_field*)left_item)->depended_from &&
!((Item_field*)right_item)->depended_from)
{
/* The predicate the form field1=field2 is processed */
Field *left_field= ((Item_field*) left_item)->field;
Field *right_field= ((Item_field*) right_item)->field;
if (!left_field->eq_def(right_field))
return false;
/* Search for multiple equalities containing field1 and/or field2 */
bool left_copyfl, right_copyfl;
Item_equal *left_item_equal=
find_item_equal(cond_equal, left_field, &left_copyfl);
Item_equal *right_item_equal=
find_item_equal(cond_equal, right_field, &right_copyfl);
/* As (NULL=NULL) != true we can't just remove the predicate f=f */
if (left_field->eq(right_field)) /* f = f */
return (!(left_field->maybe_null() && !left_item_equal));
if (left_item_equal && left_item_equal == right_item_equal)
{
/*
The equality predicate is inference of one of the existing
multiple equalities, i.e the condition is already covered
by upper level equalities
*/
return true;
}
bool copy_item_name= test(item && item->name >= subq_sj_cond_name &&
item->name < subq_sj_cond_name + 64);
/* Copy the found multiple equalities at the current level if needed */
if (left_copyfl)
{
/* left_item_equal of an upper level contains left_item */
left_item_equal= new Item_equal(left_item_equal);
cond_equal->current_level.push_back(left_item_equal);
if (copy_item_name)
left_item_equal->name = item->name;
}
if (right_copyfl)
{
/* right_item_equal of an upper level contains right_item */
right_item_equal= new Item_equal(right_item_equal);
cond_equal->current_level.push_back(right_item_equal);
if (copy_item_name)
right_item_equal->name = item->name;
}
if (left_item_equal)
{
/* left item was found in the current or one of the upper levels */
if (! right_item_equal)
left_item_equal->add((Item_field *) right_item);
else
{
/* Merge two multiple equalities forming a new one */
left_item_equal->merge(right_item_equal);
/* Remove the merged multiple equality from the list */
List_iterator<Item_equal> li(cond_equal->current_level);
while ((li++) != right_item_equal) {};
li.remove();
}
}
else
{
/* left item was not found neither the current nor in upper levels */
if (right_item_equal)
{
right_item_equal->add((Item_field *) left_item);
if (copy_item_name)
right_item_equal->name = item->name;
}
else
{
/* None of the fields was found in multiple equalities */
Item_equal *item_equal= new Item_equal((Item_field *) left_item,
(Item_field *) right_item);
cond_equal->current_level.push_back(item_equal);
if (copy_item_name)
item_equal->name = item->name;
}
}
return true;
}
{
/* The predicate of the form field=const/const=field is processed */
Item *const_item= 0;
Item_field *field_item= 0;
if (left_item->type() == Item::FIELD_ITEM &&
!((Item_field*)left_item)->depended_from &&
right_item->const_item())
{
field_item= (Item_field*) left_item;
const_item= right_item;
}
else if (right_item->type() == Item::FIELD_ITEM &&
!((Item_field*)right_item)->depended_from &&
left_item->const_item())
{
field_item= (Item_field*) right_item;
const_item= left_item;
}
if (const_item &&
field_item->result_type() == const_item->result_type())
{
bool copyfl;
if (field_item->result_type() == STRING_RESULT)
{
const CHARSET_INFO * const cs= ((Field_str*) field_item->field)->charset();
if (!item)
{
Item_func_eq *eq_item;
if ((eq_item= new Item_func_eq(left_item, right_item)))
return false;
eq_item->set_cmp_func();
eq_item->quick_fix_field();
item= eq_item;
}
if ((cs != ((Item_func *) item)->compare_collation()) ||
!cs->coll->propagate(cs, 0, 0))
return false;
}
Item_equal *item_equal = find_item_equal(cond_equal,
field_item->field, ©fl);
if (copyfl)
{
item_equal= new Item_equal(item_equal);
cond_equal->current_level.push_back(item_equal);
}
if (item_equal)
{
/*
The flag cond_false will be set to 1 after this, if item_equal
already contains a constant and its value is not equal to
the value of const_item.
*/
item_equal->add(const_item);
}
else
{
item_equal= new Item_equal(const_item, field_item);
cond_equal->current_level.push_back(item_equal);
}
return true;
}
}
return false;
}
/**
Convert row equalities into a conjunction of regular equalities.
The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
Ei=E'i the function checks whether it is a simple equality or a row
equality. If it is a simple equality it is used to expand multiple
equalities of cond_equal. If it is a row equality it converted to a
sequence of equalities between row elements. If Ei=E'i is neither a
simple equality nor a row equality the item for this predicate is added
to eq_list.
@param session thread handle
@param left_row left term of the row equality to be processed
@param right_row right term of the row equality to be processed
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@retval
true if conversion has succeeded (no fatal error)
@retval
false otherwise
*/
static bool check_row_equality(Session *session, Item *left_row, Item_row *right_row,
COND_EQUAL *cond_equal, List<Item>* eq_list)
{
uint32_t n= left_row->cols();
for (uint32_t i= 0 ; i < n; i++)
{
bool is_converted;
Item *left_item= left_row->element_index(i);
Item *right_item= right_row->element_index(i);
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM)
{
is_converted= check_row_equality(session,
(Item_row *) left_item,
(Item_row *) right_item,
cond_equal, eq_list);
if (!is_converted)
session->lex->current_select->cond_count++;
}
else
{
is_converted= check_simple_equality(left_item, right_item, 0, cond_equal);
session->lex->current_select->cond_count++;
}
if (!is_converted)
{
Item_func_eq *eq_item;
if (!(eq_item= new Item_func_eq(left_item, right_item)))
return false;
eq_item->set_cmp_func();
eq_item->quick_fix_field();
eq_list->push_back(eq_item);
}
}
return true;
}
/**
Eliminate row equalities and form multiple equalities predicates.
This function checks whether the item is a simple equality
i.e. the one that equates a field with another field or a constant
(field=field_item or field=constant_item), or, a row equality.
For a simple equality the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds/expands
multiple equality that covers the predicate.
Row equalities are eliminated substituted for conjunctive regular
equalities which are treated in the same way as original equality
predicates.
@param session thread handle
@param item predicate to process
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@retval
true if re-writing rules have been applied
@retval
false otherwise, i.e.
if the predicate is not an equality,
or, if the equality is neither a simple one nor a row equality,
or, if the procedure fails by a fatal error.
*/
static bool check_equality(Session *session, Item *item, COND_EQUAL *cond_equal,
List<Item> *eq_list)
{
if (item->type() == Item::FUNC_ITEM &&
((Item_func*) item)->functype() == Item_func::EQ_FUNC)
{
Item *left_item= ((Item_func*) item)->arguments()[0];
Item *right_item= ((Item_func*) item)->arguments()[1];
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM)
{
session->lex->current_select->cond_count--;
return check_row_equality(session,
(Item_row *) left_item,
(Item_row *) right_item,
cond_equal, eq_list);
}
else
return check_simple_equality(left_item, right_item, item, cond_equal);
}
return false;
}
/**
Replace all equality predicates in a condition by multiple equality items.
At each 'and' level the function detects items for equality predicates
and replaced them by a set of multiple equality items of class Item_equal,
taking into account inherited equalities from upper levels.
If an equality predicate is used not in a conjunction it's just
replaced by a multiple equality predicate.
For each 'and' level the function set a pointer to the inherited
multiple equalities in the cond_equal field of the associated
object of the type Item_cond_and.
The function also traverses the cond tree and and for each field reference
sets a pointer to the multiple equality item containing the field, if there
is any. If this multiple equality equates fields to a constant the
function replaces the field reference by the constant in the cases
when the field is not of a string type or when the field reference is
just an argument of a comparison predicate.
The function also determines the maximum number of members in
equality lists of each Item_cond_and object assigning it to
session->lex->current_select->max_equal_elems.
@note
Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of
f1=f2, .., fn-1=fn. It substitutes any inference from these
equality predicates that is equivalent to the conjunction.
Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
it is equivalent to ((a1=a2) AND (a2=a3)).
The function always makes a substitution of all equality predicates occured
in a conjuction for a minimal set of multiple equality predicates.
This set can be considered as a canonical representation of the
sub-conjunction of the equality predicates.
E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by
(=(t1.a,t2.b,t3.c) AND t2.b>5), not by
(=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
(=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
but if additionally =(t4.d,t2.b) is inherited, it
will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)
The function performs the substitution in a recursive descent by
the condtion tree, passing to the next AND level a chain of multiple
equality predicates which have been built at the upper levels.
The Item_equal items built at the level are attached to other
non-equality conjucts as a sublist. The pointer to the inherited
multiple equalities is saved in the and condition object (Item_cond_and).
This chain allows us for any field reference occurence easyly to find a
multiple equality that must be held for this occurence.
For each AND level we do the following:
- scan it for all equality predicate (=) items
- join them into disjoint Item_equal() groups
- process the included OR conditions recursively to do the same for
lower AND levels.
We need to do things in this order as lower AND levels need to know about
all possible Item_equal objects in upper levels.
@param session thread handle
@param cond condition(expression) where to make replacement
@param inherited path to all inherited multiple equality items
@return
pointer to the transformed condition
*/
static COND *build_equal_items_for_cond(Session *session, COND *cond,
COND_EQUAL *inherited)
{
Item_equal *item_equal;
COND_EQUAL cond_equal;
cond_equal.upper_levels= inherited;
if (cond->type() == Item::COND_ITEM)
{
List<Item> eq_list;
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
List<Item> *args= ((Item_cond*) cond)->argument_list();
List_iterator<Item> li(*args);
Item *item;
if (and_level)
{
/*
Retrieve all conjucts of this level detecting the equality
that are subject to substitution by multiple equality items and
removing each such predicate from the conjunction after having
found/created a multiple equality whose inference the predicate is.
*/
while ((item= li++))
{
/*
PS/SP note: we can safely remove a node from AND-OR
structure here because it's restored before each
re-execution of any prepared statement/stored procedure.
*/
if (check_equality(session, item, &cond_equal, &eq_list))
li.remove();
}
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal= it++))
{
item_equal->fix_length_and_dec();
item_equal->update_used_tables();
set_if_bigger(session->lex->current_select->max_equal_elems,
item_equal->members());
}
((Item_cond_and*)cond)->cond_equal= cond_equal;
inherited= &(((Item_cond_and*)cond)->cond_equal);
}
/*
Make replacement of equality predicates for lower levels
of the condition expression.
*/
li.rewind();
while ((item= li++))
{
Item *new_item;
if ((new_item= build_equal_items_for_cond(session, item, inherited)) != item)
{
/* This replacement happens only for standalone equalities */
/*
This is ok with PS/SP as the replacement is done for
arguments of an AND/OR item, which are restored for each
execution of PS/SP.
*/
li.replace(new_item);
}
}
if (and_level)
{
args->concat(&eq_list);
args->concat((List<Item> *)&cond_equal.current_level);
}
}
else if (cond->type() == Item::FUNC_ITEM)
{
List<Item> eq_list;
/*
If an equality predicate forms the whole and level,
we call it standalone equality and it's processed here.
E.g. in the following where condition
WHERE a=5 AND (b=5 or a=c)
(b=5) and (a=c) are standalone equalities.
In general we can't leave alone standalone eqalities:
for WHERE a=b AND c=d AND (b=c OR d=5)
b=c is replaced by =(a,b,c,d).
*/
if (check_equality(session, cond, &cond_equal, &eq_list))
{
int n= cond_equal.current_level.elements + eq_list.elements;
if (n == 0)
return new Item_int((int64_t) 1,1);
else if (n == 1)
{
if ((item_equal= cond_equal.current_level.pop()))
{
item_equal->fix_length_and_dec();
item_equal->update_used_tables();
}
else
item_equal= (Item_equal *) eq_list.pop();
set_if_bigger(session->lex->current_select->max_equal_elems,
item_equal->members());
return item_equal;
}
else
{
/*
Here a new AND level must be created. It can happen only
when a row equality is processed as a standalone predicate.
*/
Item_cond_and *and_cond= new Item_cond_and(eq_list);
and_cond->quick_fix_field();
List<Item> *args= and_cond->argument_list();
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal= it++))
{
item_equal->fix_length_and_dec();
item_equal->update_used_tables();
set_if_bigger(session->lex->current_select->max_equal_elems,
item_equal->members());
}
and_cond->cond_equal= cond_equal;
args->concat((List<Item> *)&cond_equal.current_level);
return and_cond;
}
}
/*
For each field reference in cond, not from equal item predicates,
set a pointer to the multiple equality it belongs to (if there is any)
as soon the field is not of a string type or the field reference is
an argument of a comparison predicate.
*/
unsigned char *is_subst_valid= (unsigned char *) 1;
cond= cond->compile(&Item::subst_argument_checker,
&is_subst_valid,
&Item::equal_fields_propagator,
(unsigned char *) inherited);
cond->update_used_tables();
}
return cond;
}
/**
Build multiple equalities for a condition and all on expressions that
inherit these multiple equalities.
The function first applies the build_equal_items_for_cond function
to build all multiple equalities for condition cond utilizing equalities
referred through the parameter inherited. The extended set of
equalities is returned in the structure referred by the cond_equal_ref
parameter. After this the function calls itself recursively for
all on expressions whose direct references can be found in join_list
and who inherit directly the multiple equalities just having built.
@note
The on expression used in an outer join operation inherits all equalities
from the on expression of the embedding join, if there is any, or
otherwise - from the where condition.
This fact is not obvious, but presumably can be proved.
Consider the following query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
WHERE t1.a=t2.a;
@endcode
If the on expression in the query inherits =(t1.a,t2.a), then we
can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
the equality t3.a=t4.a. Although the on expression
t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
in the query the latter can be replaced by the former: the new query
will return the same result set as the original one.
Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
to use t1.a=t3.a AND t3.a=t4.a under the on condition:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
This query equivalent to:
@code
SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
WHERE t1.a=t2.a
@endcode
Similarly the original query can be rewritten to the query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
that is equivalent to:
@code
SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
WHERE t1.a=t2.a
@endcode
Thus, applying equalities from the where condition we basically
can get more freedom in performing join operations.
Althogh we don't use this property now, it probably makes sense to use
it in the future.
@param session Thread handler
@param cond condition to build the multiple equalities for
@param inherited path to all inherited multiple equality items
@param join_list list of join tables to which the condition
refers to
@param[out] cond_equal_ref pointer to the structure to place built
equalities in
@return
pointer to the transformed condition containing multiple equalities
*/
static COND *build_equal_items(Session *session, COND *cond,
COND_EQUAL *inherited,
List<TableList> *join_list,
COND_EQUAL **cond_equal_ref)
{
COND_EQUAL *cond_equal= 0;
if (cond)
{
cond= build_equal_items_for_cond(session, cond, inherited);
cond->update_used_tables();
if (cond->type() == Item::COND_ITEM &&
((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
cond_equal= &((Item_cond_and*) cond)->cond_equal;
else if (cond->type() == Item::FUNC_ITEM &&
((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
cond_equal= new COND_EQUAL;
cond_equal->current_level.push_back((Item_equal *) cond);
}
}
if (cond_equal)
{
cond_equal->upper_levels= inherited;
inherited= cond_equal;
}
*cond_equal_ref= cond_equal;
if (join_list)
{
TableList *table;
List_iterator<TableList> li(*join_list);
while ((table= li++))
{
if (table->on_expr)
{
List<TableList> *nested_join_list= table->nested_join ?
&table->nested_join->join_list : NULL;
/*
We can modify table->on_expr because its old value will
be restored before re-execution of PS/SP.
*/
table->on_expr= build_equal_items(session, table->on_expr, inherited,
nested_join_list,
&table->cond_equal);
}
}
}
return cond;
}
/**
Compare field items by table order in the execution plan.
field1 considered as better than field2 if the table containing
field1 is accessed earlier than the table containing field2.
The function finds out what of two fields is better according
this criteria.
@param field1 first field item to compare
@param field2 second field item to compare
@param table_join_idx index to tables determining table order
@retval
1 if field1 is better than field2
@retval
-1 if field2 is better than field1
@retval
0 otherwise
*/
static int compare_fields_by_table_order(Item_field *field1,
Item_field *field2,
void *table_join_idx)
{
int cmp= 0;
bool outer_ref= 0;
if (field2->used_tables() & OUTER_REF_TABLE_BIT)
{
outer_ref= 1;
cmp= -1;
}
if (field2->used_tables() & OUTER_REF_TABLE_BIT)
{
outer_ref= 1;
cmp++;
}
if (outer_ref)
return cmp;
JOIN_TAB **idx= (JOIN_TAB **) table_join_idx;
cmp= idx[field2->field->table->tablenr]-idx[field1->field->table->tablenr];
return cmp < 0 ? -1 : (cmp ? 1 : 0);
}
/**
Generate minimal set of simple equalities equivalent to a multiple equality.
The function retrieves the fields of the multiple equality item
item_equal and for each field f:
- if item_equal contains const it generates the equality f=const_item;
- otherwise, if f is not the first field, generates the equality
f=item_equal->get_first().
All generated equality are added to the cond conjunction.
@param cond condition to add the generated equality to
@param upper_levels structure to access multiple equality of upper levels
@param item_equal multiple equality to generate simple equality from
@note
Before generating an equality function checks that it has not
been generated for multiple equalities of the upper levels.
E.g. for the following where condition
WHERE a=5 AND ((a=b AND b=c) OR c>4)
the upper level AND condition will contain =(5,a),
while the lower level AND condition will contain =(5,a,b,c).
When splitting =(5,a,b,c) into a separate equality predicates
we should omit 5=a, as we have it already in the upper level.
The following where condition gives us a more complicated case:
WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
Given the tables are accessed in the order t1->t2->t3->t4 for
the selected query execution plan the lower level multiple
equality =(t1.a,t2.b,t3.c,t4.d) formally should be converted to
t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
generated for the upper level. Also t3.c=t4.d will be generated there.
So only t1.a=t3.c should be left in the lower level.
If cond is equal to 0, then not more then one equality is generated
and a pointer to it is returned as the result of the function.
@return
- The condition with generated simple equalities or
a pointer to the simple generated equality, if success.
- 0, otherwise.
*/
static Item *eliminate_item_equal(COND *cond, COND_EQUAL *upper_levels,
Item_equal *item_equal)
{
List<Item> eq_list;
Item_func_eq *eq_item= 0;
if (((Item *) item_equal)->const_item() && !item_equal->val_int())
return new Item_int((int64_t) 0,1);
Item *item_const= item_equal->get_const();
Item_equal_iterator it(*item_equal);
Item *head;
if (item_const)
head= item_const;
else
{
head= item_equal->get_first();
it++;
}
Item_field *item_field;
while ((item_field= it++))
{
Item_equal *upper= item_field->find_item_equal(upper_levels);
Item_field *item= item_field;
if (upper)
{
if (item_const && upper->get_const())
item= 0;
else
{
Item_equal_iterator li(*item_equal);
while ((item= li++) != item_field)
{
if (item->find_item_equal(upper_levels) == upper)
break;
}
}
}
if (item == item_field)
{
if (eq_item)
eq_list.push_back(eq_item);
eq_item= new Item_func_eq(item_field, head);
if (!eq_item)
return 0;
eq_item->set_cmp_func();
eq_item->quick_fix_field();
}
}
if (!cond && !eq_list.head())
{
if (!eq_item)
return new Item_int((int64_t) 1,1);
return eq_item;
}
if (eq_item)
eq_list.push_back(eq_item);
if (!cond)
cond= new Item_cond_and(eq_list);
else
{
assert(cond->type() == Item::COND_ITEM);
((Item_cond *) cond)->add_at_head(&eq_list);
}
cond->quick_fix_field();
cond->update_used_tables();
return cond;
}
/**
Substitute every field reference in a condition by the best equal field
and eliminate all multiple equality predicates.
The function retrieves the cond condition and for each encountered
multiple equality predicate it sorts the field references in it
according to the order of tables specified by the table_join_idx
parameter. Then it eliminates the multiple equality predicate it
replacing it by the conjunction of simple equality predicates
equating every field from the multiple equality to the first
field in it, or to the constant, if there is any.
After this the function retrieves all other conjuncted
predicates substitute every field reference by the field reference
to the first equal field or equal constant if there are any.
@param cond condition to process
@param cond_equal multiple equalities to take into consideration
@param table_join_idx index to tables determining field preference
@note
At the first glance full sort of fields in multiple equality
seems to be an overkill. Yet it's not the case due to possible
new fields in multiple equality item of lower levels. We want
the order in them to comply with the order of upper levels.
@return
The transformed condition
*/
static COND* substitute_for_best_equal_field(COND *cond,
COND_EQUAL *cond_equal,
void *table_join_idx)
{
Item_equal *item_equal;
if (cond->type() == Item::COND_ITEM)
{
List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
if (and_level)
{
cond_equal= &((Item_cond_and *) cond)->cond_equal;
cond_list->disjoin((List<Item> *) &cond_equal->current_level);
List_iterator_fast<Item_equal> it(cond_equal->current_level);
while ((item_equal= it++))
{
item_equal->sort(&compare_fields_by_table_order, table_join_idx);
}
}
List_iterator<Item> li(*cond_list);
Item *item;
while ((item= li++))
{
Item *new_item =substitute_for_best_equal_field(item, cond_equal,
table_join_idx);
/*
This works OK with PS/SP re-execution as changes are made to
the arguments of AND/OR items only
*/
if (new_item != item)
li.replace(new_item);
}
if (and_level)
{
List_iterator_fast<Item_equal> it(cond_equal->current_level);
while ((item_equal= it++))
{
cond= eliminate_item_equal(cond, cond_equal->upper_levels, item_equal);
// This occurs when eliminate_item_equal() founds that cond is
// always false and substitutes it with Item_int 0.
// Due to this, value of item_equal will be 0, so just return it.
if (cond->type() != Item::COND_ITEM)
break;
}
}
if (cond->type() == Item::COND_ITEM &&
!((Item_cond*)cond)->argument_list()->elements)
cond= new Item_int((int32_t)cond->val_bool());
}
else if (cond->type() == Item::FUNC_ITEM &&
((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
item_equal= (Item_equal *) cond;
item_equal->sort(&compare_fields_by_table_order, table_join_idx);
if (cond_equal && cond_equal->current_level.head() == item_equal)
cond_equal= 0;
return eliminate_item_equal(0, cond_equal, item_equal);
}
else
cond->transform(&Item::replace_equal_field, 0);
return cond;
}
/**
Check appearance of new constant items in multiple equalities
of a condition after reading a constant table.
The function retrieves the cond condition and for each encountered
multiple equality checks whether new constants have appeared after
reading the constant (single row) table tab. If so it adjusts
the multiple equality appropriately.
@param cond condition whose multiple equalities are to be checked
@param table constant table that has been read
*/
static void update_const_equal_items(COND *cond, JOIN_TAB *tab)
{
if (!(cond->used_tables() & tab->table->map))
return;
if (cond->type() == Item::COND_ITEM)
{
List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
List_iterator_fast<Item> li(*cond_list);
Item *item;
while ((item= li++))
update_const_equal_items(item, tab);
}
else if (cond->type() == Item::FUNC_ITEM &&
((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
{
Item_equal *item_equal= (Item_equal *) cond;
bool contained_const= item_equal->get_const() != NULL;
item_equal->update_const();
if (!contained_const && item_equal->get_const())
{
/* Update keys for range analysis */
Item_equal_iterator it(*item_equal);
Item_field *item_field;
while ((item_field= it++))
{
Field *field= item_field->field;
JOIN_TAB *stat= field->table->reginfo.join_tab;
key_map possible_keys= field->key_start;
possible_keys&= field->table->keys_in_use_for_query;
stat[0].const_keys|= possible_keys;
/*
For each field in the multiple equality (for which we know that it
is a constant) we have to find its corresponding key part, and set
that key part in const_key_parts.
*/
if (possible_keys.any())
{
Table *field_tab= field->table;
KEYUSE *use;
for (use= stat->keyuse; use && use->table == field_tab; use++)
if (possible_keys.test(use->key) &&
field_tab->key_info[use->key].key_part[use->keypart].field ==
field)
field_tab->const_key_parts[use->key]|= use->keypart_map;
}
}
}
}
}
/*
change field = field to field = const for each found field = const in the
and_level
*/
static void
change_cond_ref_to_const(Session *session, I_List<COND_CMP> *save_list,
Item *and_father, Item *cond,
Item *field, Item *value)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
change_cond_ref_to_const(session, save_list,and_level ? cond : item, item,
field, value);
return;
}
if (cond->eq_cmp_result() == Item::COND_OK)
return; // Not a boolean function
Item_bool_func2 *func= (Item_bool_func2*) cond;
Item **args= func->arguments();
Item *left_item= args[0];
Item *right_item= args[1];
Item_func::Functype functype= func->functype();
if (right_item->eq(field,0) && left_item != value &&
right_item->cmp_context == field->cmp_context &&
(left_item->result_type() != STRING_RESULT ||
value->result_type() != STRING_RESULT ||
left_item->collation.collation == value->collation.collation))
{
Item *tmp=value->clone_item();
tmp->collation.set(right_item->collation);
if (tmp)
{
session->change_item_tree(args + 1, tmp);
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
&& and_father != cond && !left_item->const_item())
{
cond->marker=1;
COND_CMP *tmp2;
if ((tmp2=new COND_CMP(and_father,func)))
save_list->push_back(tmp2);
}
func->set_cmp_func();
}
}
else if (left_item->eq(field,0) && right_item != value &&
left_item->cmp_context == field->cmp_context &&
(right_item->result_type() != STRING_RESULT ||
value->result_type() != STRING_RESULT ||
right_item->collation.collation == value->collation.collation))
{
Item *tmp= value->clone_item();
tmp->collation.set(left_item->collation);
if (tmp)
{
session->change_item_tree(args, tmp);
value= tmp;
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
&& and_father != cond && !right_item->const_item())
{
args[0]= args[1]; // For easy check
session->change_item_tree(args + 1, value);
cond->marker=1;
COND_CMP *tmp2;
if ((tmp2=new COND_CMP(and_father,func)))
save_list->push_back(tmp2);
}
func->set_cmp_func();
}
}
}
/**
Remove additional condition inserted by IN/ALL/ANY transformation.
@param conds condition for processing
@return
new conditions
*/
static Item *remove_additional_cond(Item* conds)
{
if (conds->name == in_additional_cond)
return 0;
if (conds->type() == Item::COND_ITEM)
{
Item_cond *cnd= (Item_cond*) conds;
List_iterator<Item> li(*(cnd->argument_list()));
Item *item;
while ((item= li++))
{
if (item->name == in_additional_cond)
{
li.remove();
if (cnd->argument_list()->elements == 1)
return cnd->argument_list()->head();
return conds;
}
}
}
return conds;
}
static void
propagate_cond_constants(Session *session, I_List<COND_CMP> *save_list,
COND *and_father, COND *cond)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= ((Item_cond*) cond)->functype() ==
Item_func::COND_AND_FUNC;
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
I_List<COND_CMP> save;
while ((item=li++))
{
propagate_cond_constants(session, &save,and_level ? cond : item, item);
}
if (and_level)
{ // Handle other found items
I_List_iterator<COND_CMP> cond_itr(save);
COND_CMP *cond_cmp;
while ((cond_cmp=cond_itr++))
{
Item **args= cond_cmp->cmp_func->arguments();
if (!args[0]->const_item())
change_cond_ref_to_const(session, &save,cond_cmp->and_level,
cond_cmp->and_level, args[0], args[1]);
}
}
}
else if (and_father != cond && !cond->marker) // In a AND group
{
if (cond->type() == Item::FUNC_ITEM &&
(((Item_func*) cond)->functype() == Item_func::EQ_FUNC ||
((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC))
{
Item_func_eq *func=(Item_func_eq*) cond;
Item **args= func->arguments();
bool left_const= args[0]->const_item();
bool right_const= args[1]->const_item();
if (!(left_const && right_const) &&
args[0]->result_type() == args[1]->result_type())
{
if (right_const)
{
resolve_const_item(session, &args[1], args[0]);
func->update_used_tables();
change_cond_ref_to_const(session, save_list, and_father, and_father,
args[0], args[1]);
}
else if (left_const)
{
resolve_const_item(session, &args[0], args[1]);
func->update_used_tables();
change_cond_ref_to_const(session, save_list, and_father, and_father,
args[1], args[0]);
}
}
}
}
}
/**
Simplify joins replacing outer joins by inner joins whenever it's
possible.
The function, during a retrieval of join_list, eliminates those
outer joins that can be converted into inner join, possibly nested.
It also moves the on expressions for the converted outer joins
and from inner joins to conds.
The function also calculates some attributes for nested joins:
- used_tables
- not_null_tables
- dep_tables.
- on_expr_dep_tables
The first two attributes are used to test whether an outer join can
be substituted for an inner join. The third attribute represents the
relation 'to be dependent on' for tables. If table t2 is dependent
on table t1, then in any evaluated execution plan table access to
table t2 must precede access to table t2. This relation is used also
to check whether the query contains invalid cross-references.
The forth attribute is an auxiliary one and is used to calculate
dep_tables.
As the attribute dep_tables qualifies possibles orders of tables in the
execution plan, the dependencies required by the straight join
modifiers are reflected in this attribute as well.
The function also removes all braces that can be removed from the join
expression without changing its meaning.
@note
An outer join can be replaced by an inner join if the where condition
or the on expression for an embedding nested join contains a conjunctive
predicate rejecting null values for some attribute of the inner tables.
E.g. in the query:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
the predicate t2.b < 5 rejects nulls.
The query is converted first to:
@code
SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
then to the equivalent form:
@code
SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a
@endcode
Similarly the following query:
@code
SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b
WHERE t2.c < 5
@endcode
is converted to:
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b
@endcode
One conversion might trigger another:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a
LEFT JOIN t3 ON t3.b=t2.b
WHERE t3 IS NOT NULL =>
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b =>
SELECT * FROM t1, t2, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a
@endcode
The function removes all unnecessary braces from the expression
produced by the conversions.
E.g.
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
finally is converted to:
@code
SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
It also will remove braces from the following queries:
@code
SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b
SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b.
@endcode
The benefit of this simplification procedure is that it might return
a query for which the optimizer can evaluate execution plan with more
join orders. With a left join operation the optimizer does not
consider any plan where one of the inner tables is before some of outer
tables.
IMPLEMENTATION
The function is implemented by a recursive procedure. On the recursive
ascent all attributes are calculated, all outer joins that can be
converted are replaced and then all unnecessary braces are removed.
As join list contains join tables in the reverse order sequential
elimination of outer joins does not require extra recursive calls.
SEMI-JOIN NOTES
Remove all semi-joins that have are within another semi-join (i.e. have
an "ancestor" semi-join nest)
EXAMPLES
Here is an example of a join query with invalid cross references:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b
@endcode
@param join reference to the query info
@param join_list list representation of the join to be converted
@param conds conditions to add on expressions for converted joins
@param top true <=> conds is the where condition
@return
- The new condition, if success
- 0, otherwise
*/
static COND *
simplify_joins(JOIN *join, List<TableList> *join_list, COND *conds, bool top,
bool in_sj)
{
TableList *table;
nested_join_st *nested_join;
TableList *prev_table= 0;
List_iterator<TableList> li(*join_list);
/*
Try to simplify join operations from join_list.
The most outer join operation is checked for conversion first.
*/
while ((table= li++))
{
table_map used_tables;
table_map not_null_tables= (table_map) 0;
if ((nested_join= table->nested_join))
{
/*
If the element of join_list is a nested join apply
the procedure to its nested join list first.
*/
if (table->on_expr)
{
Item *expr= table->on_expr;
/*
If an on expression E is attached to the table,
check all null rejected predicates in this expression.
If such a predicate over an attribute belonging to
an inner table of an embedded outer join is found,
the outer join is converted to an inner join and
the corresponding on expression is added to E.
*/
expr= simplify_joins(join, &nested_join->join_list,
expr, false, in_sj || table->sj_on_expr);
if (!table->prep_on_expr || expr != table->on_expr)
{
assert(expr);
table->on_expr= expr;
table->prep_on_expr= expr->copy_andor_structure(join->session);
}
}
nested_join->used_tables= (table_map) 0;
nested_join->not_null_tables=(table_map) 0;
conds= simplify_joins(join, &nested_join->join_list, conds, top,
in_sj || table->sj_on_expr);
used_tables= nested_join->used_tables;
not_null_tables= nested_join->not_null_tables;
}
else
{
if (!table->prep_on_expr)
table->prep_on_expr= table->on_expr;
used_tables= table->table->map;
if (conds)
not_null_tables= conds->not_null_tables();
}
if (table->embedding)
{
table->embedding->nested_join->used_tables|= used_tables;
table->embedding->nested_join->not_null_tables|= not_null_tables;
}
if (!table->outer_join || (used_tables & not_null_tables))
{
/*
For some of the inner tables there are conjunctive predicates
that reject nulls => the outer join can be replaced by an inner join.
*/
table->outer_join= 0;
if (table->on_expr)
{
/* Add ON expression to the WHERE or upper-level ON condition. */
if (conds)
{
conds= and_conds(conds, table->on_expr);
conds->top_level_item();
/* conds is always a new item as both cond and on_expr existed */
assert(!conds->fixed);
conds->fix_fields(join->session, &conds);
}
else
conds= table->on_expr;
table->prep_on_expr= table->on_expr= 0;
}
}
if (!top)
continue;
/*
Only inner tables of non-convertible outer joins
remain with on_expr.
*/
if (table->on_expr)
{
table->dep_tables|= table->on_expr->used_tables();
if (table->embedding)
{
table->dep_tables&= ~table->embedding->nested_join->used_tables;
/*
Embedding table depends on tables used
in embedded on expressions.
*/
table->embedding->on_expr_dep_tables|= table->on_expr->used_tables();
}
else
table->dep_tables&= ~table->table->map;
}
if (prev_table)
{
/* The order of tables is reverse: prev_table follows table */
if (prev_table->straight)
prev_table->dep_tables|= used_tables;
if (prev_table->on_expr)
{
prev_table->dep_tables|= table->on_expr_dep_tables;
table_map prev_used_tables= prev_table->nested_join ?
prev_table->nested_join->used_tables :
prev_table->table->map;
/*
If on expression contains only references to inner tables
we still make the inner tables dependent on the outer tables.
It would be enough to set dependency only on one outer table
for them. Yet this is really a rare case.
*/
if (!(prev_table->on_expr->used_tables() & ~prev_used_tables))
prev_table->dep_tables|= used_tables;
}
}
prev_table= table;
}
/*
Flatten nested joins that can be flattened.
no ON expression and not a semi-join => can be flattened.
*/
li.rewind();
while ((table= li++))
{
nested_join= table->nested_join;
if (table->sj_on_expr && !in_sj)
{
/*
If this is a semi-join that is not contained within another semi-join,
leave it intact (otherwise it is flattened)
*/
join->select_lex->sj_nests.push_back(table);
}
else if (nested_join && !table->on_expr)
{
TableList *tbl;
List_iterator<TableList> it(nested_join->join_list);
while ((tbl= it++))
{
tbl->embedding= table->embedding;
tbl->join_list= table->join_list;
}
li.replace(nested_join->join_list);
}
}
return(conds);
}
/**
Assign each nested join structure a bit in nested_join_map.
Assign each nested join structure (except "confluent" ones - those that
embed only one element) a bit in nested_join_map.
@param join Join being processed
@param join_list List of tables
@param first_unused Number of first unused bit in nested_join_map before the
call
@note
This function is called after simplify_joins(), when there are no
redundant nested joins, #non_confluent_nested_joins <= #tables_in_join so
we will not run out of bits in nested_join_map.
@return
First unused bit in nested_join_map after the call.
*/
static uint32_t build_bitmap_for_nested_joins(List<TableList> *join_list,
uint32_t first_unused)
{
List_iterator<TableList> li(*join_list);
TableList *table;
while ((table= li++))
{
nested_join_st *nested_join;
if ((nested_join= table->nested_join))
{
/*
It is guaranteed by simplify_joins() function that a nested join
that has only one child is either
- a single-table view (the child is the underlying table), or
- a single-table semi-join nest
We don't assign bits to such sj-nests because
1. it is redundant (a "sequence" of one table cannot be interleaved
with anything)
2. we could run out bits in nested_join_map otherwise.
*/
if (nested_join->join_list.elements != 1)
{
/* Don't assign bits to sj-nests */
if (table->on_expr)
nested_join->nj_map= (nested_join_map) 1 << first_unused++;
first_unused= build_bitmap_for_nested_joins(&nested_join->join_list,
first_unused);
}
}
}
return(first_unused);
}
/**
Set nested_join_st::counter=0 in all nested joins in passed list.
Recursively set nested_join_st::counter=0 for all nested joins contained in
the passed join_list.
@param join_list List of nested joins to process. It may also contain base
tables which will be ignored.
*/
static void reset_nj_counters(List<TableList> *join_list)
{
List_iterator<TableList> li(*join_list);
TableList *table;
while ((table= li++))
{
nested_join_st *nested_join;
if ((nested_join= table->nested_join))
{
nested_join->counter_= 0;
reset_nj_counters(&nested_join->join_list);
}
}
return;
}
/**
Check interleaving with an inner tables of an outer join for
extension table.
Check if table next_tab can be added to current partial join order, and
if yes, record that it has been added.
The function assumes that both current partial join order and its
extension with next_tab are valid wrt table dependencies.
@verbatim
IMPLEMENTATION
LIMITATIONS ON JOIN order_st
The nested [outer] joins executioner algorithm imposes these limitations
on join order:
1. "Outer tables first" - any "outer" table must be before any
corresponding "inner" table.
2. "No interleaving" - tables inside a nested join must form a continuous
sequence in join order (i.e. the sequence must not be interrupted by
tables that are outside of this nested join).
#1 is checked elsewhere, this function checks #2 provided that #1 has
been already checked.
WHY NEED NON-INTERLEAVING
Consider an example:
select * from t0 join t1 left join (t2 join t3) on cond1
The join order "t1 t2 t0 t3" is invalid:
table t0 is outside of the nested join, so WHERE condition for t0 is
attached directly to t0 (without triggers, and it may be used to access
t0). Applying WHERE(t0) to (t2,t0,t3) record is invalid as we may miss
combinations of (t1, t2, t3) that satisfy condition cond1, and produce a
null-complemented (t1, t2.NULLs, t3.NULLs) row, which should not have
been produced.
If table t0 is not between t2 and t3, the problem doesn't exist:
If t0 is located after (t2,t3), WHERE(t0) is applied after nested join
processing has finished.
If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2) are
wrapped into condition triggers, which takes care of correct nested
join processing.
HOW IT IS IMPLEMENTED
The limitations on join order can be rephrased as follows: for valid
join order one must be able to:
1. write down the used tables in the join order on one line.
2. for each nested join, put one '(' and one ')' on the said line
3. write "LEFT JOIN" and "ON (...)" where appropriate
4. get a query equivalent to the query we're trying to execute.
Calls to check_interleaving_with_nj() are equivalent to writing the
above described line from left to right.
A single check_interleaving_with_nj(A,B) call is equivalent to writing
table B and appropriate brackets on condition that table A and
appropriate brackets is the last what was written. Graphically the
transition is as follows:
+---- current position
|
... last_tab ))) | ( next_tab ) )..) | ...
X Y Z |
+- need to move to this
position.
Notes about the position:
The caller guarantees that there is no more then one X-bracket by
checking "!(remaining_tables & s->dependent)" before calling this
function. X-bracket may have a pair in Y-bracket.
When "writing" we store/update this auxilary info about the current
position:
1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested
joins) we've opened but didn't close.
2. {each nested_join_st structure not simplified away}->counter - number
of this nested join's children that have already been added to to
the partial join order.
@endverbatim
@param join Join being processed
@param last_tab Last table in current partial join order (this function is
not called for empty partial join orders)
@param next_tab Table we're going to extend the current partial join with
@retval
false Join order extended, nested joins info about current join
order (see NOTE section) updated.
@retval
true Requested join order extension not allowed.
*/
static bool check_interleaving_with_nj(JOIN_TAB *last_tab, JOIN_TAB *next_tab)
{
TableList *next_emb= next_tab->table->pos_in_table_list->embedding;
JOIN *join= last_tab->join;
if (join->cur_embedding_map & ~next_tab->embedding_map)
{
/*
next_tab is outside of the "pair of brackets" we're currently in.
Cannot add it.
*/
return true;
}
/*
Do update counters for "pairs of brackets" that we've left (marked as
X,Y,Z in the above picture)
*/
for (;next_emb; next_emb= next_emb->embedding)
{
next_emb->nested_join->counter_++;
if (next_emb->nested_join->counter_ == 1)
{
/*
next_emb is the first table inside a nested join we've "entered". In
the picture above, we're looking at the 'X' bracket. Don't exit yet as
X bracket might have Y pair bracket.
*/
join->cur_embedding_map |= next_emb->nested_join->nj_map;
}
if (next_emb->nested_join->join_list.elements !=
next_emb->nested_join->counter_)
break;
/*
We're currently at Y or Z-bracket as depicted in the above picture.
Mark that we've left it and continue walking up the brackets hierarchy.
*/
join->cur_embedding_map &= ~next_emb->nested_join->nj_map;
}
return false;
}
/**
Nested joins perspective: Remove the last table from the join order.
Remove the last table from the partial join order and update the nested
joins counters and join->cur_embedding_map. It is ok to call this
function for the first table in join order (for which
check_interleaving_with_nj has not been called)
@param last join table to remove, it is assumed to be the last in current
partial join order.
*/
static void restore_prev_nj_state(JOIN_TAB *last)
{
TableList *last_emb= last->table->pos_in_table_list->embedding;
JOIN *join= last->join;
while (last_emb)
{
if (last_emb->on_expr)
{
if (!(--last_emb->nested_join->counter_))
join->cur_embedding_map&= ~last_emb->nested_join->nj_map;
else if (last_emb->nested_join->join_list.elements-1 ==
last_emb->nested_join->counter_)
join->cur_embedding_map|= last_emb->nested_join->nj_map;
else
break;
}
last_emb= last_emb->embedding;
}
}
static
void advance_sj_state(const table_map remaining_tables, const JOIN_TAB *tab)
{
TableList *emb_sj_nest;
if ((emb_sj_nest= tab->emb_sj_nest))
{
tab->join->cur_emb_sj_nests |= emb_sj_nest->sj_inner_tables;
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
if (!(remaining_tables & emb_sj_nest->sj_inner_tables))
tab->join->cur_emb_sj_nests &= ~emb_sj_nest->sj_inner_tables;
}
}
/*
we assume remaining_tables doesnt contain @tab.
*/
static void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab)
{
TableList *emb_sj_nest;
if ((emb_sj_nest= tab->emb_sj_nest))
{
/* If we're removing the last SJ-inner table, remove the sj-nest */
if ((remaining_tables & emb_sj_nest->sj_inner_tables) ==
(emb_sj_nest->sj_inner_tables & ~tab->table->map))
{
tab->join->cur_emb_sj_nests &= ~emb_sj_nest->sj_inner_tables;
}
}
}
static COND *
optimize_cond(JOIN *join, COND *conds, List<TableList> *join_list,
Item::cond_result *cond_value)
{
Session *session= join->session;
if (!conds)
*cond_value= Item::COND_TRUE;
else
{
/*
Build all multiple equality predicates and eliminate equality
predicates that can be inferred from these multiple equalities.
For each reference of a field included into a multiple equality
that occurs in a function set a pointer to the multiple equality
predicate. Substitute a constant instead of this field if the
multiple equality contains a constant.
*/
conds= build_equal_items(join->session, conds, NULL, join_list,
&join->cond_equal);
/* change field = field to field = const for each found field = const */
propagate_cond_constants(session, (I_List<COND_CMP> *) 0, conds, conds);
/*
Remove all instances of item == item
Remove all and-levels where CONST item != CONST item
*/
conds= remove_eq_conds(session, conds, cond_value) ;
}
return(conds);
}
/**
Remove const and eq items.
@return
Return new item, or NULL if no condition @n
cond_value is set to according:
- COND_OK : query is possible (field = constant)
- COND_TRUE : always true ( 1 = 1 )
- COND_FALSE : always false ( 1 = 2 )
*/
COND *
remove_eq_conds(Session *session, COND *cond, Item::cond_result *cond_value)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC);
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item::cond_result tmp_cond_value;
bool should_fix_fields= false;
*cond_value= Item::COND_UNDEF;
Item *item;
while ((item= li++))
{
Item *new_item= remove_eq_conds(session, item, &tmp_cond_value);
if (! new_item)
li.remove();
else if (item != new_item)
{
li.replace(new_item);
should_fix_fields= true;
}
if (*cond_value == Item::COND_UNDEF)
*cond_value= tmp_cond_value;
switch (tmp_cond_value)
{
case Item::COND_OK: /* Not true or false */
if (and_level || (*cond_value == Item::COND_FALSE))
*cond_value= tmp_cond_value;
break;
case Item::COND_FALSE:
if (and_level)
{
*cond_value= tmp_cond_value;
return (COND *) NULL; /* Always false */
}
break;
case Item::COND_TRUE:
if (! and_level)
{
*cond_value= tmp_cond_value;
return (COND *) NULL; /* Always true */
}
break;
case Item::COND_UNDEF: /* Impossible */
break; /* purecov: deadcode */
}
}
if (should_fix_fields)
cond->update_used_tables();
if (! ((Item_cond*) cond)->argument_list()->elements || *cond_value != Item::COND_OK)
return (COND*) NULL;
if (((Item_cond*) cond)->argument_list()->elements == 1)
{
/* Argument list contains only one element, so reduce it so a single item, then remove list */
item= ((Item_cond*) cond)->argument_list()->head();
((Item_cond*) cond)->argument_list()->empty();
return item;
}
}
else if (cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC)
{
/*
Handles this special case for some ODBC applications:
The are requesting the row that was just updated with a auto_increment
value with this construct:
SELECT * from table_name where auto_increment_column IS NULL
This will be changed to:
SELECT * from table_name where auto_increment_column = LAST_INSERT_ID
*/
Item_func_isnull *func= (Item_func_isnull*) cond;
Item **args= func->arguments();
if (args[0]->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field*) args[0])->field;
if (field->flags & AUTO_INCREMENT_FLAG
&& ! field->table->maybe_null
&& session->options & OPTION_AUTO_IS_NULL
&& (
session->first_successful_insert_id_in_prev_stmt > 0
&& session->substitute_null_with_insert_id
)
)
{
COND *new_cond;
if ((new_cond= new Item_func_eq(args[0], new Item_int("last_insert_id()",
session->read_first_successful_insert_id_in_prev_stmt(),
MY_INT64_NUM_DECIMAL_DIGITS))))
{
cond= new_cond;
/*
Item_func_eq can't be fixed after creation so we do not check
cond->fixed, also it do not need tables so we use 0 as second
argument.
*/
cond->fix_fields(session, &cond);
}
/*
IS NULL should be mapped to LAST_INSERT_ID only for first row, so
clear for next row
*/
session->substitute_null_with_insert_id= false;
}
#ifdef NOTDEFINED
/* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */
else if (
((field->type() == DRIZZLE_TYPE_DATE) || (field->type() == DRIZZLE_TYPE_DATETIME))
&& (field->flags & NOT_NULL_FLAG)
&& ! field->table->maybe_null)
{
COND *new_cond;
if ((new_cond= new Item_func_eq(args[0],new Item_int("0", 0, 2))))
{
cond= new_cond;
/*
Item_func_eq can't be fixed after creation so we do not check
cond->fixed, also it do not need tables so we use 0 as second
argument.
*/
cond->fix_fields(session, &cond);
}
}
#endif /* NOTDEFINED */
}
if (cond->const_item())
{
*cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
return (COND *) NULL;
}
}
else if (cond->const_item() && !cond->is_expensive())
/*
TODO:
Excluding all expensive functions is too restritive we should exclude only
materialized IN because it is created later than this phase, and cannot be
evaluated at this point.
The condition should be something as (need to fix member access):
!(cond->type() == Item::FUNC_ITEM &&
((Item_func*)cond)->func_name() == "<in_optimizer>" &&
((Item_in_optimizer*)cond)->is_expensive()))
*/
{
*cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
return (COND *) NULL;
}
else if ((*cond_value= cond->eq_cmp_result()) != Item::COND_OK)
{
/* boolan compare function */
Item *left_item= ((Item_func*) cond)->arguments()[0];
Item *right_item= ((Item_func*) cond)->arguments()[1];
if (left_item->eq(right_item,1))
{
if (!left_item->maybe_null || ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC)
return (COND*) NULL; /* Comparison of identical items */
}
}
*cond_value= Item::COND_OK;
return cond; /* Point at next and return into recursion */
}
/*
Check if equality can be used in removing components of GROUP BY/DISTINCT
SYNOPSIS
test_if_equality_guarantees_uniqueness()
l the left comparison argument (a field if any)
r the right comparison argument (a const of any)
DESCRIPTION
Checks if an equality predicate can be used to take away
DISTINCT/GROUP BY because it is known to be true for exactly one
distinct value (e.g. <expr> == <const>).
Arguments must be of the same type because e.g.
<string_field> = <int_const> may match more than 1 distinct value from
the column.
We must take into consideration and the optimization done for various
string constants when compared to dates etc (see Item_int_with_ref) as
well as the collation of the arguments.
RETURN VALUE
true can be used
false cannot be used
*/
static bool
test_if_equality_guarantees_uniqueness(Item *l, Item *r)
{
return r->const_item() &&
/* elements must be compared as dates */
(Arg_comparator::can_compare_as_dates(l, r, 0) ||
/* or of the same result type */
(r->result_type() == l->result_type() &&
/* and must have the same collation if compared as strings */
(l->result_type() != STRING_RESULT ||
l->collation.collation == r->collation.collation)));
}
/**
Return true if the item is a const value in all the WHERE clause.
*/
static bool
const_expression_in_where(COND *cond, Item *comp_item, Item **const_item)
{
if (cond->type() == Item::COND_ITEM)
{
bool and_level= (((Item_cond*) cond)->functype()
== Item_func::COND_AND_FUNC);
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
bool res=const_expression_in_where(item, comp_item, const_item);
if (res) // Is a const value
{
if (and_level)
return 1;
}
else if (!and_level)
return 0;
}
return and_level ? 0 : 1;
}
else if (cond->eq_cmp_result() != Item::COND_OK)
{ // boolan compare function
Item_func* func= (Item_func*) cond;
if (func->functype() != Item_func::EQUAL_FUNC &&
func->functype() != Item_func::EQ_FUNC)
return 0;
Item *left_item= ((Item_func*) cond)->arguments()[0];
Item *right_item= ((Item_func*) cond)->arguments()[1];
if (left_item->eq(comp_item,1))
{
if (test_if_equality_guarantees_uniqueness (left_item, right_item))
{
if (*const_item)
return right_item->eq(*const_item, 1);
*const_item=right_item;
return 1;
}
}
else if (right_item->eq(comp_item,1))
{
if (test_if_equality_guarantees_uniqueness (right_item, left_item))
{
if (*const_item)
return left_item->eq(*const_item, 1);
*const_item=left_item;
return 1;
}
}
}
return 0;
}
/**
@details
Rows produced by a join sweep may end up in a temporary table or be sent
to a client. Setup the function of the nested loop join algorithm which
handles final fully constructed and matched records.
@param join join to setup the function for.
@return
end_select function to use. This function can't fail.
*/
Next_select_func setup_end_select_func(JOIN *join)
{
Table *table= join->tmp_table;
Tmp_Table_Param *tmp_tbl= &join->tmp_table_param;
Next_select_func end_select;
/* Set up select_end */
if (table)
{
if (table->group && tmp_tbl->sum_func_count &&
!tmp_tbl->precomputed_group_by)
{
if (table->s->keys)
{
end_select=end_update;
}
else
{
end_select=end_unique_update;
}
}
else if (join->sort_and_group && !tmp_tbl->precomputed_group_by)
{
end_select=end_write_group;
}
else
{
end_select=end_write;
if (tmp_tbl->precomputed_group_by)
{
/*
A preceding call to create_tmp_table in the case when loose
index scan is used guarantees that
Tmp_Table_Param::items_to_copy has enough space for the group
by functions. It is OK here to use memcpy since we copy
Item_sum pointers into an array of Item pointers.
*/
memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count,
join->sum_funcs,
sizeof(Item*)*tmp_tbl->sum_func_count);
tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0;
}
}
}
else
{
if ((join->sort_and_group) &&
!tmp_tbl->precomputed_group_by)
end_select= end_send_group;
else
end_select= end_send;
}
return end_select;
}
/**
Make a join of all tables and write it on socket or to table.
@retval
0 if ok
@retval
1 if error is sent
@retval
-1 if error should be sent
*/
static int
do_select(JOIN *join,List<Item> *fields,Table *table)
{
int rc= 0;
enum_nested_loop_state error= NESTED_LOOP_OK;
JOIN_TAB *join_tab= NULL;
join->tmp_table= table; /* Save for easy recursion */
join->fields= fields;
if (table)
{
table->file->extra(HA_EXTRA_WRITE_CACHE);
table->emptyRecord();
if (table->group && join->tmp_table_param.sum_func_count &&
table->s->keys && !table->file->inited)
table->file->ha_index_init(0, 0);
}
/* Set up select_end */
Next_select_func end_select= setup_end_select_func(join);
if (join->tables)
{
join->join_tab[join->tables-1].next_select= end_select;
join_tab=join->join_tab+join->const_tables;
}
join->send_records=0;
if (join->tables == join->const_tables)
{
/*
HAVING will be checked after processing aggregate functions,
But WHERE should checkd here (we alredy have read tables)
*/
if (!join->conds || join->conds->val_int())
{
error= (*end_select)(join, 0, 0);
if (error == NESTED_LOOP_OK || error == NESTED_LOOP_QUERY_LIMIT)
error= (*end_select)(join, 0, 1);
/*
If we don't go through evaluate_join_record(), do the counting
here. join->send_records is increased on success in end_send(),
so we don't touch it here.
*/
join->examined_rows++;
join->session->row_count++;
assert(join->examined_rows <= 1);
}
else if (join->send_row_on_empty_set())
{
List<Item> *columns_list= fields;
rc= join->result->send_data(*columns_list);
}
}
else
{
assert(join->tables);
error= sub_select(join,join_tab,0);
if (error == NESTED_LOOP_OK || error == NESTED_LOOP_NO_MORE_ROWS)
error= sub_select(join,join_tab,1);
if (error == NESTED_LOOP_QUERY_LIMIT)
error= NESTED_LOOP_OK; /* select_limit used */
}
if (error == NESTED_LOOP_NO_MORE_ROWS)
error= NESTED_LOOP_OK;
if (error == NESTED_LOOP_OK)
{
/*
Sic: this branch works even if rc != 0, e.g. when
send_data above returns an error.
*/
if (!table) // If sending data to client
{
/*
The following will unlock all cursors if the command wasn't an
update command
*/
join->join_free(); // Unlock all cursors
if (join->result->send_eof())
rc= 1; // Don't send error
}
}
else
rc= -1;
if (table)
{
int tmp, new_errno= 0;
if ((tmp=table->file->extra(HA_EXTRA_NO_CACHE)))
{
new_errno= tmp;
}
if ((tmp=table->file->ha_index_or_rnd_end()))
{
new_errno= tmp;
}
if (new_errno)
table->file->print_error(new_errno,MYF(0));
}
return(join->session->is_error() ? -1 : rc);
}
enum_nested_loop_state
sub_select_cache(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
{
enum_nested_loop_state rc;
if (end_of_records)
{
rc= flush_cached_records(join,join_tab,false);
if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
rc= sub_select(join,join_tab,end_of_records);
return rc;
}
if (join->session->killed) // If aborted by user
{
join->session->send_kill_message();
return NESTED_LOOP_KILLED; /* purecov: inspected */
}
if (join_tab->use_quick != 2 || test_if_quick_select(join_tab) <= 0)
{
if (!store_record_in_cache(&join_tab->cache))
return NESTED_LOOP_OK; // There is more room in cache
return flush_cached_records(join,join_tab,false);
}
rc= flush_cached_records(join, join_tab, true);
if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
rc= sub_select(join, join_tab, end_of_records);
return rc;
}
/**
Retrieve records ends with a given beginning from the result of a join.
For a given partial join record consisting of records from the tables
preceding the table join_tab in the execution plan, the function
retrieves all matching full records from the result set and
send them to the result set stream.
@note
The function effectively implements the final (n-k) nested loops
of nested loops join algorithm, where k is the ordinal number of
the join_tab table and n is the total number of tables in the join query.
It performs nested loops joins with all conjunctive predicates from
the where condition pushed as low to the tables as possible.
E.g. for the query
@code
SELECT * FROM t1,t2,t3
WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9
@endcode
the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1,
given the selected plan prescribes to nest retrievals of the
joined tables in the following order: t1,t2,t3.
A pushed down predicate are attached to the table which it pushed to,
at the field join_tab->select_cond.
When executing a nested loop of level k the function runs through
the rows of 'join_tab' and for each row checks the pushed condition
attached to the table.
If it is false the function moves to the next row of the
table. If the condition is true the function recursively executes (n-k-1)
remaining embedded nested loops.
The situation becomes more complicated if outer joins are involved in
the execution plan. In this case the pushed down predicates can be
checked only at certain conditions.
Suppose for the query
@code
SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a
WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL)
@endcode
the optimizer has chosen a plan with the table order t1,t2,t3.
The predicate P1=t1>2 will be pushed down to the table t1, while the
predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table
t2. But the second predicate can not be unconditionally tested right
after a row from t2 has been read. This can be done only after the
first row with t3.a=t1.a has been encountered.
Thus, the second predicate P2 is supplied with a guarded value that are
stored in the field 'found' of the first inner table for the outer join
(table t2). When the first row with t3.a=t1.a for the current row
of table t1 appears, the value becomes true. For now on the predicate
is evaluated immediately after the row of table t2 has been read.
When the first row with t3.a=t1.a has been encountered all
conditions attached to the inner tables t2,t3 must be evaluated.
Only when all of them are true the row is sent to the output stream.
If not, the function returns to the lowest nest level that has a false
attached condition.
The predicates from on expressions are also pushed down. If in the
the above example the on expression were (t3.a=t1.a AND t2.a=t1.a),
then t1.a=t2.a would be pushed down to table t2, and without any
guard.
If after the run through all rows of table t2, the first inner table
for the outer join operation, it turns out that no matches are
found for the current row of t1, then current row from table t1
is complemented by nulls for t2 and t3. Then the pushed down predicates
are checked for the composed row almost in the same way as it had
been done for the first row with a match. The only difference is
the predicates from on expressions are not checked.
@par
@b IMPLEMENTATION
@par
The function forms output rows for a current partial join of k
tables tables recursively.
For each partial join record ending with a certain row from
join_tab it calls sub_select that builds all possible matching
tails from the result set.
To be able check predicates conditionally items of the class
Item_func_trig_cond are employed.
An object of this class is constructed from an item of class COND
and a pointer to a guarding boolean variable.
When the value of the guard variable is true the value of the object
is the same as the value of the predicate, otherwise it's just returns
true.
To carry out a return to a nested loop level of join table t the pointer
to t is remembered in the field 'return_tab' of the join structure.
Consider the following query:
@code
SELECT * FROM t1,
LEFT JOIN
(t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a)
ON t4.a=t2.a
WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL)
@endcode
Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5
and suppose for a given joined rows from tables t1,t2,t3 there are
no rows in the result set yet.
When first row from t5 that satisfies the on condition
t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL
becomes 'activated', as well the predicate t4.a=t2.a. But
the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until
t4.a=t2.a becomes true.
In order not to re-evaluate the predicates that were already evaluated
as attached pushed down predicates, a pointer to the the first
most inner unmatched table is maintained in join_tab->first_unmatched.
Thus, when the first row from t5 with t5.a=t3.a is found
this pointer for t5 is changed from t4 to t2.
@par
@b STRUCTURE @b NOTES
@par
join_tab->first_unmatched points always backwards to the first inner
table of the embedding nested join, if any.
@param join pointer to the structure providing all context info for
the query
@param join_tab the first next table of the execution plan to be retrieved
@param end_records true when we need to perform final steps of retrival
@return
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/
int do_sj_reset(SJ_TMP_TABLE *sj_tbl);
enum_nested_loop_state
sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
{
join_tab->table->null_row=0;
if (end_of_records)
return (*join_tab->next_select)(join,join_tab+1,end_of_records);
int error;
enum_nested_loop_state rc;
READ_RECORD *info= &join_tab->read_record;
if (join_tab->flush_weedout_table)
{
do_sj_reset(join_tab->flush_weedout_table);
}
if (join->resume_nested_loop)
{
/* If not the last table, plunge down the nested loop */
if (join_tab < join->join_tab + join->tables - 1)
rc= (*join_tab->next_select)(join, join_tab + 1, 0);
else
{
join->resume_nested_loop= false;
rc= NESTED_LOOP_OK;
}
}
else
{
join->return_tab= join_tab;
if (join_tab->last_inner)
{
/* join_tab is the first inner table for an outer join operation. */
/* Set initial state of guard variables for this table.*/
join_tab->found=0;
join_tab->not_null_compl= 1;
/* Set first_unmatched for the last inner table of this group */
join_tab->last_inner->first_unmatched= join_tab;
}
join->session->row_count= 0;
error= (*join_tab->read_first_record)(join_tab);
rc= evaluate_join_record(join, join_tab, error);
}
/*
Note: psergey has added the 2nd part of the following condition; the
change should probably be made in 5.1, too.
*/
while (rc == NESTED_LOOP_OK && join->return_tab >= join_tab)
{
error= info->read_record(info);
rc= evaluate_join_record(join, join_tab, error);
}
if (rc == NESTED_LOOP_NO_MORE_ROWS &&
join_tab->last_inner && !join_tab->found)
rc= evaluate_null_complemented_join_record(join, join_tab);
if (rc == NESTED_LOOP_NO_MORE_ROWS)
rc= NESTED_LOOP_OK;
return rc;
}
/*
SemiJoinDuplicateElimination: Weed out duplicate row combinations
SYNPOSIS
do_sj_dups_weedout()
RETURN
-1 Error
1 The row combination is a duplicate (discard it)
0 The row combination is not a duplicate (continue)
*/
int do_sj_dups_weedout(Session *session, SJ_TMP_TABLE *sjtbl)
{
int error;
SJ_TMP_TABLE::TAB *tab= sjtbl->tabs;
SJ_TMP_TABLE::TAB *tab_end= sjtbl->tabs_end;
unsigned char *ptr= sjtbl->tmp_table->record[0] + 1;
unsigned char *nulls_ptr= ptr;
/* Put the the rowids tuple into table->record[0]: */
// 1. Store the length
if (((Field_varstring*)(sjtbl->tmp_table->field[0]))->length_bytes == 1)
{
*ptr= (unsigned char)(sjtbl->rowid_len + sjtbl->null_bytes);
ptr++;
}
else
{
int2store(ptr, sjtbl->rowid_len + sjtbl->null_bytes);
ptr += 2;
}
// 2. Zero the null bytes
if (sjtbl->null_bytes)
{
memset(ptr, 0, sjtbl->null_bytes);
ptr += sjtbl->null_bytes;
}
// 3. Put the rowids
for (uint32_t i=0; tab != tab_end; tab++, i++)
{
handler *h= tab->join_tab->table->file;
if (tab->join_tab->table->maybe_null && tab->join_tab->table->null_row)
{
/* It's a NULL-complemented row */
*(nulls_ptr + tab->null_byte) |= tab->null_bit;
memset(ptr + tab->rowid_offset, 0, h->ref_length);
}
else
{
/* Copy the rowid value */
if (tab->join_tab->rowid_keep_flags & JOIN_TAB::CALL_POSITION)
h->position(tab->join_tab->table->record[0]);
memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
}
}
error= sjtbl->tmp_table->file->ha_write_row(sjtbl->tmp_table->record[0]);
if (error)
{
/* create_myisam_from_heap will generate error if needed */
if (sjtbl->tmp_table->file->is_fatal_error(error, HA_CHECK_DUP) &&
create_myisam_from_heap(session, sjtbl->tmp_table, sjtbl->start_recinfo,
&sjtbl->recinfo, error, 1))
return -1;
//return (error == HA_ERR_FOUND_DUPP_KEY || error== HA_ERR_FOUND_DUPP_UNIQUE) ? 1: -1;
return 1;
}
return 0;
}
/*
SemiJoinDuplicateElimination: Reset the temporary table
*/
int do_sj_reset(SJ_TMP_TABLE *sj_tbl)
{
if (sj_tbl->tmp_table)
return sj_tbl->tmp_table->file->ha_delete_all_rows();
return 0;
}
/*
Process one record of the nested loop join.
This function will evaluate parts of WHERE/ON clauses that are
applicable to the partial record on hand and in case of success
submit this record to the next level of the nested loop.
*/
static enum_nested_loop_state
evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
int error)
{
bool not_used_in_distinct=join_tab->not_used_in_distinct;
ha_rows found_records=join->found_records;
COND *select_cond= join_tab->select_cond;
if (error > 0 || (join->session->is_error())) // Fatal error
return NESTED_LOOP_ERROR;
if (error < 0)
return NESTED_LOOP_NO_MORE_ROWS;
if (join->session->killed) // Aborted by user
{
join->session->send_kill_message();
return NESTED_LOOP_KILLED; /* purecov: inspected */
}
if (!select_cond || select_cond->val_int())
{
/*
There is no select condition or the attached pushed down
condition is true => a match is found.
*/
bool found= 1;
while (join_tab->first_unmatched && found)
{
/*
The while condition is always false if join_tab is not
the last inner join table of an outer join operation.
*/
JOIN_TAB *first_unmatched= join_tab->first_unmatched;
/*
Mark that a match for current outer table is found.
This activates push down conditional predicates attached
to the all inner tables of the outer join.
*/
first_unmatched->found= 1;
for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
{
if (tab->table->reginfo.not_exists_optimize)
return NESTED_LOOP_NO_MORE_ROWS;
/* Check all predicates that has just been activated. */
/*
Actually all predicates non-guarded by first_unmatched->found
will be re-evaluated again. It could be fixed, but, probably,
it's not worth doing now.
*/
if (tab->select_cond && !tab->select_cond->val_int())
{
/* The condition attached to table tab is false */
if (tab == join_tab)
found= 0;
else
{
/*
Set a return point if rejected predicate is attached
not to the last table of the current nest level.
*/
join->return_tab= tab;
return NESTED_LOOP_OK;
}
}
}
/*
Check whether join_tab is not the last inner table
for another embedding outer join.
*/
if ((first_unmatched= first_unmatched->first_upper) &&
first_unmatched->last_inner != join_tab)
first_unmatched= 0;
join_tab->first_unmatched= first_unmatched;
}
JOIN_TAB *return_tab= join->return_tab;
join_tab->found_match= true;
if (join_tab->check_weed_out_table)
{
int res= do_sj_dups_weedout(join->session, join_tab->check_weed_out_table);
if (res == -1)
return NESTED_LOOP_ERROR;
if (res == 1)
return NESTED_LOOP_OK;
}
else if (join_tab->do_firstmatch)
{
/*
We should return to the join_tab->do_firstmatch after we have
enumerated all the suffixes for current prefix row combination
*/
return_tab= join_tab->do_firstmatch;
}
/*
It was not just a return to lower loop level when one
of the newly activated predicates is evaluated as false
(See above join->return_tab= tab).
*/
join->examined_rows++;
join->session->row_count++;
if (found)
{
enum enum_nested_loop_state rc;
/* A match from join_tab is found for the current partial join. */
rc= (*join_tab->next_select)(join, join_tab+1, 0);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
return rc;
if (return_tab < join->return_tab)
join->return_tab= return_tab;
if (join->return_tab < join_tab)
return NESTED_LOOP_OK;
/*
Test if this was a SELECT DISTINCT query on a table that
was not in the field list; In this case we can abort if
we found a row, as no new rows can be added to the result.
*/
if (not_used_in_distinct && found_records != join->found_records)
return NESTED_LOOP_NO_MORE_ROWS;
}
else
join_tab->read_record.file->unlock_row();
}
else
{
/*
The condition pushed down to the table join_tab rejects all rows
with the beginning coinciding with the current partial join.
*/
join->examined_rows++;
join->session->row_count++;
join_tab->read_record.file->unlock_row();
}
return NESTED_LOOP_OK;
}
/**
@details
Construct a NULL complimented partial join record and feed it to the next
level of the nested loop. This function is used in case we have
an OUTER join and no matching record was found.
*/
static enum_nested_loop_state
evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab)
{
/*
The table join_tab is the first inner table of a outer join operation
and no matches has been found for the current outer row.
*/
JOIN_TAB *last_inner_tab= join_tab->last_inner;
/* Cache variables for faster loop */
COND *select_cond;
for ( ; join_tab <= last_inner_tab ; join_tab++)
{
/* Change the the values of guard predicate variables. */
join_tab->found= 1;
join_tab->not_null_compl= 0;
/* The outer row is complemented by nulls for each inner tables */
join_tab->table->restoreRecordAsDefault(); // Make empty record
join_tab->table->mark_as_null_row(); // For group by without error
select_cond= join_tab->select_cond;
/* Check all attached conditions for inner table rows. */
if (select_cond && !select_cond->val_int())
return NESTED_LOOP_OK;
}
join_tab--;
/*
The row complemented by nulls might be the first row
of embedding outer joins.
If so, perform the same actions as in the code
for the first regular outer join row above.
*/
for ( ; ; )
{
JOIN_TAB *first_unmatched= join_tab->first_unmatched;
if ((first_unmatched= first_unmatched->first_upper) &&
first_unmatched->last_inner != join_tab)
first_unmatched= 0;
join_tab->first_unmatched= first_unmatched;
if (!first_unmatched)
break;
first_unmatched->found= 1;
for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
{
if (tab->select_cond && !tab->select_cond->val_int())
{
join->return_tab= tab;
return NESTED_LOOP_OK;
}
}
}
/*
The row complemented by nulls satisfies all conditions
attached to inner tables.
Send the row complemented by nulls to be joined with the
remaining tables.
*/
return (*join_tab->next_select)(join, join_tab+1, 0);
}
static enum_nested_loop_state
flush_cached_records(JOIN *join,JOIN_TAB *join_tab,bool skip_last)
{
enum_nested_loop_state rc= NESTED_LOOP_OK;
int error;
READ_RECORD *info;
join_tab->table->null_row= 0;
if (!join_tab->cache.records)
return NESTED_LOOP_OK; /* Nothing to do */
if (skip_last)
(void) store_record_in_cache(&join_tab->cache); // Must save this for later
if (join_tab->use_quick == 2)
{
if (join_tab->select->quick)
{ /* Used quick select last. reset it */
delete join_tab->select->quick;
join_tab->select->quick=0;
}
}
/* read through all records */
if ((error=join_init_read_record(join_tab)))
{
reset_cache_write(&join_tab->cache);
return error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
}
for (JOIN_TAB *tmp=join->join_tab; tmp != join_tab ; tmp++)
{
tmp->status=tmp->table->status;
tmp->table->status=0;
}
info= &join_tab->read_record;
do
{
if (join->session->killed)
{
join->session->send_kill_message();
return NESTED_LOOP_KILLED; // Aborted by user /* purecov: inspected */
}
SQL_SELECT *select=join_tab->select;
if (rc == NESTED_LOOP_OK &&
(!join_tab->cache.select || !join_tab->cache.select->skip_record()))
{
uint32_t i;
reset_cache_read(&join_tab->cache);
for (i=(join_tab->cache.records- (skip_last ? 1 : 0)) ; i-- > 0 ;)
{
read_cached_record(join_tab);
if (!select || !select->skip_record())
{
int res= 0;
if (!join_tab->check_weed_out_table ||
!(res= do_sj_dups_weedout(join->session, join_tab->check_weed_out_table)))
{
rc= (join_tab->next_select)(join,join_tab+1,0);
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
{
reset_cache_write(&join_tab->cache);
return rc;
}
}
if (res == -1)
return NESTED_LOOP_ERROR;
}
}
}
} while (!(error=info->read_record(info)));
if (skip_last)
read_cached_record(join_tab); // Restore current record
reset_cache_write(&join_tab->cache);
if (error > 0) // Fatal error
return NESTED_LOOP_ERROR; /* purecov: inspected */
for (JOIN_TAB *tmp2=join->join_tab; tmp2 != join_tab ; tmp2++)
tmp2->table->status=tmp2->status;
return NESTED_LOOP_OK;
}
int safe_index_read(JOIN_TAB *tab)
{
int error;
Table *table= tab->table;
if ((error=table->file->index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT)))
return table->report_error(error);
return 0;
}
static int
join_read_const_table(JOIN_TAB *tab, POSITION *pos)
{
int error;
Table *table=tab->table;
table->const_table=1;
table->null_row=0;
table->status=STATUS_NO_RECORD;
if (tab->type == JT_SYSTEM)
{
if ((error=join_read_system(tab)))
{ // Info for DESCRIBE
tab->info="const row not found";
/* Mark for EXPLAIN that the row was not found */
pos->records_read=0.0;
pos->ref_depend_map= 0;
if (!table->maybe_null || error > 0)
return(error);
}
}
else
{
if (!table->key_read && table->covering_keys.test(tab->ref.key) &&
!table->no_keyread &&
(int) table->reginfo.lock_type <= (int) TL_READ_WITH_SHARED_LOCKS)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
tab->index= tab->ref.key;
}
error=join_read_const(tab);
if (table->key_read)
{
table->key_read=0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
if (error)
{
tab->info="unique row not found";
/* Mark for EXPLAIN that the row was not found */
pos->records_read=0.0;
pos->ref_depend_map= 0;
if (!table->maybe_null || error > 0)
return(error);
}
}
if (*tab->on_expr_ref && !table->null_row)
{
if ((table->null_row= test((*tab->on_expr_ref)->val_int() == 0)))
table->mark_as_null_row();
}
if (!table->null_row)
table->maybe_null=0;
/* Check appearance of new constant items in Item_equal objects */
JOIN *join= tab->join;
if (join->conds)
update_const_equal_items(join->conds, tab);
TableList *tbl;
for (tbl= join->select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
{
TableList *embedded;
TableList *embedding= tbl;
do
{
embedded= embedding;
if (embedded->on_expr)
update_const_equal_items(embedded->on_expr, tab);
embedding= embedded->embedding;
}
while (embedding &&
embedding->nested_join->join_list.head() == embedded);
}
return(0);
}
static int
join_read_system(JOIN_TAB *tab)
{
Table *table= tab->table;
int error;
if (table->status & STATUS_GARBAGE) // If first read
{
if ((error=table->file->read_first_row(table->record[0],
table->s->primary_key)))
{
if (error != HA_ERR_END_OF_FILE)
return table->report_error(error);
tab->table->mark_as_null_row();
table->emptyRecord(); // Make empty record
return -1;
}
table->storeRecord();
}
else if (!table->status) // Only happens with left join
table->restoreRecord(); // restore old record
table->null_row=0;
return table->status ? -1 : 0;
}
/**
Read a (constant) table when there is at most one matching row.
@param tab Table to read
@retval
0 Row was found
@retval
-1 Row was not found
@retval
1 Got an error (other than row not found) during read
*/
static int
join_read_const(JOIN_TAB *tab)
{
int error;
Table *table= tab->table;
if (table->status & STATUS_GARBAGE) // If first read
{
table->status= 0;
if (cp_buffer_from_ref(tab->join->session, &tab->ref))
error=HA_ERR_KEY_NOT_FOUND;
else
{
error=table->file->index_read_idx_map(table->record[0],tab->ref.key,
(unsigned char*) tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT);
}
if (error)
{
table->status= STATUS_NOT_FOUND;
tab->table->mark_as_null_row();
table->emptyRecord();
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return table->report_error(error);
return -1;
}
table->storeRecord();
}
else if (!(table->status & ~STATUS_NULL_ROW)) // Only happens with left join
{
table->status=0;
table->restoreRecord(); // restore old record
}
table->null_row=0;
return table->status ? -1 : 0;
}
/*
eq_ref access method implementation: "read_first" function
SYNOPSIS
join_read_key()
tab JOIN_TAB of the accessed table
DESCRIPTION
This is "read_fist" function for the "ref" access method. The difference
from "ref" is that it has a one-element "cache" (see cmp_buffer_with_ref)
RETURN
0 - Ok
-1 - Row not found
1 - Error
*/
static int
join_read_key(JOIN_TAB *tab)
{
int error;
Table *table= tab->table;
if (!table->file->inited)
{
table->file->ha_index_init(tab->ref.key, tab->sorted);
}
/* TODO: Why don't we do "Late NULLs Filtering" here? */
if (cmp_buffer_with_ref(tab) ||
(table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW)))
{
if (tab->ref.key_err)
{
table->status=STATUS_NOT_FOUND;
return -1;
}
error=table->file->index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT);
if (error && error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return table->report_error(error);
}
table->null_row=0;
return table->status ? -1 : 0;
}
/*
ref access method implementation: "read_first" function
SYNOPSIS
join_read_always_key()
tab JOIN_TAB of the accessed table
DESCRIPTION
This is "read_fist" function for the "ref" access method.
The functon must leave the index initialized when it returns.
ref_or_null access implementation depends on that.
RETURN
0 - Ok
-1 - Row not found
1 - Error
*/
static int
join_read_always_key(JOIN_TAB *tab)
{
int error;
Table *table= tab->table;
/* Initialize the index first */
if (!table->file->inited)
table->file->ha_index_init(tab->ref.key, tab->sorted);
/* Perform "Late NULLs Filtering" (see internals manual for explanations) */
for (uint32_t i= 0 ; i < tab->ref.key_parts ; i++)
{
if ((tab->ref.null_rejecting & 1 << i) && tab->ref.items[i]->is_null())
return -1;
}
if (cp_buffer_from_ref(tab->join->session, &tab->ref))
return -1;
if ((error=table->file->index_read_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts),
HA_READ_KEY_EXACT)))
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return table->report_error(error);
return -1; /* purecov: inspected */
}
return 0;
}
/**
This function is used when optimizing away order_st BY in
SELECT * FROM t1 WHERE a=1 order_st BY a DESC,b DESC.
*/
static int
join_read_last_key(JOIN_TAB *tab)
{
int error;
Table *table= tab->table;
if (!table->file->inited)
table->file->ha_index_init(tab->ref.key, tab->sorted);
if (cp_buffer_from_ref(tab->join->session, &tab->ref))
return -1;
if ((error=table->file->index_read_last_map(table->record[0],
tab->ref.key_buff,
make_prev_keypart_map(tab->ref.key_parts))))
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
return table->report_error(error);
return -1; /* purecov: inspected */
}
return 0;
}
/* ARGSUSED */
static int
join_no_more_records(READ_RECORD *)
{
return -1;
}
static int
join_read_next_same_diff(READ_RECORD *info)
{
Table *table= info->table;
JOIN_TAB *tab=table->reginfo.join_tab;
if (tab->insideout_match_tab->found_match)
{
KEY *key= tab->table->key_info + tab->index;
do
{
int error;
/* Save index tuple from record to the buffer */
key_copy(tab->insideout_buf, info->record, key, 0);
if ((error=table->file->index_next_same(table->record[0],
tab->ref.key_buff,
tab->ref.key_length)))
{
if (error != HA_ERR_END_OF_FILE)
return table->report_error(error);
table->status= STATUS_GARBAGE;
return -1;
}
} while (!key_cmp(tab->table->key_info[tab->index].key_part,
tab->insideout_buf, key->key_length));
tab->insideout_match_tab->found_match= 0;
return 0;
}
else
return join_read_next_same(info);
}
static int
join_read_next_same(READ_RECORD *info)
{
int error;
Table *table= info->table;
JOIN_TAB *tab=table->reginfo.join_tab;
if ((error=table->file->index_next_same(table->record[0],
tab->ref.key_buff,
tab->ref.key_length)))
{
if (error != HA_ERR_END_OF_FILE)
return table->report_error(error);
table->status= STATUS_GARBAGE;
return -1;
}
return 0;
}
static int
join_read_prev_same(READ_RECORD *info)
{
int error;
Table *table= info->table;
JOIN_TAB *tab=table->reginfo.join_tab;
if ((error=table->file->index_prev(table->record[0])))
return table->report_error(error);
if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key,
tab->ref.key_length))
{
table->status=STATUS_NOT_FOUND;
error= -1;
}
return error;
}
static int
join_init_quick_read_record(JOIN_TAB *tab)
{
if (test_if_quick_select(tab) == -1)
return -1; /* No possible records */
return join_init_read_record(tab);
}
int rr_sequential(READ_RECORD *info);
int init_read_record_seq(JOIN_TAB *tab)
{
tab->read_record.read_record= rr_sequential;
if (tab->read_record.file->ha_rnd_init(1))
return 1;
return (*tab->read_record.read_record)(&tab->read_record);
}
static int
test_if_quick_select(JOIN_TAB *tab)
{
delete tab->select->quick;
tab->select->quick=0;
return tab->select->test_quick_select(tab->join->session, tab->keys,
(table_map) 0, HA_POS_ERROR, 0,
false);
}
static int
join_init_read_record(JOIN_TAB *tab)
{
if (tab->select && tab->select->quick && tab->select->quick->reset())
return 1;
init_read_record(&tab->read_record, tab->join->session, tab->table,
tab->select,1,1);
return (*tab->read_record.read_record)(&tab->read_record);
}
static int
join_read_first(JOIN_TAB *tab)
{
int error;
Table *table=tab->table;
if (!table->key_read && table->covering_keys.test(tab->index) &&
!table->no_keyread)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
tab->table->status=0;
tab->read_record.table=table;
tab->read_record.file=table->file;
tab->read_record.index=tab->index;
tab->read_record.record=table->record[0];
if (tab->insideout_match_tab)
{
tab->read_record.do_insideout_scan= tab;
tab->read_record.read_record=join_read_next_different;
tab->insideout_match_tab->found_match= 0;
}
else
{
tab->read_record.read_record=join_read_next;
tab->read_record.do_insideout_scan= 0;
}
if (!table->file->inited)
table->file->ha_index_init(tab->index, tab->sorted);
if ((error=tab->table->file->index_first(tab->table->record[0])))
{
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
table->report_error(error);
return -1;
}
return 0;
}
static int
join_read_next_different(READ_RECORD *info)
{
JOIN_TAB *tab= info->do_insideout_scan;
if (tab->insideout_match_tab->found_match)
{
KEY *key= tab->table->key_info + tab->index;
do
{
int error;
/* Save index tuple from record to the buffer */
key_copy(tab->insideout_buf, info->record, key, 0);
if ((error=info->file->index_next(info->record)))
return info->table->report_error(error);
} while (!key_cmp(tab->table->key_info[tab->index].key_part,
tab->insideout_buf, key->key_length));
tab->insideout_match_tab->found_match= 0;
return 0;
}
else
return join_read_next(info);
}
static int
join_read_next(READ_RECORD *info)
{
int error;
if ((error=info->file->index_next(info->record)))
return info->table->report_error(error);
return 0;
}
static int
join_read_last(JOIN_TAB *tab)
{
Table *table=tab->table;
int error;
if (!table->key_read && table->covering_keys.test(tab->index) &&
!table->no_keyread)
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
tab->table->status=0;
tab->read_record.read_record=join_read_prev;
tab->read_record.table=table;
tab->read_record.file=table->file;
tab->read_record.index=tab->index;
tab->read_record.record=table->record[0];
if (!table->file->inited)
table->file->ha_index_init(tab->index, 1);
if ((error= tab->table->file->index_last(tab->table->record[0])))
return table->report_error(error);
return 0;
}
static int
join_read_prev(READ_RECORD *info)
{
int error;
if ((error= info->file->index_prev(info->record)))
return info->table->report_error(error);
return 0;
}
/**
Reading of key with key reference and one part that may be NULL.
*/
int
join_read_always_key_or_null(JOIN_TAB *tab)
{
int res;
/* First read according to key which is NOT NULL */
*tab->ref.null_ref_key= 0; // Clear null byte
if ((res= join_read_always_key(tab)) >= 0)
return res;
/* Then read key with null value */
*tab->ref.null_ref_key= 1; // Set null byte
return safe_index_read(tab);
}
int
join_read_next_same_or_null(READ_RECORD *info)
{
int error;
if ((error= join_read_next_same(info)) >= 0)
return error;
JOIN_TAB *tab= info->table->reginfo.join_tab;
/* Test if we have already done a read after null key */
if (*tab->ref.null_ref_key)
return -1; // All keys read
*tab->ref.null_ref_key= 1; // Set null byte
return safe_index_read(tab); // then read null keys
}
/*****************************************************************************
DESCRIPTION
Functions that end one nested loop iteration. Different functions
are used to support GROUP BY clause and to redirect records
to a table (e.g. in case of SELECT into a temporary table) or to the
network client.
RETURN VALUES
NESTED_LOOP_OK - the record has been successfully handled
NESTED_LOOP_ERROR - a fatal error (like table corruption)
was detected
NESTED_LOOP_KILLED - thread shutdown was requested while processing
the record
NESTED_LOOP_QUERY_LIMIT - the record has been successfully handled;
additionally, the nested loop produced the
number of rows specified in the LIMIT clause
for the query
NESTED_LOOP_CURSOR_LIMIT - the record has been successfully handled;
additionally, there is a cursor and the nested
loop algorithm produced the number of rows
that is specified for current cursor fetch
operation.
All return values except NESTED_LOOP_OK abort the nested loop.
*****************************************************************************/
/* ARGSUSED */
static enum_nested_loop_state
end_send(JOIN *join, JOIN_TAB *,
bool end_of_records)
{
if (!end_of_records)
{
int error;
if (join->having && join->having->val_int() == 0)
return(NESTED_LOOP_OK); // Didn't match having
error=0;
if (join->do_send_rows)
error=join->result->send_data(*join->fields);
if (error)
return(NESTED_LOOP_ERROR); /* purecov: inspected */
if (++join->send_records >= join->unit->select_limit_cnt &&
join->do_send_rows)
{
if (join->select_options & OPTION_FOUND_ROWS)
{
JOIN_TAB *jt=join->join_tab;
if ((join->tables == 1) && !join->tmp_table && !join->sort_and_group
&& !join->send_group_parts && !join->having && !jt->select_cond &&
!(jt->select && jt->select->quick) &&
(jt->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
(jt->ref.key < 0))
{
/* Join over all rows in table; Return number of found rows */
Table *table=jt->table;
join->select_options ^= OPTION_FOUND_ROWS;
if (table->sort.record_pointers ||
(table->sort.io_cache && my_b_inited(table->sort.io_cache)))
{
/* Using filesort */
join->send_records= table->sort.found_records;
}
else
{
table->file->info(HA_STATUS_VARIABLE);
join->send_records= table->file->stats.records;
}
}
else
{
join->do_send_rows= 0;
if (join->unit->fake_select_lex)
join->unit->fake_select_lex->select_limit= 0;
return(NESTED_LOOP_OK);
}
}
return(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
}
else if (join->send_records >= join->fetch_limit)
{
/*
There is a server side cursor and all rows for
this fetch request are sent.
*/
return(NESTED_LOOP_CURSOR_LIMIT);
}
}
return(NESTED_LOOP_OK);
}
/* ARGSUSED */
enum_nested_loop_state
end_send_group(JOIN *join, JOIN_TAB *, bool end_of_records)
{
int idx= -1;
enum_nested_loop_state ok_code= NESTED_LOOP_OK;
if (!join->first_record || end_of_records ||
(idx=test_if_item_cache_changed(join->group_fields)) >= 0)
{
if (join->first_record ||
(end_of_records && !join->group && !join->group_optimized_away))
{
if (idx < (int) join->send_group_parts)
{
int error=0;
{
if (!join->first_record)
{
List_iterator_fast<Item> it(*join->fields);
Item *item;
/* No matching rows for group function */
join->clear();
while ((item= it++))
item->no_rows_in_result();
}
if (join->having && join->having->val_int() == 0)
error= -1; // Didn't satisfy having
else
{
if (join->do_send_rows)
error=join->result->send_data(*join->fields) ? 1 : 0;
join->send_records++;
}
if (join->rollup.state != ROLLUP::STATE_NONE && error <= 0)
{
if (join->rollup_send_data((uint32_t) (idx+1)))
error= 1;
}
}
if (error > 0)
return(NESTED_LOOP_ERROR); /* purecov: inspected */
if (end_of_records)
return(NESTED_LOOP_OK);
if (join->send_records >= join->unit->select_limit_cnt &&
join->do_send_rows)
{
if (!(join->select_options & OPTION_FOUND_ROWS))
return(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
join->do_send_rows=0;
join->unit->select_limit_cnt = HA_POS_ERROR;
}
else if (join->send_records >= join->fetch_limit)
{
/*
There is a server side cursor and all rows
for this fetch request are sent.
*/
/*
Preventing code duplication. When finished with the group reset
the group functions and copy_fields. We fall through. bug #11904
*/
ok_code= NESTED_LOOP_CURSOR_LIMIT;
}
}
}
else
{
if (end_of_records)
return(NESTED_LOOP_OK);
join->first_record=1;
test_if_item_cache_changed(join->group_fields);
}
if (idx < (int) join->send_group_parts)
{
/*
This branch is executed also for cursors which have finished their
fetch limit - the reason for ok_code.
*/
copy_fields(&join->tmp_table_param);
if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
return(NESTED_LOOP_ERROR);
return(ok_code);
}
}
if (update_sum_func(join->sum_funcs))
return(NESTED_LOOP_ERROR);
return(NESTED_LOOP_OK);
}
/* ARGSUSED */
enum_nested_loop_state
end_write(JOIN *join, JOIN_TAB *,
bool end_of_records)
{
Table *table=join->tmp_table;
if (join->session->killed) // Aborted by user
{
join->session->send_kill_message();
return(NESTED_LOOP_KILLED); /* purecov: inspected */
}
if (!end_of_records)
{
copy_fields(&join->tmp_table_param);
copy_funcs(join->tmp_table_param.items_to_copy);
if (!join->having || join->having->val_int())
{
int error;
join->found_records++;
if ((error=table->file->ha_write_row(table->record[0])))
{
if (!table->file->is_fatal_error(error, HA_CHECK_DUP))
goto end;
if (create_myisam_from_heap(join->session, table,
join->tmp_table_param.start_recinfo,
&join->tmp_table_param.recinfo,
error, 1))
return(NESTED_LOOP_ERROR); // Not a table_is_full error
table->s->uniques=0; // To ensure rows are the same
}
if (++join->send_records >= join->tmp_table_param.end_write_records &&
join->do_send_rows)
{
if (!(join->select_options & OPTION_FOUND_ROWS))
return(NESTED_LOOP_QUERY_LIMIT);
join->do_send_rows=0;
join->unit->select_limit_cnt = HA_POS_ERROR;
return(NESTED_LOOP_OK);
}
}
}
end:
return(NESTED_LOOP_OK);
}
/* ARGSUSED */
/** Group by searching after group record and updating it if possible. */
static enum_nested_loop_state
end_update(JOIN *join, JOIN_TAB *,
bool end_of_records)
{
Table *table=join->tmp_table;
order_st *group;
int error;
if (end_of_records)
return(NESTED_LOOP_OK);
if (join->session->killed) // Aborted by user
{
join->session->send_kill_message();
return(NESTED_LOOP_KILLED); /* purecov: inspected */
}
join->found_records++;
copy_fields(&join->tmp_table_param); // Groups are copied twice.
/* Make a key of group index */
for (group=table->group ; group ; group=group->next)
{
Item *item= *group->item;
item->save_org_in_field(group->field);
/* Store in the used key if the field was 0 */
if (item->maybe_null)
group->buff[-1]= (char) group->field->is_null();
}
if (!table->file->index_read_map(table->record[1],
join->tmp_table_param.group_buff,
HA_WHOLE_KEY,
HA_READ_KEY_EXACT))
{ /* Update old record */
table->restoreRecord();
update_tmptable_sum_func(join->sum_funcs,table);
if ((error=table->file->ha_update_row(table->record[1],
table->record[0])))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
return(NESTED_LOOP_ERROR); /* purecov: inspected */
}
return(NESTED_LOOP_OK);
}
/*
Copy null bits from group key to table
We can't copy all data as the key may have different format
as the row data (for example as with VARCHAR keys)
*/
KEY_PART_INFO *key_part;
for (group=table->group,key_part=table->key_info[0].key_part;
group ;
group=group->next,key_part++)
{
if (key_part->null_bit)
memcpy(table->record[0]+key_part->offset, group->buff, 1);
}
init_tmptable_sum_functions(join->sum_funcs);
copy_funcs(join->tmp_table_param.items_to_copy);
if ((error=table->file->ha_write_row(table->record[0])))
{
if (create_myisam_from_heap(join->session, table,
join->tmp_table_param.start_recinfo,
&join->tmp_table_param.recinfo,
error, 0))
return(NESTED_LOOP_ERROR); // Not a table_is_full error
/* Change method to update rows */
table->file->ha_index_init(0, 0);
join->join_tab[join->tables-1].next_select=end_unique_update;
}
join->send_records++;
return(NESTED_LOOP_OK);
}
/** Like end_update, but this is done with unique constraints instead of keys. */
static enum_nested_loop_state
end_unique_update(JOIN *join, JOIN_TAB *,
bool end_of_records)
{
Table *table=join->tmp_table;
int error;
if (end_of_records)
return(NESTED_LOOP_OK);
if (join->session->killed) // Aborted by user
{
join->session->send_kill_message();
return(NESTED_LOOP_KILLED); /* purecov: inspected */
}
init_tmptable_sum_functions(join->sum_funcs);
copy_fields(&join->tmp_table_param); // Groups are copied twice.
copy_funcs(join->tmp_table_param.items_to_copy);
if (!(error=table->file->ha_write_row(table->record[0])))
join->send_records++; // New group
else
{
if ((int) table->file->get_dup_key(error) < 0)
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
return(NESTED_LOOP_ERROR); /* purecov: inspected */
}
if (table->file->rnd_pos(table->record[1],table->file->dup_ref))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
return(NESTED_LOOP_ERROR); /* purecov: inspected */
}
table->restoreRecord();
update_tmptable_sum_func(join->sum_funcs,table);
if ((error=table->file->ha_update_row(table->record[1],
table->record[0])))
{
table->file->print_error(error,MYF(0)); /* purecov: inspected */
return(NESTED_LOOP_ERROR); /* purecov: inspected */
}
}
return(NESTED_LOOP_OK);
}
/* ARGSUSED */
enum_nested_loop_state
end_write_group(JOIN *join, JOIN_TAB *,
bool end_of_records)
{
Table *table=join->tmp_table;
int idx= -1;
if (join->session->killed)
{ // Aborted by user
join->session->send_kill_message();
return(NESTED_LOOP_KILLED); /* purecov: inspected */
}
if (!join->first_record || end_of_records ||
(idx=test_if_item_cache_changed(join->group_fields)) >= 0)
{
if (join->first_record || (end_of_records && !join->group))
{
int send_group_parts= join->send_group_parts;
if (idx < send_group_parts)
{
if (!join->first_record)
{
/* No matching rows for group function */
join->clear();
}
copy_sum_funcs(join->sum_funcs,
join->sum_funcs_end[send_group_parts]);
if (!join->having || join->having->val_int())
{
int error= table->file->ha_write_row(table->record[0]);
if (error && create_myisam_from_heap(join->session, table,
join->tmp_table_param.start_recinfo,
&join->tmp_table_param.recinfo,
error, 0))
return(NESTED_LOOP_ERROR);
}
if (join->rollup.state != ROLLUP::STATE_NONE)
{
if (join->rollup_write_data((uint32_t) (idx+1), table))
return(NESTED_LOOP_ERROR);
}
if (end_of_records)
return(NESTED_LOOP_OK);
}
}
else
{
if (end_of_records)
return(NESTED_LOOP_OK);
join->first_record=1;
test_if_item_cache_changed(join->group_fields);
}
if (idx < (int) join->send_group_parts)
{
copy_fields(&join->tmp_table_param);
copy_funcs(join->tmp_table_param.items_to_copy);
if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
return(NESTED_LOOP_ERROR);
return(NESTED_LOOP_OK);
}
}
if (update_sum_func(join->sum_funcs))
return(NESTED_LOOP_ERROR);
return(NESTED_LOOP_OK);
}
/*****************************************************************************
Remove calculation with tables that aren't yet read. Remove also tests
against fields that are read through key where the table is not a
outer join table.
We can't remove tests that are made against columns which are stored
in sorted order.
*****************************************************************************/
/**
@return
1 if right_item is used removable reference key on left_item
*/
static bool test_if_ref(Item_field *left_item,Item *right_item)
{
Field *field=left_item->field;
// No need to change const test. We also have to keep tests on LEFT JOIN
if (!field->table->const_table && !field->table->maybe_null)
{
Item *ref_item=part_of_refkey(field->table,field);
if (ref_item && ref_item->eq(right_item,1))
{
right_item= right_item->real_item();
if (right_item->type() == Item::FIELD_ITEM)
return (field->eq_def(((Item_field *) right_item)->field));
/* remove equalities injected by IN->EXISTS transformation */
else if (right_item->type() == Item::CACHE_ITEM)
return ((Item_cache *)right_item)->eq_def (field);
if (right_item->const_item() && !(right_item->is_null()))
{
/*
We can remove binary fields and numerical fields except float,
as float comparison isn't 100 % secure
We have to keep normal strings to be able to check for end spaces
sergefp: the above seems to be too restrictive. Counterexample:
create table t100 (v varchar(10), key(v)) default charset=latin1;
insert into t100 values ('a'),('a ');
explain select * from t100 where v='a';
The EXPLAIN shows 'using Where'. Running the query returns both
rows, so it seems there are no problems with endspace in the most
frequent case?
*/
if (field->binary() &&
field->real_type() != DRIZZLE_TYPE_VARCHAR &&
field->decimals() == 0)
{
return !store_val_in_field(field, right_item, CHECK_FIELD_WARN);
}
}
}
}
return 0; // keep test
}
/**
@brief Replaces an expression destructively inside the expression tree of
the WHERE clase.
@note Because of current requirements for semijoin flattening, we do not
need to recurse here, hence this function will only examine the top-level
AND conditions. (see JOIN::prepare, comment above the line
'if (do_materialize)'
@param join The top-level query.
@param old_cond The expression to be replaced.
@param new_cond The expression to be substituted.
@param do_fix_fields If true, Item::fix_fields(Session*, Item**) is called for
the new expression.
@return <code>true</code> if there was an error, <code>false</code> if
successful.
*/
static bool replace_where_subcondition(JOIN *join, Item *old_cond,
Item *new_cond, bool do_fix_fields)
{
if (join->conds == old_cond) {
join->conds= new_cond;
if (do_fix_fields)
new_cond->fix_fields(join->session, &join->conds);
return false;
}
if (join->conds->type() == Item::COND_ITEM) {
List_iterator<Item> li(*((Item_cond*)join->conds)->argument_list());
Item *item;
while ((item= li++))
if (item == old_cond)
{
li.replace(new_cond);
if (do_fix_fields)
new_cond->fix_fields(join->session, li.ref());
return false;
}
}
return true;
}
/*
Extract a condition that can be checked after reading given table
SYNOPSIS
make_cond_for_table()
cond Condition to analyze
tables Tables for which "current field values" are available
used_table Table that we're extracting the condition for (may
also include PSEUDO_TABLE_BITS
DESCRIPTION
Extract the condition that can be checked after reading the table
specified in 'used_table', given that current-field values for tables
specified in 'tables' bitmap are available.
The function assumes that
- Constant parts of the condition has already been checked.
- Condition that could be checked for tables in 'tables' has already
been checked.
The function takes into account that some parts of the condition are
guaranteed to be true by employed 'ref' access methods (the code that
does this is located at the end, search down for "EQ_FUNC").
SEE ALSO
make_cond_for_info_schema uses similar algorithm
RETURN
Extracted condition
*/
static COND *
make_cond_for_table(COND *cond, table_map tables, table_map used_table,
bool exclude_expensive_cond)
{
if (used_table && !(cond->used_tables() & used_table) &&
/*
Exclude constant conditions not checked at optimization time if
the table we are pushing conditions to is the first one.
As a result, such conditions are not considered as already checked
and will be checked at execution time, attached to the first table.
*/
!((used_table & 1) && cond->is_expensive()))
return (COND*) 0; // Already checked
if (cond->type() == Item::COND_ITEM)
{
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
/* Create new top level AND item */
Item_cond_and *new_cond=new Item_cond_and;
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix=make_cond_for_table(item,tables,used_table,
exclude_expensive_cond);
if (fix)
new_cond->argument_list()->push_back(fix);
}
switch (new_cond->argument_list()->elements) {
case 0:
return (COND*) 0; // Always true
case 1:
return new_cond->argument_list()->head();
default:
/*
Item_cond_and do not need fix_fields for execution, its parameters
are fixed or do not need fix_fields, too
*/
new_cond->quick_fix_field();
new_cond->used_tables_cache=
((Item_cond_and*) cond)->used_tables_cache &
tables;
return new_cond;
}
}
else
{ // Or list
Item_cond_or *new_cond=new Item_cond_or;
if (!new_cond)
return (COND*) 0; // OOM /* purecov: inspected */
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
Item *item;
while ((item=li++))
{
Item *fix=make_cond_for_table(item,tables,0L, exclude_expensive_cond);
if (!fix)
return (COND*) 0; // Always true
new_cond->argument_list()->push_back(fix);
}
/*
Item_cond_and do not need fix_fields for execution, its parameters
are fixed or do not need fix_fields, too
*/
new_cond->quick_fix_field();
new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
new_cond->top_level_item();
return new_cond;
}
}
/*
Because the following test takes a while and it can be done
table_count times, we mark each item that we have examined with the result
of the test
*/
if (cond->marker == 3 || (cond->used_tables() & ~tables) ||
/*
When extracting constant conditions, treat expensive conditions as
non-constant, so that they are not evaluated at optimization time.
*/
(!used_table && exclude_expensive_cond && cond->is_expensive()))
return (COND*) 0; // Can't check this yet
if (cond->marker == 2 || cond->eq_cmp_result() == Item::COND_OK)
return cond; // Not boolean op
/*
Remove equalities that are guaranteed to be true by use of 'ref' access
method
*/
if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
{
Item *left_item= ((Item_func*) cond)->arguments()[0];
Item *right_item= ((Item_func*) cond)->arguments()[1];
if (left_item->type() == Item::FIELD_ITEM &&
test_if_ref((Item_field*) left_item,right_item))
{
cond->marker=3; // Checked when read
return (COND*) 0;
}
if (right_item->type() == Item::FIELD_ITEM &&
test_if_ref((Item_field*) right_item,left_item))
{
cond->marker=3; // Checked when read
return (COND*) 0;
}
}
cond->marker=2;
return cond;
}
static Item *
part_of_refkey(Table *table,Field *field)
{
if (!table->reginfo.join_tab)
return (Item*) 0; // field from outer non-select (UPDATE,...)
uint32_t ref_parts=table->reginfo.join_tab->ref.key_parts;
if (ref_parts)
{
KEY_PART_INFO *key_part=
table->key_info[table->reginfo.join_tab->ref.key].key_part;
uint32_t part;
for (part=0 ; part < ref_parts ; part++)
{
if (table->reginfo.join_tab->ref.cond_guards[part])
return 0;
}
for (part=0 ; part < ref_parts ; part++,key_part++)
if (field->eq(key_part->field) &&
!(key_part->key_part_flag & HA_PART_KEY_SEG))
return table->reginfo.join_tab->ref.items[part];
}
return (Item*) 0;
}
/**
Test if one can use the key to resolve order_st BY.
@param order Sort order
@param table Table to sort
@param idx Index to check
@param used_key_parts Return value for used key parts.
@note
used_key_parts is set to correct key parts used if return value != 0
(On other cases, used_key_part may be changed)
@retval
1 key is ok.
@retval
0 Key can't be used
@retval
-1 Reverse key can be used
*/
static int test_if_order_by_key(order_st *order, Table *table, uint32_t idx,
uint32_t *used_key_parts)
{
KEY_PART_INFO *key_part,*key_part_end;
key_part=table->key_info[idx].key_part;
key_part_end=key_part+table->key_info[idx].key_parts;
key_part_map const_key_parts=table->const_key_parts[idx];
int reverse=0;
bool on_primary_key= false;
for (; order ; order=order->next, const_key_parts>>=1)
{
Field *field=((Item_field*) (*order->item)->real_item())->field;
int flag;
/*
Skip key parts that are constants in the WHERE clause.
These are already skipped in the order_st BY by const_expression_in_where()
*/
for (; const_key_parts & 1 ; const_key_parts>>= 1)
key_part++;
if (key_part == key_part_end)
{
/*
We are at the end of the key. Check if the engine has the primary
key as a suffix to the secondary keys. If it has continue to check
the primary key as a suffix.
*/
if (!on_primary_key &&
(table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
table->s->primary_key != MAX_KEY)
{
on_primary_key= true;
key_part= table->key_info[table->s->primary_key].key_part;
key_part_end=key_part+table->key_info[table->s->primary_key].key_parts;
const_key_parts=table->const_key_parts[table->s->primary_key];
for (; const_key_parts & 1 ; const_key_parts>>= 1)
key_part++;
/*
The primary and secondary key parts were all const (i.e. there's
one row). The sorting doesn't matter.
*/
if (key_part == key_part_end && reverse == 0)
return(1);
}
else
return(0);
}
if (key_part->field != field)
return(0);
/* set flag to 1 if we can use read-next on key, else to -1 */
flag= ((order->asc == !(key_part->key_part_flag & HA_REVERSE_SORT)) ?
1 : -1);
if (reverse && flag != reverse)
return(0);
reverse=flag; // Remember if reverse
key_part++;
}
*used_key_parts= on_primary_key ? table->key_info[idx].key_parts :
(uint32_t) (key_part - table->key_info[idx].key_part);
if (reverse == -1 && !(table->file->index_flags(idx, *used_key_parts-1, 1) &
HA_READ_PREV))
reverse= 0; // Index can't be used
return(reverse);
}
/**
Test if a second key is the subkey of the first one.
@param key_part First key parts
@param ref_key_part Second key parts
@param ref_key_part_end Last+1 part of the second key
@note
Second key MUST be shorter than the first one.
@retval
1 is a subkey
@retval
0 no sub key
*/
inline bool
is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part,
KEY_PART_INFO *ref_key_part_end)
{
for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
if (!key_part->field->eq(ref_key_part->field))
return 0;
return 1;
}
/**
Test if we can use one of the 'usable_keys' instead of 'ref' key
for sorting.
@param ref Number of key, used for WHERE clause
@param usable_keys Keys for testing
@return
- MAX_KEY If we can't use other key
- the number of found key Otherwise
*/
static uint
test_if_subkey(order_st *order, Table *table, uint32_t ref, uint32_t ref_key_parts,
const key_map *usable_keys)
{
uint32_t nr;
uint32_t min_length= UINT32_MAX;
uint32_t best= MAX_KEY;
uint32_t not_used;
KEY_PART_INFO *ref_key_part= table->key_info[ref].key_part;
KEY_PART_INFO *ref_key_part_end= ref_key_part + ref_key_parts;
for (nr= 0 ; nr < table->s->keys ; nr++)
{
if (usable_keys->test(nr) &&
table->key_info[nr].key_length < min_length &&
table->key_info[nr].key_parts >= ref_key_parts &&
is_subkey(table->key_info[nr].key_part, ref_key_part,
ref_key_part_end) &&
test_if_order_by_key(order, table, nr, ¬_used))
{
min_length= table->key_info[nr].key_length;
best= nr;
}
}
return best;
}
/**
Check if GROUP BY/DISTINCT can be optimized away because the set is
already known to be distinct.
Used in removing the GROUP BY/DISTINCT of the following types of
statements:
@code
SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
[GROUP BY <unique_key_cols>,...]
@endcode
If (a,b,c is distinct)
then <any combination of a,b,c>,{whatever} is also distinct
This function checks if all the key parts of any of the unique keys
of the table are referenced by a list : either the select list
through find_field_in_item_list or GROUP BY list through
find_field_in_order_list.
If the above holds and the key parts cannot contain NULLs then we
can safely remove the GROUP BY/DISTINCT,
as no result set can be more distinct than an unique key.
@param table The table to operate on.
@param find_func function to iterate over the list and search
for a field
@retval
1 found
@retval
0 not found.
*/
static bool
list_contains_unique_index(Table *table,
bool (*find_func) (Field *, void *), void *data)
{
for (uint32_t keynr= 0; keynr < table->s->keys; keynr++)
{
if (keynr == table->s->primary_key ||
(table->key_info[keynr].flags & HA_NOSAME))
{
KEY *keyinfo= table->key_info + keynr;
KEY_PART_INFO *key_part, *key_part_end;
for (key_part=keyinfo->key_part,
key_part_end=key_part+ keyinfo->key_parts;
key_part < key_part_end;
key_part++)
{
if (key_part->field->maybe_null() ||
!find_func(key_part->field, data))
break;
}
if (key_part == key_part_end)
return 1;
}
}
return 0;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a list of order_st structures.
Finds a direct reference of the Field in the list.
@param field The field to search for.
@param data order_st *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool
find_field_in_order_list (Field *field, void *data)
{
order_st *group= (order_st *) data;
bool part_found= 0;
for (order_st *tmp_group= group; tmp_group; tmp_group=tmp_group->next)
{
Item *item= (*tmp_group->item)->real_item();
if (item->type() == Item::FIELD_ITEM &&
((Item_field*) item)->field->eq(field))
{
part_found= 1;
break;
}
}
return part_found;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a dynamic list of Items.
Finds a direct reference of the Field in the list.
@param[in] field The field to search for.
@param[in] data List<Item> *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool
find_field_in_item_list (Field *field, void *data)
{
List<Item> *fields= (List<Item> *) data;
bool part_found= 0;
List_iterator<Item> li(*fields);
Item *item;
while ((item= li++))
{
if (item->type() == Item::FIELD_ITEM &&
((Item_field*) item)->field->eq(field))
{
part_found= 1;
break;
}
}
return part_found;
}
/**
Test if we can skip the order_st BY by using an index.
SYNOPSIS
test_if_skip_sort_order()
tab
order
select_limit
no_changes
map
If we can use an index, the JOIN_TAB / tab->select struct
is changed to use the index.
The index must cover all fields in <order>, or it will not be considered.
@todo
- sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
@retval
0 We have to use filesort to do the sorting
@retval
1 We can use an index.
*/
static bool
test_if_skip_sort_order(JOIN_TAB *tab,order_st *order,ha_rows select_limit,
bool no_changes, const key_map *map)
{
int32_t ref_key;
uint32_t ref_key_parts;
int order_direction;
uint32_t used_key_parts;
Table *table=tab->table;
SQL_SELECT *select=tab->select;
key_map usable_keys;
QUICK_SELECT_I *save_quick= 0;
/*
Keys disabled by ALTER Table ... DISABLE KEYS should have already
been taken into account.
*/
usable_keys= *map;
for (order_st *tmp_order=order; tmp_order ; tmp_order=tmp_order->next)
{
Item *item= (*tmp_order->item)->real_item();
if (item->type() != Item::FIELD_ITEM)
{
usable_keys.reset();
return(0);
}
usable_keys&= ((Item_field*) item)->field->part_of_sortkey;
if (usable_keys.none())
return(0); // No usable keys
}
ref_key= -1;
/* Test if constant range in WHERE */
if (tab->ref.key >= 0 && tab->ref.key_parts)
{
ref_key= tab->ref.key;
ref_key_parts= tab->ref.key_parts;
if (tab->type == JT_REF_OR_NULL)
return(0);
}
else if (select && select->quick) // Range found by opt_range
{
int quick_type= select->quick->get_type();
save_quick= select->quick;
/*
assume results are not ordered when index merge is used
TODO: sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
*/
if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT)
return(0);
ref_key= select->quick->index;
ref_key_parts= select->quick->used_key_parts;
}
if (ref_key >= 0)
{
/*
We come here when there is a REF key.
*/
if (! usable_keys.test(ref_key))
{
/*
We come here when ref_key is not among usable_keys
*/
uint32_t new_ref_key;
/*
If using index only read, only consider other possible index only
keys
*/
if (table->covering_keys.test(ref_key))
usable_keys&= table->covering_keys;
if (tab->pre_idx_push_select_cond)
tab->select_cond= tab->select->cond= tab->pre_idx_push_select_cond;
if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts,
&usable_keys)) < MAX_KEY)
{
/* Found key that can be used to retrieve data in sorted order */
if (tab->ref.key >= 0)
{
/*
We'll use ref access method on key new_ref_key. In general case
the index search tuple for new_ref_key will be different (e.g.
when one index is defined as (part1, part2, ...) and another as
(part1, part2(N), ...) and the WHERE clause contains
"part1 = const1 AND part2=const2".
So we build tab->ref from scratch here.
*/
KEYUSE *keyuse= tab->keyuse;
while (keyuse->key != new_ref_key && keyuse->table == tab->table)
keyuse++;
if (create_ref_for_key(tab->join, tab, keyuse,
tab->join->const_table_map))
return(0);
}
else
{
/*
The range optimizer constructed QUICK_RANGE for ref_key, and
we want to use instead new_ref_key as the index. We can't
just change the index of the quick select, because this may
result in an incosistent QUICK_SELECT object. Below we
create a new QUICK_SELECT from scratch so that all its
parameres are set correctly by the range optimizer.
*/
key_map new_ref_key_map;
new_ref_key_map.reset(); // Force the creation of quick select
new_ref_key_map.set(new_ref_key); // only for new_ref_key.
if (select->test_quick_select(tab->join->session, new_ref_key_map, 0,
(tab->join->select_options &
OPTION_FOUND_ROWS) ?
HA_POS_ERROR :
tab->join->unit->select_limit_cnt,0,
true) <=
0)
return(0);
}
ref_key= new_ref_key;
}
}
/* Check if we get the rows in requested sorted order by using the key */
if (usable_keys.test(ref_key) &&
(order_direction= test_if_order_by_key(order,table,ref_key,
&used_key_parts)))
goto check_reverse_order;
}
{
/*
Check whether there is an index compatible with the given order
usage of which is cheaper than usage of the ref_key index (ref_key>=0)
or a table scan.
It may be the case if order_st/GROUP BY is used with LIMIT.
*/
uint32_t nr;
key_map keys;
uint32_t best_key_parts= 0;
int best_key_direction= 0;
ha_rows best_records= 0;
double read_time;
int best_key= -1;
bool is_best_covering= false;
double fanout= 1;
JOIN *join= tab->join;
uint32_t tablenr= tab - join->join_tab;
ha_rows table_records= table->file->stats.records;
bool group= join->group && order == join->group_list;
/*
If not used with LIMIT, only use keys if the whole query can be
resolved with a key; This is because filesort() is usually faster than
retrieving all rows through an index.
*/
if (select_limit >= table_records)
{
/*
filesort() and join cache are usually faster than reading in
index order and not using join cache
*/
if (tab->type == JT_ALL && tab->join->tables > tab->join->const_tables + 1)
return(0);
keys= *table->file->keys_to_use_for_scanning();
keys|= table->covering_keys;
/*
We are adding here also the index specified in FORCE INDEX clause,
if any.
This is to allow users to use index in order_st BY.
*/
if (table->force_index)
keys|= (group ? table->keys_in_use_for_group_by :
table->keys_in_use_for_order_by);
keys&= usable_keys;
}
else
keys= usable_keys;
read_time= join->best_positions[tablenr].read_time;
for (uint32_t i= tablenr+1; i < join->tables; i++)
fanout*= join->best_positions[i].records_read; // fanout is always >= 1
for (nr=0; nr < table->s->keys ; nr++)
{
int direction;
if (keys.test(nr) &&
(direction= test_if_order_by_key(order, table, nr, &used_key_parts)))
{
bool is_covering= table->covering_keys.test(nr) || (nr == table->s->primary_key && table->file->primary_key_is_clustered());
/*
Don't use an index scan with order_st BY without limit.
For GROUP BY without limit always use index scan
if there is a suitable index.
Why we hold to this asymmetry hardly can be explained
rationally. It's easy to demonstrate that using
temporary table + filesort could be cheaper for grouping
queries too.
*/
if (is_covering ||
select_limit != HA_POS_ERROR ||
(ref_key < 0 && (group || table->force_index)))
{
double rec_per_key;
double index_scan_time;
KEY *keyinfo= tab->table->key_info+nr;
if (select_limit == HA_POS_ERROR)
select_limit= table_records;
if (group)
{
rec_per_key= keyinfo->rec_per_key[used_key_parts-1];
set_if_bigger(rec_per_key, 1.0);
/*
With a grouping query each group containing on average
rec_per_key records produces only one row that will
be included into the result set.
*/
if (select_limit > table_records/rec_per_key)
select_limit= table_records;
else
select_limit= (ha_rows) (select_limit*rec_per_key);
}
/*
If tab=tk is not the last joined table tn then to get first
L records from the result set we can expect to retrieve
only L/fanout(tk,tn) where fanout(tk,tn) says how many
rows in the record set on average will match each row tk.
Usually our estimates for fanouts are too pessimistic.
So the estimate for L/fanout(tk,tn) will be too optimistic
and as result we'll choose an index scan when using ref/range
access + filesort will be cheaper.
*/
select_limit= (ha_rows) (select_limit < fanout ?
1 : select_limit/fanout);
/*
We assume that each of the tested indexes is not correlated
with ref_key. Thus, to select first N records we have to scan
N/selectivity(ref_key) index entries.
selectivity(ref_key) = #scanned_records/#table_records =
table->quick_condition_rows/table_records.
In any case we can't select more than #table_records.
N/(table->quick_condition_rows/table_records) > table_records
<=> N > table->quick_condition_rows.
*/
if (select_limit > table->quick_condition_rows)
select_limit= table_records;
else
select_limit= (ha_rows) (select_limit *
(double) table_records /
table->quick_condition_rows);
rec_per_key= keyinfo->rec_per_key[keyinfo->key_parts-1];
set_if_bigger(rec_per_key, 1.0);
/*
Here we take into account the fact that rows are
accessed in sequences rec_per_key records in each.
Rows in such a sequence are supposed to be ordered
by rowid/primary key. When reading the data
in a sequence we'll touch not more pages than the
table file contains.
TODO. Use the formula for a disk sweep sequential access
to calculate the cost of accessing data rows for one
index entry.
*/
index_scan_time= select_limit/rec_per_key *
cmin(rec_per_key, table->file->scan_time());
if (is_covering || (ref_key < 0 && (group || table->force_index)) ||
index_scan_time < read_time)
{
ha_rows quick_records= table_records;
if (is_best_covering && !is_covering)
continue;
if (table->quick_keys.test(nr))
quick_records= table->quick_rows[nr];
if (best_key < 0 ||
(select_limit <= cmin(quick_records,best_records) ?
keyinfo->key_parts < best_key_parts :
quick_records < best_records))
{
best_key= nr;
best_key_parts= keyinfo->key_parts;
best_records= quick_records;
is_best_covering= is_covering;
best_key_direction= direction;
}
}
}
}
}
if (best_key >= 0)
{
bool quick_created= false;
if (table->quick_keys.test(best_key) && best_key != ref_key)
{
key_map test_map;
test_map.reset(); // Force the creation of quick select
test_map.set(best_key); // only best_key.
quick_created=
select->test_quick_select(join->session, test_map, 0,
join->select_options & OPTION_FOUND_ROWS ?
HA_POS_ERROR :
join->unit->select_limit_cnt,
true, false) > 0;
}
if (!no_changes)
{
if (!quick_created)
{
tab->index= best_key;
tab->read_first_record= best_key_direction > 0 ?
join_read_first:join_read_last;
tab->type=JT_NEXT; // Read with index_first(), index_next()
if (select && select->quick)
{
delete select->quick;
select->quick= 0;
}
if (table->covering_keys.test(best_key))
{
table->key_read=1;
table->file->extra(HA_EXTRA_KEYREAD);
}
table->file->ha_index_or_rnd_end();
if (join->select_options & SELECT_DESCRIBE)
{
tab->ref.key= -1;
tab->ref.key_parts= 0;
if (select_limit < table_records)
tab->limit= select_limit;
}
}
else if (tab->type != JT_ALL)
{
/*
We're about to use a quick access to the table.
We need to change the access method so as the quick access
method is actually used.
*/
assert(tab->select->quick);
tab->type=JT_ALL;
tab->use_quick=1;
tab->ref.key= -1;
tab->ref.key_parts=0; // Don't use ref key.
tab->read_first_record= join_init_read_record;
/*
TODO: update the number of records in join->best_positions[tablenr]
*/
}
}
used_key_parts= best_key_parts;
order_direction= best_key_direction;
}
else
return(0);
}
check_reverse_order:
if (order_direction == -1) // If order_st BY ... DESC
{
if (select && select->quick)
{
/*
Don't reverse the sort order, if it's already done.
(In some cases test_if_order_by_key() can be called multiple times
*/
if (!select->quick->reverse_sorted())
{
QUICK_SELECT_DESC *tmp;
bool error= false;
int quick_type= select->quick->get_type();
if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
{
tab->limit= 0;
select->quick= save_quick;
return(0); // Use filesort
}
/* order_st BY range_key DESC */
tmp= new QUICK_SELECT_DESC((QUICK_RANGE_SELECT*)(select->quick),
used_key_parts, &error);
if (!tmp || error)
{
delete tmp;
select->quick= save_quick;
tab->limit= 0;
return(0); // Reverse sort not supported
}
select->quick=tmp;
}
}
else if (tab->type != JT_NEXT &&
tab->ref.key >= 0 && tab->ref.key_parts <= used_key_parts)
{
/*
SELECT * FROM t1 WHERE a=1 order_st BY a DESC,b DESC
Use a traversal function that starts by reading the last row
with key part (A) and then traverse the index backwards.
*/
tab->read_first_record= join_read_last_key;
tab->read_record.read_record= join_read_prev_same;
}
}
else if (select && select->quick)
select->quick->sorted= 1;
return(1);
}
/*
If not selecting by given key, create an index how records should be read
SYNOPSIS
create_sort_index()
session Thread handler
tab Table to sort (in join structure)
order How table should be sorted
filesort_limit Max number of rows that needs to be sorted
select_limit Max number of rows in final output
Used to decide if we should use index or not
is_order_by true if we are sorting on order_st BY, false if GROUP BY
Used to decide if we should use index or not
IMPLEMENTATION
- If there is an index that can be used, 'tab' is modified to use
this index.
- If no index, create with filesort() an index file that can be used to
retrieve rows in order (should be done with 'read_record').
The sorted data is stored in tab->table and will be freed when calling
free_io_cache(tab->table).
RETURN VALUES
0 ok
-1 Some fatal error
1 No records
*/
static int
create_sort_index(Session *session, JOIN *join, order_st *order,
ha_rows filesort_limit, ha_rows select_limit,
bool is_order_by)
{
uint32_t length= 0;
ha_rows examined_rows;
Table *table;
SQL_SELECT *select;
JOIN_TAB *tab;
if (join->tables == join->const_tables)
return(0); // One row, no need to sort
tab= join->join_tab + join->const_tables;
table= tab->table;
select= tab->select;
/*
When there is SQL_BIG_RESULT do not sort using index for GROUP BY,
and thus force sorting on disk unless a group min-max optimization
is going to be used as it is applied now only for one table queries
with covering indexes.
*/
if ((order != join->group_list ||
!(join->select_options & SELECT_BIG_RESULT) ||
(select && select->quick && (select->quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX))) &&
test_if_skip_sort_order(tab,order,select_limit,0,
is_order_by ? &table->keys_in_use_for_order_by :
&table->keys_in_use_for_group_by))
return(0);
for (order_st *ord= join->order; ord; ord= ord->next)
length++;
if (!(join->sortorder=
make_unireg_sortorder(order, &length, join->sortorder)))
goto err; /* purecov: inspected */
table->sort.io_cache= new IO_CACHE;
memset(table->sort.io_cache, 0, sizeof(IO_CACHE));
table->status=0; // May be wrong if quick_select
// If table has a range, move it to select
if (select && !select->quick && tab->ref.key >= 0)
{
if (tab->quick)
{
select->quick=tab->quick;
tab->quick=0;
/*
We can only use 'Only index' if quick key is same as ref_key
and in index_merge 'Only index' cannot be used
*/
if (table->key_read && ((uint32_t) tab->ref.key != select->quick->index))
{
table->key_read=0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
}
else
{
/*
We have a ref on a const; Change this to a range that filesort
can use.
For impossible ranges (like when doing a lookup on NULL on a NOT NULL
field, quick will contain an empty record set.
*/
if (!(select->quick= (get_quick_select_for_ref(session, table, &tab->ref,
tab->found_records))))
goto err;
}
}
/* Fill schema tables with data before filesort if it's necessary */
if ((join->select_lex->options & OPTION_SCHEMA_TABLE) &&
get_schema_tables_result(join, PROCESSED_BY_CREATE_SORT_INDEX))
goto err;
if (table->s->tmp_table)
table->file->info(HA_STATUS_VARIABLE); // Get record count
table->sort.found_records=filesort(session, table,join->sortorder, length,
select, filesort_limit, 0,
&examined_rows);
tab->records= table->sort.found_records; // For SQL_CALC_ROWS
if (select)
{
select->cleanup(); // filesort did select
tab->select= 0;
}
tab->select_cond=0;
tab->last_inner= 0;
tab->first_unmatched= 0;
tab->type=JT_ALL; // Read with normal read_record
tab->read_first_record= join_init_read_record;
tab->join->examined_rows+=examined_rows;
if (table->key_read) // Restore if we used indexes
{
table->key_read=0;
table->file->extra(HA_EXTRA_NO_KEYREAD);
}
return(table->sort.found_records == HA_POS_ERROR);
err:
return(-1);
}
static bool copy_blobs(Field **ptr)
{
for (; *ptr ; ptr++)
{
if ((*ptr)->flags & BLOB_FLAG)
if (((Field_blob *) (*ptr))->copy())
return 1; // Error
}
return 0;
}
static void free_blobs(Field **ptr)
{
for (; *ptr ; ptr++)
{
if ((*ptr)->flags & BLOB_FLAG)
((Field_blob *) (*ptr))->free();
}
}
static int
remove_duplicates(JOIN *join, Table *entry,List<Item> &fields, Item *having)
{
int error;
uint32_t reclength,offset;
uint32_t field_count;
Session *session= join->session;
entry->reginfo.lock_type=TL_WRITE;
/* Calculate how many saved fields there is in list */
field_count=0;
List_iterator<Item> it(fields);
Item *item;
while ((item=it++))
{
if (item->get_tmp_table_field() && ! item->const_item())
field_count++;
}
if (!field_count && !(join->select_options & OPTION_FOUND_ROWS) && !having)
{ // only const items with no OPTION_FOUND_ROWS
join->unit->select_limit_cnt= 1; // Only send first row
return(0);
}
Field **first_field=entry->field+entry->s->fields - field_count;
offset= (field_count ?
entry->field[entry->s->fields - field_count]->
offset(entry->record[0]) : 0);
reclength= entry->s->reclength-offset;
free_io_cache(entry); // Safety
entry->file->info(HA_STATUS_VARIABLE);
if (entry->s->db_type() == heap_engine ||
(!entry->s->blob_fields &&
((ALIGN_SIZE(reclength) + HASH_OVERHEAD) * entry->file->stats.records <
session->variables.sortbuff_size)))
error= remove_dup_with_hash_index(join->session, entry,
field_count, first_field,
reclength, having);
else
error= remove_dup_with_compare(join->session, entry, first_field, offset,
having);
free_blobs(first_field);
return(error);
}
static int remove_dup_with_compare(Session *session, Table *table, Field **first_field,
uint32_t offset, Item *having)
{
handler *file=table->file;
char *org_record,*new_record;
unsigned char *record;
int error;
uint32_t reclength= table->s->reclength-offset;
org_record=(char*) (record=table->record[0])+offset;
new_record=(char*) table->record[1]+offset;
file->ha_rnd_init(1);
error=file->rnd_next(record);
for (;;)
{
if (session->killed)
{
session->send_kill_message();
error=0;
goto err;
}
if (error)
{
if (error == HA_ERR_RECORD_DELETED)
continue;
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
if (having && !having->val_int())
{
if ((error=file->ha_delete_row(record)))
goto err;
error=file->rnd_next(record);
continue;
}
if (copy_blobs(first_field))
{
my_message(ER_OUTOFMEMORY, ER(ER_OUTOFMEMORY), MYF(0));
error=0;
goto err;
}
memcpy(new_record,org_record,reclength);
/* Read through rest of file and mark duplicated rows deleted */
bool found=0;
for (;;)
{
if ((error=file->rnd_next(record)))
{
if (error == HA_ERR_RECORD_DELETED)
continue;
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
if (table->compare_record(first_field) == 0)
{
if ((error=file->ha_delete_row(record)))
goto err;
}
else if (!found)
{
found=1;
file->position(record); // Remember position
}
}
if (!found)
break; // End of file
/* Restart search on next row */
error=file->restart_rnd_next(record,file->ref);
}
file->extra(HA_EXTRA_NO_CACHE);
return(0);
err:
file->extra(HA_EXTRA_NO_CACHE);
if (error)
file->print_error(error,MYF(0));
return(1);
}
/**
Generate a hash index for each row to quickly find duplicate rows.
@note
Note that this will not work on tables with blobs!
*/
static int remove_dup_with_hash_index(Session *session, Table *table,
uint32_t field_count,
Field **first_field,
uint32_t key_length,
Item *having)
{
unsigned char *key_buffer, *key_pos, *record=table->record[0];
int error;
handler *file= table->file;
uint32_t extra_length= ALIGN_SIZE(key_length)-key_length;
uint32_t *field_lengths,*field_length;
HASH hash;
if (!my_multi_malloc(MYF(MY_WME),
&key_buffer,
(uint32_t) ((key_length + extra_length) *
(long) file->stats.records),
&field_lengths,
(uint32_t) (field_count*sizeof(*field_lengths)),
NULL))
return(1);
{
Field **ptr;
uint32_t total_length= 0;
for (ptr= first_field, field_length=field_lengths ; *ptr ; ptr++)
{
uint32_t length= (*ptr)->sort_length();
(*field_length++)= length;
total_length+= length;
}
assert(total_length <= key_length);
key_length= total_length;
extra_length= ALIGN_SIZE(key_length)-key_length;
}
if (hash_init(&hash, &my_charset_bin, (uint32_t) file->stats.records, 0,
key_length, (hash_get_key) 0, 0, 0))
{
free((char*) key_buffer);
return(1);
}
file->ha_rnd_init(1);
key_pos=key_buffer;
for (;;)
{
unsigned char *org_key_pos;
if (session->killed)
{
session->send_kill_message();
error=0;
goto err;
}
if ((error=file->rnd_next(record)))
{
if (error == HA_ERR_RECORD_DELETED)
continue;
if (error == HA_ERR_END_OF_FILE)
break;
goto err;
}
if (having && !having->val_int())
{
if ((error=file->ha_delete_row(record)))
goto err;
continue;
}
/* copy fields to key buffer */
org_key_pos= key_pos;
field_length=field_lengths;
for (Field **ptr= first_field ; *ptr ; ptr++)
{
(*ptr)->sort_string(key_pos,*field_length);
key_pos+= *field_length++;
}
/* Check if it exists before */
if (hash_search(&hash, org_key_pos, key_length))
{
/* Duplicated found ; Remove the row */
if ((error=file->ha_delete_row(record)))
goto err;
}
else
(void) my_hash_insert(&hash, org_key_pos);
key_pos+=extra_length;
}
free((char*) key_buffer);
hash_free(&hash);
file->extra(HA_EXTRA_NO_CACHE);
(void) file->ha_rnd_end();
return(0);
err:
free((char*) key_buffer);
hash_free(&hash);
file->extra(HA_EXTRA_NO_CACHE);
(void) file->ha_rnd_end();
if (error)
file->print_error(error,MYF(0));
return(1);
}
SORT_FIELD *make_unireg_sortorder(order_st *order, uint32_t *length,
SORT_FIELD *sortorder)
{
uint32_t count;
SORT_FIELD *sort,*pos;
count=0;
for (order_st *tmp = order; tmp; tmp=tmp->next)
count++;
if (!sortorder)
sortorder= (SORT_FIELD*) sql_alloc(sizeof(SORT_FIELD) *
(cmax(count, *length) + 1));
pos= sort= sortorder;
if (!pos)
return 0;
for (;order;order=order->next,pos++)
{
Item *item= order->item[0]->real_item();
pos->field= 0; pos->item= 0;
if (item->type() == Item::FIELD_ITEM)
pos->field= ((Item_field*) item)->field;
else if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item())
pos->field= ((Item_sum*) item)->get_tmp_table_field();
else if (item->type() == Item::COPY_STR_ITEM)
{ // Blob patch
pos->item= ((Item_copy_string*) item)->item;
}
else
pos->item= *order->item;
pos->reverse=! order->asc;
}
*length=count;
return(sort);
}
/*****************************************************************************
Fill join cache with packed records
Records are stored in tab->cache.buffer and last record in
last record is stored with pointers to blobs to support very big
records
******************************************************************************/
static int
join_init_cache(Session *session,JOIN_TAB *tables,uint32_t table_count)
{
register unsigned int i;
unsigned int length, blobs;
size_t size;
CACHE_FIELD *copy,**blob_ptr;
JOIN_CACHE *cache;
JOIN_TAB *join_tab;
cache= &tables[table_count].cache;
cache->fields=blobs=0;
join_tab=tables;
for (i=0 ; i < table_count ; i++,join_tab++)
{
if (!join_tab->used_fieldlength) /* Not calced yet */
calc_used_field_length(session, join_tab);
cache->fields+=join_tab->used_fields;
blobs+=join_tab->used_blobs;
/* SemiJoinDuplicateElimination: reserve space for rowid */
if (join_tab->rowid_keep_flags & JOIN_TAB::KEEP_ROWID)
{
cache->fields++;
join_tab->used_fieldlength += join_tab->table->file->ref_length;
}
}
if (!(cache->field=(CACHE_FIELD*)
sql_alloc(sizeof(CACHE_FIELD)*(cache->fields+table_count*2)+(blobs+1)*
sizeof(CACHE_FIELD*))))
{
free((unsigned char*) cache->buff); /* purecov: inspected */
cache->buff=0; /* purecov: inspected */
return(1); /* purecov: inspected */
}
copy=cache->field;
blob_ptr=cache->blob_ptr=(CACHE_FIELD**)
(cache->field+cache->fields+table_count*2);
length=0;
for (i=0 ; i < table_count ; i++)
{
uint32_t null_fields=0, used_fields;
Field **f_ptr,*field;
for (f_ptr=tables[i].table->field,used_fields=tables[i].used_fields ;
used_fields ;
f_ptr++)
{
field= *f_ptr;
if (field->isReadSet())
{
used_fields--;
length+=field->fill_cache_field(copy);
if (copy->blob_field)
(*blob_ptr++)=copy;
if (field->maybe_null())
null_fields++;
copy->get_rowid= NULL;
copy++;
}
}
/* Copy null bits from table */
if (null_fields && tables[i].table->getNullFields())
{ /* must copy null bits */
copy->str= tables[i].table->null_flags;
copy->length= tables[i].table->s->null_bytes;
copy->strip=0;
copy->blob_field=0;
copy->get_rowid= NULL;
length+=copy->length;
copy++;
cache->fields++;
}
/* If outer join table, copy null_row flag */
if (tables[i].table->maybe_null)
{
copy->str= (unsigned char*) &tables[i].table->null_row;
copy->length=sizeof(tables[i].table->null_row);
copy->strip=0;
copy->blob_field=0;
copy->get_rowid= NULL;
length+=copy->length;
copy++;
cache->fields++;
}
/* SemiJoinDuplicateElimination: Allocate space for rowid if needed */
if (tables[i].rowid_keep_flags & JOIN_TAB::KEEP_ROWID)
{
copy->str= tables[i].table->file->ref;
copy->length= tables[i].table->file->ref_length;
copy->strip=0;
copy->blob_field=0;
copy->get_rowid= NULL;
if (tables[i].rowid_keep_flags & JOIN_TAB::CALL_POSITION)
{
/* We will need to call h->position(): */
copy->get_rowid= tables[i].table;
/* And those after us won't have to: */
tables[i].rowid_keep_flags &= ~((int)JOIN_TAB::CALL_POSITION);
}
copy++;
}
}
cache->length=length+blobs*sizeof(char*);
cache->blobs=blobs;
*blob_ptr= NULL; /* End sequentel */
size= max((size_t)session->variables.join_buff_size,
(size_t)cache->length);
if (!(cache->buff=(unsigned char*) malloc(size)))
return 1; /* Don't use cache */ /* purecov: inspected */
cache->end=cache->buff+size;
reset_cache_write(cache);
return 0;
}
static uint32_t used_blob_length(CACHE_FIELD **ptr)
{
uint32_t length,blob_length;
for (length=0 ; *ptr ; ptr++)
{
(*ptr)->blob_length=blob_length=(*ptr)->blob_field->get_length();
length+=blob_length;
(*ptr)->blob_field->get_ptr(&(*ptr)->str);
}
return length;
}
static bool
store_record_in_cache(JOIN_CACHE *cache)
{
uint32_t length;
unsigned char *pos;
CACHE_FIELD *copy,*end_field;
bool last_record;
pos=cache->pos;
end_field=cache->field+cache->fields;
length=cache->length;
if (cache->blobs)
length+= used_blob_length(cache->blob_ptr);
if ((last_record= (length + cache->length > (size_t) (cache->end - pos))))
cache->ptr_record=cache->records;
/*
There is room in cache. Put record there
*/
cache->records++;
for (copy=cache->field ; copy < end_field; copy++)
{
if (copy->blob_field)
{
if (last_record)
{
copy->blob_field->get_image(pos, copy->length+sizeof(char*),
copy->blob_field->charset());
pos+=copy->length+sizeof(char*);
}
else
{
copy->blob_field->get_image(pos, copy->length, // blob length
copy->blob_field->charset());
memcpy(pos+copy->length,copy->str,copy->blob_length); // Blob data
pos+=copy->length+copy->blob_length;
}
}
else
{
// SemiJoinDuplicateElimination: Get the rowid into table->ref:
if (copy->get_rowid)
copy->get_rowid->file->position(copy->get_rowid->record[0]);
if (copy->strip)
{
unsigned char *str,*end;
for (str=copy->str,end= str+copy->length;
end > str && end[-1] == ' ' ;
end--) ;
length=(uint32_t) (end-str);
memcpy(pos+2, str, length);
int2store(pos, length);
pos+= length+2;
}
else
{
memcpy(pos,copy->str,copy->length);
pos+=copy->length;
}
}
}
cache->pos=pos;
return last_record || (size_t) (cache->end - pos) < cache->length;
}
static void
reset_cache_read(JOIN_CACHE *cache)
{
cache->record_nr=0;
cache->pos=cache->buff;
}
static void reset_cache_write(JOIN_CACHE *cache)
{
reset_cache_read(cache);
cache->records= 0;
cache->ptr_record= UINT32_MAX;
}
static void
read_cached_record(JOIN_TAB *tab)
{
unsigned char *pos;
uint32_t length;
bool last_record;
CACHE_FIELD *copy,*end_field;
last_record=tab->cache.record_nr++ == tab->cache.ptr_record;
pos=tab->cache.pos;
for (copy=tab->cache.field,end_field=copy+tab->cache.fields ;
copy < end_field;
copy++)
{
if (copy->blob_field)
{
if (last_record)
{
copy->blob_field->set_image(pos, copy->length+sizeof(char*),
copy->blob_field->charset());
pos+=copy->length+sizeof(char*);
}
else
{
copy->blob_field->set_ptr(pos, pos+copy->length);
pos+=copy->length+copy->blob_field->get_length();
}
}
else
{
if (copy->strip)
{
length= uint2korr(pos);
memcpy(copy->str, pos+2, length);
memset(copy->str+length, ' ', copy->length-length);
pos+= 2 + length;
}
else
{
memcpy(copy->str,pos,copy->length);
pos+=copy->length;
}
}
}
tab->cache.pos=pos;
return;
}
/*
eq_ref: Create the lookup key and check if it is the same as saved key
SYNOPSIS
cmp_buffer_with_ref()
tab Join tab of the accessed table
DESCRIPTION
Used by eq_ref access method: create the index lookup key and check if
we've used this key at previous lookup (If yes, we don't need to repeat
the lookup - the record has been already fetched)
RETURN
true No cached record for the key, or failed to create the key (due to
out-of-domain error)
false The created key is the same as the previous one (and the record
is already in table->record)
*/
static bool
cmp_buffer_with_ref(JOIN_TAB *tab)
{
bool no_prev_key;
if (!tab->ref.disable_cache)
{
if (!(no_prev_key= tab->ref.key_err))
{
/* Previous access found a row. Copy its key */
memcpy(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length);
}
}
else
no_prev_key= true;
if ((tab->ref.key_err= cp_buffer_from_ref(tab->join->session, &tab->ref)) ||
no_prev_key)
return 1;
return memcmp(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length)
!= 0;
}
bool
cp_buffer_from_ref(Session *session, TABLE_REF *ref)
{
enum enum_check_fields save_count_cuted_fields= session->count_cuted_fields;
session->count_cuted_fields= CHECK_FIELD_IGNORE;
bool result= 0;
for (store_key **copy=ref->key_copy ; *copy ; copy++)
{
if ((*copy)->copy() & 1)
{
result= 1;
break;
}
}
session->count_cuted_fields= save_count_cuted_fields;
return result;
}
/*****************************************************************************
Group and order functions
*****************************************************************************/
/**
Resolve an order_st BY or GROUP BY column reference.
Given a column reference (represented by 'order') from a GROUP BY or order_st
BY clause, find the actual column it represents. If the column being
resolved is from the GROUP BY clause, the procedure searches the SELECT
list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
the order_st BY clause, only the SELECT list is being searched.
If 'order' is resolved to an Item, then order->item is set to the found
Item. If there is no item for the found column (that is, it was resolved
into a table field), order->item is 'fixed' and is added to all_fields and
ref_pointer_array.
ref_pointer_array and all_fields are updated.
@param[in] session Pointer to current thread structure
@param[in,out] ref_pointer_array All select, group and order by fields
@param[in] tables List of tables to search in (usually
FROM clause)
@param[in] order Column reference to be resolved
@param[in] fields List of fields to search in (usually
SELECT list)
@param[in,out] all_fields All select, group and order by fields
@param[in] is_group_field True if order is a GROUP field, false if
order_st by field
@retval
false if OK
@retval
true if error occurred
*/
static bool
find_order_in_list(Session *session, Item **ref_pointer_array, TableList *tables,
order_st *order, List<Item> &fields, List<Item> &all_fields,
bool is_group_field)
{
Item *order_item= *order->item; /* The item from the GROUP/order_st caluse. */
Item::Type order_item_type;
Item **select_item; /* The corresponding item from the SELECT clause. */
Field *from_field; /* The corresponding field from the FROM clause. */
uint32_t counter;
enum_resolution_type resolution;
/*
Local SP variables may be int but are expressions, not positions.
(And they can't be used before fix_fields is called for them).
*/
if (order_item->type() == Item::INT_ITEM && order_item->basic_const_item())
{ /* Order by position */
uint32_t count= (uint32_t) order_item->val_int();
if (!count || count > fields.elements)
{
my_error(ER_BAD_FIELD_ERROR, MYF(0),
order_item->full_name(), session->where);
return true;
}
order->item= ref_pointer_array + count - 1;
order->in_field_list= 1;
order->counter= count;
order->counter_used= 1;
return false;
}
/* Lookup the current GROUP/order_st field in the SELECT clause. */
select_item= find_item_in_list(order_item, fields, &counter,
REPORT_EXCEPT_NOT_FOUND, &resolution);
if (!select_item)
return true; /* The item is not unique, or some other error occured. */
/* Check whether the resolved field is not ambiguos. */
if (select_item != not_found_item)
{
Item *view_ref= NULL;
/*
If we have found field not by its alias in select list but by its
original field name, we should additionaly check if we have conflict
for this name (in case if we would perform lookup in all tables).
*/
if (resolution == RESOLVED_BEHIND_ALIAS && !order_item->fixed &&
order_item->fix_fields(session, order->item))
return true;
/* Lookup the current GROUP field in the FROM clause. */
order_item_type= order_item->type();
from_field= (Field*) not_found_field;
if ((is_group_field && order_item_type == Item::FIELD_ITEM) ||
order_item_type == Item::REF_ITEM)
{
from_field= find_field_in_tables(session, (Item_ident*) order_item, tables,
NULL, &view_ref, IGNORE_ERRORS, true,
false);
if (!from_field)
from_field= (Field*) not_found_field;
}
if (from_field == not_found_field ||
(from_field != view_ref_found ?
/* it is field of base table => check that fields are same */
((*select_item)->type() == Item::FIELD_ITEM &&
((Item_field*) (*select_item))->field->eq(from_field)) :
/*
in is field of view table => check that references on translation
table are same
*/
((*select_item)->type() == Item::REF_ITEM &&
view_ref->type() == Item::REF_ITEM &&
((Item_ref *) (*select_item))->ref ==
((Item_ref *) view_ref)->ref)))
{
/*
If there is no such field in the FROM clause, or it is the same field
as the one found in the SELECT clause, then use the Item created for
the SELECT field. As a result if there was a derived field that
'shadowed' a table field with the same name, the table field will be
chosen over the derived field.
*/
order->item= ref_pointer_array + counter;
order->in_field_list=1;
return false;
}
else
{
/*
There is a field with the same name in the FROM clause. This
is the field that will be chosen. In this case we issue a
warning so the user knows that the field from the FROM clause
overshadows the column reference from the SELECT list.
*/
push_warning_printf(session, DRIZZLE_ERROR::WARN_LEVEL_WARN, ER_NON_UNIQ_ERROR,
ER(ER_NON_UNIQ_ERROR),
((Item_ident*) order_item)->field_name,
current_session->where);
}
}
order->in_field_list=0;
/*
The call to order_item->fix_fields() means that here we resolve
'order_item' to a column from a table in the list 'tables', or to
a column in some outer query. Exactly because of the second case
we come to this point even if (select_item == not_found_item),
inspite of that fix_fields() calls find_item_in_list() one more
time.
We check order_item->fixed because Item_func_group_concat can put
arguments for which fix_fields already was called.
*/
if (!order_item->fixed &&
(order_item->fix_fields(session, order->item) ||
(order_item= *order->item)->check_cols(1) ||
session->is_fatal_error))
return true; /* Wrong field. */
uint32_t el= all_fields.elements;
all_fields.push_front(order_item); /* Add new field to field list. */
ref_pointer_array[el]= order_item;
order->item= ref_pointer_array + el;
return false;
}
/**
Change order to point at item in select list.
If item isn't a number and doesn't exits in the select list, add it the
the field list.
*/
int setup_order(Session *session, Item **ref_pointer_array, TableList *tables,
List<Item> &fields, List<Item> &all_fields, order_st *order)
{
session->where="order clause";
for (; order; order=order->next)
{
if (find_order_in_list(session, ref_pointer_array, tables, order, fields,
all_fields, false))
return 1;
}
return 0;
}
/**
Intitialize the GROUP BY list.
@param session Thread handler
@param ref_pointer_array We store references to all fields that was
not in 'fields' here.
@param fields All fields in the select part. Any item in
'order' that is part of these list is replaced
by a pointer to this fields.
@param all_fields Total list of all unique fields used by the
select. All items in 'order' that was not part
of fields will be added first to this list.
@param order The fields we should do GROUP BY on.
@param hidden_group_fields Pointer to flag that is set to 1 if we added
any fields to all_fields.
@todo
change ER_WRONG_FIELD_WITH_GROUP to more detailed
ER_NON_GROUPING_FIELD_USED
@retval
0 ok
@retval
1 error (probably out of memory)
*/
int
setup_group(Session *session, Item **ref_pointer_array, TableList *tables,
List<Item> &fields, List<Item> &all_fields, order_st *order,
bool *hidden_group_fields)
{
*hidden_group_fields=0;
order_st *ord;
if (!order)
return 0; /* Everything is ok */
uint32_t org_fields=all_fields.elements;
session->where="group statement";
for (ord= order; ord; ord= ord->next)
{
if (find_order_in_list(session, ref_pointer_array, tables, ord, fields,
all_fields, true))
return 1;
(*ord->item)->marker= UNDEF_POS; /* Mark found */
if ((*ord->item)->with_sum_func)
{
my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*ord->item)->full_name());
return 1;
}
}
/* MODE_ONLY_FULL_GROUP_BY */
{
/*
Don't allow one to use fields that is not used in GROUP BY
For each select a list of field references that aren't under an
aggregate function is created. Each field in this list keeps the
position of the select list expression which it belongs to.
First we check an expression from the select list against the GROUP BY
list. If it's found there then it's ok. It's also ok if this expression
is a constant or an aggregate function. Otherwise we scan the list
of non-aggregated fields and if we'll find at least one field reference
that belongs to this expression and doesn't occur in the GROUP BY list
we throw an error. If there are no fields in the created list for a
select list expression this means that all fields in it are used under
aggregate functions.
*/
Item *item;
Item_field *field;
int cur_pos_in_select_list= 0;
List_iterator<Item> li(fields);
List_iterator<Item_field> naf_it(session->lex->current_select->non_agg_fields);
field= naf_it++;
while (field && (item=li++))
{
if (item->type() != Item::SUM_FUNC_ITEM && item->marker >= 0 &&
!item->const_item() &&
!(item->real_item()->type() == Item::FIELD_ITEM &&
item->used_tables() & OUTER_REF_TABLE_BIT))
{
while (field)
{
/* Skip fields from previous expressions. */
if (field->marker < cur_pos_in_select_list)
goto next_field;
/* Found a field from the next expression. */
if (field->marker > cur_pos_in_select_list)
break;
/*
Check whether the field occur in the GROUP BY list.
Throw the error later if the field isn't found.
*/
for (ord= order; ord; ord= ord->next)
if ((*ord->item)->eq((Item*)field, 0))
goto next_field;
/*
TODO: change ER_WRONG_FIELD_WITH_GROUP to more detailed
ER_NON_GROUPING_FIELD_USED
*/
my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), field->full_name());
return 1;
next_field:
field= naf_it++;
}
}
cur_pos_in_select_list++;
}
}
if (org_fields != all_fields.elements)
*hidden_group_fields=1; // group fields is not used
return 0;
}
/**
Create a group by that consist of all non const fields.
Try to use the fields in the order given by 'order' to allow one to
optimize away 'order by'.
*/
static order_st *
create_distinct_group(Session *session, Item **ref_pointer_array,
order_st *order_list, List<Item> &fields,
List<Item> &, bool *all_order_by_fields_used)
{
List_iterator<Item> li(fields);
Item *item;
order_st *order,*group,**prev;
*all_order_by_fields_used= 1;
while ((item=li++))
item->marker=0; /* Marker that field is not used */
prev= &group; group=0;
for (order=order_list ; order; order=order->next)
{
if (order->in_field_list)
{
order_st *ord=(order_st*) session->memdup((char*) order,sizeof(order_st));
if (!ord)
return 0;
*prev=ord;
prev= &ord->next;
(*ord->item)->marker=1;
}
else
*all_order_by_fields_used= 0;
}
li.rewind();
while ((item=li++))
{
if (!item->const_item() && !item->with_sum_func && !item->marker)
{
/*
Don't put duplicate columns from the SELECT list into the
GROUP BY list.
*/
order_st *ord_iter;
for (ord_iter= group; ord_iter; ord_iter= ord_iter->next)
if ((*ord_iter->item)->eq(item, 1))
goto next_item;
order_st *ord=(order_st*) session->calloc(sizeof(order_st));
if (!ord)
return 0;
/*
We have here only field_list (not all_field_list), so we can use
simple indexing of ref_pointer_array (order in the array and in the
list are same)
*/
ord->item= ref_pointer_array;
ord->asc=1;
*prev=ord;
prev= &ord->next;
}
next_item:
ref_pointer_array++;
}
*prev=0;
return group;
}
/**
Update join with count of the different type of fields.
*/
void
count_field_types(Select_Lex *select_lex, Tmp_Table_Param *param,
List<Item> &fields, bool reset_with_sum_func)
{
List_iterator<Item> li(fields);
Item *field;
param->field_count=param->sum_func_count=param->func_count=
param->hidden_field_count=0;
param->quick_group=1;
while ((field=li++))
{
Item::Type real_type= field->real_item()->type();
if (real_type == Item::FIELD_ITEM)
param->field_count++;
else if (real_type == Item::SUM_FUNC_ITEM)
{
if (! field->const_item())
{
Item_sum *sum_item=(Item_sum*) field->real_item();
if (!sum_item->depended_from() ||
sum_item->depended_from() == select_lex)
{
if (!sum_item->quick_group)
param->quick_group=0; // UDF SUM function
param->sum_func_count++;
for (uint32_t i=0 ; i < sum_item->arg_count ; i++)
{
if (sum_item->args[0]->real_item()->type() == Item::FIELD_ITEM)
param->field_count++;
else
param->func_count++;
}
}
param->func_count++;
}
}
else
{
param->func_count++;
if (reset_with_sum_func)
field->with_sum_func=0;
}
}
}
/**
Return 1 if second is a subpart of first argument.
If first parts has different direction, change it to second part
(group is sorted like order)
*/
static bool
test_if_subpart(order_st *a,order_st *b)
{
for (; a && b; a=a->next,b=b->next)
{
if ((*a->item)->eq(*b->item,1))
a->asc=b->asc;
else
return 0;
}
return test(!b);
}
/**
Return table number if there is only one table in sort order
and group and order is compatible, else return 0.
*/
static Table *
get_sort_by_table(order_st *a,order_st *b,TableList *tables)
{
table_map map= (table_map) 0;
if (!a)
a=b; // Only one need to be given
else if (!b)
b=a;
for (; a && b; a=a->next,b=b->next)
{
if (!(*a->item)->eq(*b->item,1))
return(0);
map|=a->item[0]->used_tables();
}
if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)))
return(0);
for (; !(map & tables->table->map); tables= tables->next_leaf) {};
if (map != tables->table->map)
return(0); // More than one table
return(tables->table);
}
/**
calc how big buffer we need for comparing group entries.
*/
static void
calc_group_buffer(JOIN *join,order_st *group)
{
uint32_t key_length=0, parts=0, null_parts=0;
if (group)
join->group= 1;
for (; group ; group=group->next)
{
Item *group_item= *group->item;
Field *field= group_item->get_tmp_table_field();
if (field)
{
enum_field_types type;
if ((type= field->type()) == DRIZZLE_TYPE_BLOB)
key_length+=MAX_BLOB_WIDTH; // Can't be used as a key
else if (type == DRIZZLE_TYPE_VARCHAR)
key_length+= field->field_length + HA_KEY_BLOB_LENGTH;
else
key_length+= field->pack_length();
}
else
{
switch (group_item->result_type()) {
case REAL_RESULT:
key_length+= sizeof(double);
break;
case INT_RESULT:
key_length+= sizeof(int64_t);
break;
case DECIMAL_RESULT:
key_length+= my_decimal_get_binary_size(group_item->max_length -
(group_item->decimals ? 1 : 0),
group_item->decimals);
break;
case STRING_RESULT:
{
enum enum_field_types type= group_item->field_type();
/*
As items represented as DATE/TIME fields in the group buffer
have STRING_RESULT result type, we increase the length
by 8 as maximum pack length of such fields.
*/
if (type == DRIZZLE_TYPE_DATE ||
type == DRIZZLE_TYPE_DATETIME ||
type == DRIZZLE_TYPE_TIMESTAMP)
{
key_length+= 8;
}
else
{
/*
Group strings are taken as varstrings and require an length field.
A field is not yet created by create_tmp_field()
and the sizes should match up.
*/
key_length+= group_item->max_length + HA_KEY_BLOB_LENGTH;
}
break;
}
default:
/* This case should never be choosen */
assert(0);
my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
}
}
parts++;
if (group_item->maybe_null)
null_parts++;
}
join->tmp_table_param.group_length=key_length+null_parts;
join->tmp_table_param.group_parts=parts;
join->tmp_table_param.group_null_parts=null_parts;
}
/**
allocate group fields or take prepared (cached).
@param main_join join of current select
@param curr_join current join (join of current select or temporary copy
of it)
@retval
0 ok
@retval
1 failed
*/
static bool
make_group_fields(JOIN *main_join, JOIN *curr_join)
{
if (main_join->group_fields_cache.elements)
{
curr_join->group_fields= main_join->group_fields_cache;
curr_join->sort_and_group= 1;
}
else
{
if (alloc_group_fields(curr_join, curr_join->group_list))
return (1);
main_join->group_fields_cache= curr_join->group_fields;
}
return (0);
}
/**
Get a list of buffers for saveing last group.
Groups are saved in reverse order for easyer check loop.
*/
static bool
alloc_group_fields(JOIN *join,order_st *group)
{
if (group)
{
for (; group ; group=group->next)
{
Cached_item *tmp=new_Cached_item(join->session, *group->item, false);
if (!tmp || join->group_fields.push_front(tmp))
return true;
}
}
join->sort_and_group=1; /* Mark for do_select */
return false;
}
/*
Test if a single-row cache of items changed, and update the cache.
@details Test if a list of items that typically represents a result
row has changed. If the value of some item changed, update the cached
value for this item.
@param list list of <item, cached_value> pairs stored as Cached_item.
@return -1 if no item changed
@return index of the first item that changed
*/
int test_if_item_cache_changed(List<Cached_item> &list)
{
List_iterator<Cached_item> li(list);
int idx= -1,i;
Cached_item *buff;
for (i=(int) list.elements-1 ; (buff=li++) ; i--)
{
if (buff->cmp())
idx=i;
}
return(idx);
}
/**
Setup copy_fields to save fields at start of new group.
Setup copy_fields to save fields at start of new group
Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups.
Change old item_field to use a new field with points at saved fieldvalue
This function is only called before use of send_fields.
@param session Session pointer
@param param temporary table parameters
@param ref_pointer_array array of pointers to top elements of filed list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@todo
In most cases this result will be sent to the user.
This should be changed to use copy_int or copy_real depending
on how the value is to be used: In some cases this may be an
argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
@retval
0 ok
@retval
!=0 error
*/
bool
setup_copy_fields(Session *session, Tmp_Table_Param *param,
Item **ref_pointer_array,
List<Item> &res_selected_fields, List<Item> &res_all_fields,
uint32_t elements, List<Item> &all_fields)
{
Item *pos;
List_iterator_fast<Item> li(all_fields);
Copy_field *copy= NULL;
res_selected_fields.empty();
res_all_fields.empty();
List_iterator_fast<Item> itr(res_all_fields);
List<Item> extra_funcs;
uint32_t i, border= all_fields.elements - elements;
if (param->field_count &&
!(copy=param->copy_field= new Copy_field[param->field_count]))
goto err2;
param->copy_funcs.empty();
for (i= 0; (pos= li++); i++)
{
Field *field;
unsigned char *tmp;
Item *real_pos= pos->real_item();
if (real_pos->type() == Item::FIELD_ITEM)
{
Item_field *item;
if (!(item= new Item_field(session, ((Item_field*) real_pos))))
goto err;
if (pos->type() == Item::REF_ITEM)
{
/* preserve the names of the ref when dereferncing */
Item_ref *ref= (Item_ref *) pos;
item->db_name= ref->db_name;
item->table_name= ref->table_name;
item->name= ref->name;
}
pos= item;
if (item->field->flags & BLOB_FLAG)
{
if (!(pos= new Item_copy_string(pos)))
goto err;
/*
Item_copy_string::copy for function can call
Item_copy_string::val_int for blob via Item_ref.
But if Item_copy_string::copy for blob isn't called before,
it's value will be wrong
so let's insert Item_copy_string for blobs in the beginning of
copy_funcs
(to see full test case look at having.test, BUG #4358)
*/
if (param->copy_funcs.push_front(pos))
goto err;
}
else
{
/*
set up save buffer and change result_field to point at
saved value
*/
field= item->field;
item->result_field=field->new_field(session->mem_root,field->table, 1);
/*
We need to allocate one extra byte for null handling and
another extra byte to not get warnings from purify in
Field_varstring::val_int
*/
if (!(tmp= (unsigned char*) sql_alloc(field->pack_length()+2)))
goto err;
if (copy)
{
copy->set(tmp, item->result_field);
item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1);
#ifdef HAVE_purify
copy->to_ptr[copy->from_length]= 0;
#endif
copy++;
}
}
}
else if ((real_pos->type() == Item::FUNC_ITEM ||
real_pos->type() == Item::SUBSELECT_ITEM ||
real_pos->type() == Item::CACHE_ITEM ||
real_pos->type() == Item::COND_ITEM) &&
!real_pos->with_sum_func)
{ // Save for send fields
pos= real_pos;
/* TODO:
In most cases this result will be sent to the user.
This should be changed to use copy_int or copy_real depending
on how the value is to be used: In some cases this may be an
argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
*/
if (!(pos=new Item_copy_string(pos)))
goto err;
if (i < border) // HAVING, order_st and GROUP BY
{
if (extra_funcs.push_back(pos))
goto err;
}
else if (param->copy_funcs.push_back(pos))
goto err;
}
res_all_fields.push_back(pos);
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
pos;
}
param->copy_field_end= copy;
for (i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
/*
Put elements from HAVING, order_st BY and GROUP BY last to ensure that any
reference used in these will resolve to a item that is already calculated
*/
param->copy_funcs.concat(&extra_funcs);
return(0);
err:
if (copy)
delete [] param->copy_field; // This is never 0
param->copy_field=0;
err2:
return(true);
}
/**
Make a copy of all simple SELECT'ed items.
This is done at the start of a new group so that we can retrieve
these later when the group changes.
*/
void
copy_fields(Tmp_Table_Param *param)
{
Copy_field *ptr=param->copy_field;
Copy_field *end=param->copy_field_end;
for (; ptr != end; ptr++)
(*ptr->do_copy)(ptr);
List_iterator_fast<Item> it(param->copy_funcs);
Item_copy_string *item;
while ((item = (Item_copy_string*) it++))
item->copy();
}
/**
Make an array of pointers to sum_functions to speed up
sum_func calculation.
@retval
0 ok
@retval
1 Error
*/
bool JOIN::alloc_func_list()
{
uint32_t func_count, group_parts;
func_count= tmp_table_param.sum_func_count;
/*
If we are using rollup, we need a copy of the summary functions for
each level
*/
if (rollup.state != ROLLUP::STATE_NONE)
func_count*= (send_group_parts+1);
group_parts= send_group_parts;
/*
If distinct, reserve memory for possible
disctinct->group_by optimization
*/
if (select_distinct)
{
group_parts+= fields_list.elements;
/*
If the order_st clause is specified then it's possible that
it also will be optimized, so reserve space for it too
*/
if (order)
{
order_st *ord;
for (ord= order; ord; ord= ord->next)
group_parts++;
}
}
/* This must use calloc() as rollup_make_fields depends on this */
sum_funcs= (Item_sum**) session->calloc(sizeof(Item_sum**) * (func_count+1) +
sizeof(Item_sum***) * (group_parts+1));
sum_funcs_end= (Item_sum***) (sum_funcs+func_count+1);
return(sum_funcs == 0);
}
/**
Initialize 'sum_funcs' array with all Item_sum objects.
@param field_list All items
@param send_fields Items in select list
@param before_group_by Set to 1 if this is called before GROUP BY handling
@param recompute Set to true if sum_funcs must be recomputed
@retval
0 ok
@retval
1 error
*/
bool JOIN::make_sum_func_list(List<Item> &field_list, List<Item> &send_fields,
bool before_group_by, bool recompute)
{
List_iterator_fast<Item> it(field_list);
Item_sum **func;
Item *item;
if (*sum_funcs && !recompute)
return(false); /* We have already initialized sum_funcs. */
func= sum_funcs;
while ((item=it++))
{
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
(!((Item_sum*) item)->depended_from() ||
((Item_sum *)item)->depended_from() == select_lex))
*func++= (Item_sum*) item;
}
if (before_group_by && rollup.state == ROLLUP::STATE_INITED)
{
rollup.state= ROLLUP::STATE_READY;
if (rollup_make_fields(field_list, send_fields, &func))
return(true); // Should never happen
}
else if (rollup.state == ROLLUP::STATE_NONE)
{
for (uint32_t i=0 ; i <= send_group_parts ;i++)
sum_funcs_end[i]= func;
}
else if (rollup.state == ROLLUP::STATE_READY)
return(false); // Don't put end marker
*func=0; // End marker
return(false);
}
/**
Change all funcs and sum_funcs to fields in tmp table, and create
new list of all items.
@param session Session pointer
@param ref_pointer_array array of pointers to top elements of filed list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@retval
0 ok
@retval
!=0 error
*/
static bool
change_to_use_tmp_fields(Session *session, Item **ref_pointer_array,
List<Item> &res_selected_fields,
List<Item> &res_all_fields,
uint32_t elements, List<Item> &all_fields)
{
List_iterator_fast<Item> it(all_fields);
Item *item_field,*item;
res_selected_fields.empty();
res_all_fields.empty();
uint32_t i, border= all_fields.elements - elements;
for (i= 0; (item= it++); i++)
{
Field *field;
if ((item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM) ||
(item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC))
item_field= item;
else
{
if (item->type() == Item::FIELD_ITEM)
{
item_field= item->get_tmp_table_item(session);
}
else if ((field= item->get_tmp_table_field()))
{
if (item->type() == Item::SUM_FUNC_ITEM && field->table->group)
item_field= ((Item_sum*) item)->result_item(field);
else
item_field= (Item*) new Item_field(field);
if (!item_field)
return(true); // Fatal error
if (item->real_item()->type() != Item::FIELD_ITEM)
field->orig_table= 0;
item_field->name= item->name;
if (item->type() == Item::REF_ITEM)
{
Item_field *ifield= (Item_field *) item_field;
Item_ref *iref= (Item_ref *) item;
ifield->table_name= iref->table_name;
ifield->db_name= iref->db_name;
}
}
else
item_field= item;
}
res_all_fields.push_back(item_field);
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
item_field;
}
List_iterator_fast<Item> itr(res_all_fields);
for (i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
return(false);
}
/**
Change all sum_func refs to fields to point at fields in tmp table.
Change all funcs to be fields in tmp table.
@param session Session pointer
@param ref_pointer_array array of pointers to top elements of filed list
@param res_selected_fields new list of items of select item list
@param res_all_fields new list of all items
@param elements number of elements in select item list
@param all_fields all fields list
@retval
0 ok
@retval
1 error
*/
static bool
change_refs_to_tmp_fields(Session *session, Item **ref_pointer_array,
List<Item> &res_selected_fields,
List<Item> &res_all_fields, uint32_t elements,
List<Item> &all_fields)
{
List_iterator_fast<Item> it(all_fields);
Item *item, *new_item;
res_selected_fields.empty();
res_all_fields.empty();
uint32_t i, border= all_fields.elements - elements;
for (i= 0; (item= it++); i++)
{
res_all_fields.push_back(new_item= item->get_tmp_table_item(session));
ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
new_item;
}
List_iterator_fast<Item> itr(res_all_fields);
for (i= 0; i < border; i++)
itr++;
itr.sublist(res_selected_fields, elements);
return session->is_fatal_error;
}
/******************************************************************************
Code for calculating functions
******************************************************************************/
/**
Call ::setup for all sum functions.
@param session thread handler
@param func_ptr sum function list
@retval
false ok
@retval
true error
*/
static bool setup_sum_funcs(Session *session, Item_sum **func_ptr)
{
Item_sum *func;
while ((func= *(func_ptr++)))
{
if (func->setup(session))
return(true);
}
return(false);
}
static void
init_tmptable_sum_functions(Item_sum **func_ptr)
{
Item_sum *func;
while ((func= *(func_ptr++)))
func->reset_field();
}
/** Update record 0 in tmp_table from record 1. */
static void
update_tmptable_sum_func(Item_sum **func_ptr, Table *)
{
Item_sum *func;
while ((func= *(func_ptr++)))
func->update_field();
}
/** Copy result of sum functions to record in tmp_table. */
static void
copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr)
{
for (; func_ptr != end_ptr ; func_ptr++)
(void) (*func_ptr)->save_in_result_field(1);
return;
}
static bool
init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr)
{
for (; func_ptr != end_ptr ;func_ptr++)
{
if ((*func_ptr)->reset())
return 1;
}
/* If rollup, calculate the upper sum levels */
for ( ; *func_ptr ; func_ptr++)
{
if ((*func_ptr)->add())
return 1;
}
return 0;
}
static bool
update_sum_func(Item_sum **func_ptr)
{
Item_sum *func;
for (; (func= (Item_sum*) *func_ptr) ; func_ptr++)
if (func->add())
return 1;
return 0;
}
/** Copy result of functions to record in tmp_table. */
void
copy_funcs(Item **func_ptr)
{
Item *func;
for (; (func = *func_ptr) ; func_ptr++)
func->save_in_result_field(1);
}
/**
Create a condition for a const reference and add this to the
currenct select for the table.
*/
static bool add_ref_to_table_cond(Session *session, JOIN_TAB *join_tab)
{
if (!join_tab->ref.key_parts)
return(false);
Item_cond_and *cond=new Item_cond_and();
Table *table=join_tab->table;
int error;
if (!cond)
return(true);
for (uint32_t i=0 ; i < join_tab->ref.key_parts ; i++)
{
Field *field=table->field[table->key_info[join_tab->ref.key].key_part[i].
fieldnr-1];
Item *value=join_tab->ref.items[i];
cond->add(new Item_func_equal(new Item_field(field), value));
}
if (session->is_fatal_error)
return(true);
if (!cond->fixed)
cond->fix_fields(session, (Item**)&cond);
if (join_tab->select)
{
error=(int) cond->add(join_tab->select->cond);
join_tab->select_cond=join_tab->select->cond=cond;
}
else if ((join_tab->select= make_select(join_tab->table, 0, 0, cond, 0,
&error)))
join_tab->select_cond=cond;
return(error ? true : false);
}
/**
Free joins of subselect of this select.
@param session Session pointer
@param select pointer to Select_Lex which subselects joins we will free
*/
void free_underlaid_joins(Session *, Select_Lex *select)
{
for (Select_Lex_Unit *unit= select->first_inner_unit();
unit;
unit= unit->next_unit())
unit->cleanup();
}
/****************************************************************************
ROLLUP handling
****************************************************************************/
/**
Replace occurences of group by fields in an expression by ref items.
The function replaces occurrences of group by fields in expr
by ref objects for these fields unless they are under aggregate
functions.
The function also corrects value of the the maybe_null attribute
for the items of all subexpressions containing group by fields.
@b EXAMPLES
@code
SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP
SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP
@endcode
@b IMPLEMENTATION
The function recursively traverses the tree of the expr expression,
looks for occurrences of the group by fields that are not under
aggregate functions and replaces them for the corresponding ref items.
@note
This substitution is needed GROUP BY queries with ROLLUP if
SELECT list contains expressions over group by attributes.
@param session reference to the context
@param expr expression to make replacement
@param group_list list of references to group by items
@param changed out: returns 1 if item contains a replaced field item
@todo
- TODO: Some functions are not null-preserving. For those functions
updating of the maybe_null attribute is an overkill.
@retval
0 if ok
@retval
1 on error
*/
static bool change_group_ref(Session *session, Item_func *expr, order_st *group_list,
bool *changed)
{
if (expr->arg_count)
{
Name_resolution_context *context= &session->lex->current_select->context;
Item **arg,**arg_end;
bool arg_changed= false;
for (arg= expr->arguments(),
arg_end= expr->arguments()+expr->arg_count;
arg != arg_end; arg++)
{
Item *item= *arg;
if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM)
{
order_st *group_tmp;
for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
{
if (item->eq(*group_tmp->item,0))
{
Item *new_item;
if (!(new_item= new Item_ref(context, group_tmp->item, 0,
item->name)))
return 1; // fatal_error is set
session->change_item_tree(arg, new_item);
arg_changed= true;
}
}
}
else if (item->type() == Item::FUNC_ITEM)
{
if (change_group_ref(session, (Item_func *) item, group_list, &arg_changed))
return 1;
}
}
if (arg_changed)
{
expr->maybe_null= 1;
*changed= true;
}
}
return 0;
}
/** Allocate memory needed for other rollup functions. */
bool JOIN::rollup_init()
{
uint32_t i,j;
Item **ref_array;
tmp_table_param.quick_group= 0; // Can't create groups in tmp table
rollup.state= ROLLUP::STATE_INITED;
/*
Create pointers to the different sum function groups
These are updated by rollup_make_fields()
*/
tmp_table_param.group_parts= send_group_parts;
if (!(rollup.null_items= (Item_null_result**) session->alloc((sizeof(Item*) +
sizeof(Item**) +
sizeof(List<Item>) +
ref_pointer_array_size)
* send_group_parts )))
return 1;
rollup.fields= (List<Item>*) (rollup.null_items + send_group_parts);
rollup.ref_pointer_arrays= (Item***) (rollup.fields + send_group_parts);
ref_array= (Item**) (rollup.ref_pointer_arrays+send_group_parts);
/*
Prepare space for field list for the different levels
These will be filled up in rollup_make_fields()
*/
for (i= 0 ; i < send_group_parts ; i++)
{
rollup.null_items[i]= new (session->mem_root) Item_null_result();
List<Item> *rollup_fields= &rollup.fields[i];
rollup_fields->empty();
rollup.ref_pointer_arrays[i]= ref_array;
ref_array+= all_fields.elements;
}
for (i= 0 ; i < send_group_parts; i++)
{
for (j=0 ; j < fields_list.elements ; j++)
rollup.fields[i].push_back(rollup.null_items[i]);
}
List_iterator<Item> it(all_fields);
Item *item;
while ((item= it++))
{
order_st *group_tmp;
bool found_in_group= 0;
for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
{
if (*group_tmp->item == item)
{
item->maybe_null= 1;
found_in_group= 1;
if (item->const_item())
{
/*
For ROLLUP queries each constant item referenced in GROUP BY list
is wrapped up into an Item_func object yielding the same value
as the constant item. The objects of the wrapper class are never
considered as constant items and besides they inherit all
properties of the Item_result_field class.
This wrapping allows us to ensure writing constant items
into temporary tables whenever the result of the ROLLUP
operation has to be written into a temporary table, e.g. when
ROLLUP is used together with DISTINCT in the SELECT list.
Usually when creating temporary tables for a intermidiate
result we do not include fields for constant expressions.
*/
Item* new_item= new Item_func_rollup_const(item);
if (!new_item)
return 1;
new_item->fix_fields(session, (Item **) 0);
session->change_item_tree(it.ref(), new_item);
for (order_st *tmp= group_tmp; tmp; tmp= tmp->next)
{
if (*tmp->item == item)
session->change_item_tree(tmp->item, new_item);
}
}
}
}
if (item->type() == Item::FUNC_ITEM && !found_in_group)
{
bool changed= false;
if (change_group_ref(session, (Item_func *) item, group_list, &changed))
return 1;
/*
We have to prevent creation of a field in a temporary table for
an expression that contains GROUP BY attributes.
Marking the expression item as 'with_sum_func' will ensure this.
*/
if (changed)
item->with_sum_func= 1;
}
}
return 0;
}
/**
Fill up rollup structures with pointers to fields to use.
Creates copies of item_sum items for each sum level.
@param fields_arg List of all fields (hidden and real ones)
@param sel_fields Pointer to selected fields
@param func Store here a pointer to all fields
@retval
0 if ok;
In this case func is pointing to next not used element.
@retval
1 on error
*/
bool JOIN::rollup_make_fields(List<Item> &fields_arg, List<Item> &sel_fields,
Item_sum ***func)
{
List_iterator_fast<Item> it(fields_arg);
Item *first_field= sel_fields.head();
uint32_t level;
/*
Create field lists for the different levels
The idea here is to have a separate field list for each rollup level to
avoid all runtime checks of which columns should be NULL.
The list is stored in reverse order to get sum function in such an order
in func that it makes it easy to reset them with init_sum_functions()
Assuming: SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
rollup.fields[0] will contain list where a,b,c is NULL
rollup.fields[1] will contain list where b,c is NULL
...
rollup.ref_pointer_array[#] points to fields for rollup.fields[#]
...
sum_funcs_end[0] points to all sum functions
sum_funcs_end[1] points to all sum functions, except grand totals
...
*/
for (level=0 ; level < send_group_parts ; level++)
{
uint32_t i;
uint32_t pos= send_group_parts - level -1;
bool real_fields= 0;
Item *item;
List_iterator<Item> new_it(rollup.fields[pos]);
Item **ref_array_start= rollup.ref_pointer_arrays[pos];
order_st *start_group;
/* Point to first hidden field */
Item **ref_array= ref_array_start + fields_arg.elements-1;
/* Remember where the sum functions ends for the previous level */
sum_funcs_end[pos+1]= *func;
/* Find the start of the group for this level */
for (i= 0, start_group= group_list ;
i++ < pos ;
start_group= start_group->next)
;
it.rewind();
while ((item= it++))
{
if (item == first_field)
{
real_fields= 1; // End of hidden fields
ref_array= ref_array_start;
}
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
(!((Item_sum*) item)->depended_from() ||
((Item_sum *)item)->depended_from() == select_lex))
{
/*
This is a top level summary function that must be replaced with
a sum function that is reset for this level.
NOTE: This code creates an object which is not that nice in a
sub select. Fortunately it's not common to have rollup in
sub selects.
*/
item= item->copy_or_same(session);
((Item_sum*) item)->make_unique();
*(*func)= (Item_sum*) item;
(*func)++;
}
else
{
/* Check if this is something that is part of this group by */
order_st *group_tmp;
for (group_tmp= start_group, i= pos ;
group_tmp ; group_tmp= group_tmp->next, i++)
{
if (*group_tmp->item == item)
{
/*
This is an element that is used by the GROUP BY and should be
set to NULL in this level
*/
Item_null_result *null_item= new (session->mem_root) Item_null_result();
if (!null_item)
return 1;
item->maybe_null= 1; // Value will be null sometimes
null_item->result_field= item->get_tmp_table_field();
item= null_item;
break;
}
}
}
*ref_array= item;
if (real_fields)
{
(void) new_it++; // Point to next item
new_it.replace(item); // Replace previous
ref_array++;
}
else
ref_array--;
}
}
sum_funcs_end[0]= *func; // Point to last function
return 0;
}
/**
Send all rollup levels higher than the current one to the client.
@b SAMPLE
@code
SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
@endcode
@param idx Level we are on:
- 0 = Total sum level
- 1 = First group changed (a)
- 2 = Second group changed (a,b)
@retval
0 ok
@retval
1 If send_data_failed()
*/
int JOIN::rollup_send_data(uint32_t idx)
{
uint32_t i;
for (i= send_group_parts ; i-- > idx ; )
{
/* Get reference pointers to sum functions in place */
memcpy(ref_pointer_array, rollup.ref_pointer_arrays[i],
ref_pointer_array_size);
if ((!having || having->val_int()))
{
if (send_records < unit->select_limit_cnt && do_send_rows &&
result->send_data(rollup.fields[i]))
return 1;
send_records++;
}
}
/* Restore ref_pointer_array */
set_items_ref_array(current_ref_pointer_array);
return 0;
}
/**
Write all rollup levels higher than the current one to a temp table.
@b SAMPLE
@code
SELECT a, b, SUM(c) FROM t1 GROUP BY a,b WITH ROLLUP
@endcode
@param idx Level we are on:
- 0 = Total sum level
- 1 = First group changed (a)
- 2 = Second group changed (a,b)
@param table reference to temp table
@retval
0 ok
@retval
1 if write_data_failed()
*/
int JOIN::rollup_write_data(uint32_t idx, Table *table_arg)
{
uint32_t i;
for (i= send_group_parts ; i-- > idx ; )
{
/* Get reference pointers to sum functions in place */
memcpy(ref_pointer_array, rollup.ref_pointer_arrays[i],
ref_pointer_array_size);
if ((!having || having->val_int()))
{
int write_error;
Item *item;
List_iterator_fast<Item> it(rollup.fields[i]);
while ((item= it++))
{
if (item->type() == Item::NULL_ITEM && item->is_result_field())
item->save_in_result_field(1);
}
copy_sum_funcs(sum_funcs_end[i+1], sum_funcs_end[i]);
if ((write_error= table_arg->file->ha_write_row(table_arg->record[0])))
{
if (create_myisam_from_heap(session, table_arg,
tmp_table_param.start_recinfo,
&tmp_table_param.recinfo,
write_error, 0))
return 1;
}
}
}
/* Restore ref_pointer_array */
set_items_ref_array(current_ref_pointer_array);
return 0;
}
/**
clear results if there are not rows found for group
(end_send_group/end_write_group)
*/
void JOIN::clear()
{
clear_tables(this);
copy_fields(&tmp_table_param);
if (sum_funcs)
{
Item_sum *func, **func_ptr= sum_funcs;
while ((func= *(func_ptr++)))
func->clear();
}
}
/**
EXPLAIN handling.
Send a description about what how the select will be done to stdout.
*/
void select_describe(JOIN *join, bool need_tmp_table, bool need_order,
bool distinct,const char *message)
{
List<Item> field_list;
List<Item> item_list;
Session *session=join->session;
select_result *result=join->result;
Item *item_null= new Item_null();
const CHARSET_INFO * const cs= system_charset_info;
int quick_type;
/* Don't log this into the slow query log */
session->server_status&= ~(SERVER_QUERY_NO_INDEX_USED | SERVER_QUERY_NO_GOOD_INDEX_USED);
join->unit->offset_limit_cnt= 0;
/*
NOTE: the number/types of items pushed into item_list must be in sync with
EXPLAIN column types as they're "defined" in Session::send_explain_fields()
*/
if (message)
{
item_list.push_back(new Item_int((int32_t)
join->select_lex->select_number));
item_list.push_back(new Item_string(join->select_lex->type,
strlen(join->select_lex->type), cs));
for (uint32_t i=0 ; i < 7; i++)
item_list.push_back(item_null);
if (join->session->lex->describe & DESCRIBE_EXTENDED)
item_list.push_back(item_null);
item_list.push_back(new Item_string(message,strlen(message),cs));
if (result->send_data(item_list))
join->error= 1;
}
else if (join->select_lex == join->unit->fake_select_lex)
{
/*
here we assume that the query will return at least two rows, so we
show "filesort" in EXPLAIN. Of course, sometimes we'll be wrong
and no filesort will be actually done, but executing all selects in
the UNION to provide precise EXPLAIN information will hardly be
appreciated :)
*/
char table_name_buffer[NAME_LEN];
item_list.empty();
/* id */
item_list.push_back(new Item_null);
/* select_type */
item_list.push_back(new Item_string(join->select_lex->type,
strlen(join->select_lex->type),
cs));
/* table */
{
Select_Lex *sl= join->unit->first_select();
uint32_t len= 6, lastop= 0;
memcpy(table_name_buffer, STRING_WITH_LEN("<union"));
for (; sl && len + lastop + 5 < NAME_LEN; sl= sl->next_select())
{
len+= lastop;
lastop= snprintf(table_name_buffer + len, NAME_LEN - len,
"%u,", sl->select_number);
}
if (sl || len + lastop >= NAME_LEN)
{
memcpy(table_name_buffer + len, STRING_WITH_LEN("...>") + 1);
len+= 4;
}
else
{
len+= lastop;
table_name_buffer[len - 1]= '>'; // change ',' to '>'
}
item_list.push_back(new Item_string(table_name_buffer, len, cs));
}
/* type */
item_list.push_back(new Item_string(join_type_str[JT_ALL],
strlen(join_type_str[JT_ALL]),
cs));
/* possible_keys */
item_list.push_back(item_null);
/* key*/
item_list.push_back(item_null);
/* key_len */
item_list.push_back(item_null);
/* ref */
item_list.push_back(item_null);
/* in_rows */
if (join->session->lex->describe & DESCRIBE_EXTENDED)
item_list.push_back(item_null);
/* rows */
item_list.push_back(item_null);
/* extra */
if (join->unit->global_parameters->order_list.first)
item_list.push_back(new Item_string("Using filesort",
14, cs));
else
item_list.push_back(new Item_string("", 0, cs));
if (result->send_data(item_list))
join->error= 1;
}
else
{
table_map used_tables=0;
for (uint32_t i=0 ; i < join->tables ; i++)
{
JOIN_TAB *tab=join->join_tab+i;
Table *table=tab->table;
TableList *table_list= tab->table->pos_in_table_list;
char buff[512];
char buff1[512], buff2[512], buff3[512];
char keylen_str_buf[64];
String extra(buff, sizeof(buff),cs);
char table_name_buffer[NAME_LEN];
String tmp1(buff1,sizeof(buff1),cs);
String tmp2(buff2,sizeof(buff2),cs);
String tmp3(buff3,sizeof(buff3),cs);
extra.length(0);
tmp1.length(0);
tmp2.length(0);
tmp3.length(0);
quick_type= -1;
item_list.empty();
/* id */
item_list.push_back(new Item_uint((uint32_t)
join->select_lex->select_number));
/* select_type */
item_list.push_back(new Item_string(join->select_lex->type,
strlen(join->select_lex->type),
cs));
if (tab->type == JT_ALL && tab->select && tab->select->quick)
{
quick_type= tab->select->quick->get_type();
if ((quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) ||
(quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) ||
(quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION))
tab->type = JT_INDEX_MERGE;
else
tab->type = JT_RANGE;
}
/* table */
if (table->derived_select_number)
{
/* Derived table name generation */
int len= snprintf(table_name_buffer, sizeof(table_name_buffer)-1,
"<derived%u>",
table->derived_select_number);
item_list.push_back(new Item_string(table_name_buffer, len, cs));
}
else
{
TableList *real_table= table->pos_in_table_list;
item_list.push_back(new Item_string(real_table->alias,
strlen(real_table->alias),
cs));
}
/* "type" column */
item_list.push_back(new Item_string(join_type_str[tab->type],
strlen(join_type_str[tab->type]),
cs));
/* Build "possible_keys" value and add it to item_list */
if (tab->keys.any())
{
uint32_t j;
for (j=0 ; j < table->s->keys ; j++)
{
if (tab->keys.test(j))
{
if (tmp1.length())
tmp1.append(',');
tmp1.append(table->key_info[j].name,
strlen(table->key_info[j].name),
system_charset_info);
}
}
}
if (tmp1.length())
item_list.push_back(new Item_string(tmp1.ptr(),tmp1.length(),cs));
else
item_list.push_back(item_null);
/* Build "key", "key_len", and "ref" values and add them to item_list */
if (tab->ref.key_parts)
{
KEY *key_info=table->key_info+ tab->ref.key;
register uint32_t length;
item_list.push_back(new Item_string(key_info->name,
strlen(key_info->name),
system_charset_info));
length= int64_t2str(tab->ref.key_length, keylen_str_buf, 10) -
keylen_str_buf;
item_list.push_back(new Item_string(keylen_str_buf, length,
system_charset_info));
for (store_key **ref=tab->ref.key_copy ; *ref ; ref++)
{
if (tmp2.length())
tmp2.append(',');
tmp2.append((*ref)->name(), strlen((*ref)->name()),
system_charset_info);
}
item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs));
}
else if (tab->type == JT_NEXT)
{
KEY *key_info=table->key_info+ tab->index;
register uint32_t length;
item_list.push_back(new Item_string(key_info->name,
strlen(key_info->name),cs));
length= int64_t2str(key_info->key_length, keylen_str_buf, 10) -
keylen_str_buf;
item_list.push_back(new Item_string(keylen_str_buf,
length,
system_charset_info));
item_list.push_back(item_null);
}
else if (tab->select && tab->select->quick)
{
tab->select->quick->add_keys_and_lengths(&tmp2, &tmp3);
item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs));
item_list.push_back(new Item_string(tmp3.ptr(),tmp3.length(),cs));
item_list.push_back(item_null);
}
else
{
if (table_list->schema_table && table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
{
const char *tmp_buff;
int f_idx;
if (table_list->has_db_lookup_value)
{
f_idx= table_list->schema_table->idx_field1;
tmp_buff= table_list->schema_table->fields_info[f_idx].field_name;
tmp2.append(tmp_buff, strlen(tmp_buff), cs);
}
if (table_list->has_table_lookup_value)
{
if (table_list->has_db_lookup_value)
tmp2.append(',');
f_idx= table_list->schema_table->idx_field2;
tmp_buff= table_list->schema_table->fields_info[f_idx].field_name;
tmp2.append(tmp_buff, strlen(tmp_buff), cs);
}
if (tmp2.length())
item_list.push_back(new Item_string(tmp2.ptr(),tmp2.length(),cs));
else
item_list.push_back(item_null);
}
else
item_list.push_back(item_null);
item_list.push_back(item_null);
item_list.push_back(item_null);
}
/* Add "rows" field to item_list. */
if (table_list->schema_table)
{
/* in_rows */
if (join->session->lex->describe & DESCRIBE_EXTENDED)
item_list.push_back(item_null);
/* rows */
item_list.push_back(item_null);
}
else
{
double examined_rows;
if (tab->select && tab->select->quick)
examined_rows= rows2double(tab->select->quick->records);
else if (tab->type == JT_NEXT || tab->type == JT_ALL)
examined_rows= rows2double(tab->limit ? tab->limit :
tab->table->file->records());
else
examined_rows= join->best_positions[i].records_read;
item_list.push_back(new Item_int((int64_t) (uint64_t) examined_rows,
MY_INT64_NUM_DECIMAL_DIGITS));
/* Add "filtered" field to item_list. */
if (join->session->lex->describe & DESCRIBE_EXTENDED)
{
float f= 0.0;
if (examined_rows)
f= (float) (100.0 * join->best_positions[i].records_read /
examined_rows);
item_list.push_back(new Item_float(f, 2));
}
}
/* Build "Extra" field and add it to item_list. */
bool key_read=table->key_read;
if ((tab->type == JT_NEXT || tab->type == JT_CONST) &&
table->covering_keys.test(tab->index))
key_read=1;
if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT &&
!((QUICK_ROR_INTERSECT_SELECT*)tab->select->quick)->need_to_fetch_row)
key_read=1;
if (tab->info)
item_list.push_back(new Item_string(tab->info,strlen(tab->info),cs));
else if (tab->packed_info & TAB_INFO_HAVE_VALUE)
{
if (tab->packed_info & TAB_INFO_USING_INDEX)
extra.append(STRING_WITH_LEN("; Using index"));
if (tab->packed_info & TAB_INFO_USING_WHERE)
extra.append(STRING_WITH_LEN("; Using where"));
if (tab->packed_info & TAB_INFO_FULL_SCAN_ON_NULL)
extra.append(STRING_WITH_LEN("; Full scan on NULL key"));
/* Skip initial "; "*/
const char *str= extra.ptr();
uint32_t len= extra.length();
if (len)
{
str += 2;
len -= 2;
}
item_list.push_back(new Item_string(str, len, cs));
}
else
{
uint32_t keyno= MAX_KEY;
if (tab->ref.key_parts)
keyno= tab->ref.key;
else if (tab->select && tab->select->quick)
keyno = tab->select->quick->index;
if (keyno != MAX_KEY && keyno == table->file->pushed_idx_cond_keyno &&
table->file->pushed_idx_cond)
extra.append(STRING_WITH_LEN("; Using index condition"));
if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE)
{
extra.append(STRING_WITH_LEN("; Using "));
tab->select->quick->add_info_string(&extra);
}
if (tab->select)
{
if (tab->use_quick == 2)
{
/*
* To print out the bitset in tab->keys, we go through
* it 32 bits at a time. We need to do this to ensure
* that the to_ulong() method will not throw an
* out_of_range exception at runtime which would happen
* if the bitset we were working with was larger than 64
* bits on a 64-bit platform (for example).
*/
stringstream s, w;
string str;
w << tab->keys;
w >> str;
for (uint32_t pos= 0; pos < tab->keys.size(); pos+= 32)
{
bitset<32> tmp(str, pos, 32);
if (tmp.any())
s << uppercase << hex << tmp.to_ulong();
}
extra.append(STRING_WITH_LEN("; Range checked for each "
"record (index map: 0x"));
extra.append(s.str().c_str());
extra.append(')');
}
else if (tab->select->cond)
{
const COND *pushed_cond= tab->table->file->pushed_cond;
if (session->variables.engine_condition_pushdown && pushed_cond)
{
extra.append(STRING_WITH_LEN("; Using where with pushed "
"condition"));
if (session->lex->describe & DESCRIBE_EXTENDED)
{
extra.append(STRING_WITH_LEN(": "));
((COND *)pushed_cond)->print(&extra, QT_ORDINARY);
}
}
else
extra.append(STRING_WITH_LEN("; Using where"));
}
}
if (key_read)
{
if (quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
extra.append(STRING_WITH_LEN("; Using index for group-by"));
else
extra.append(STRING_WITH_LEN("; Using index"));
}
if (table->reginfo.not_exists_optimize)
extra.append(STRING_WITH_LEN("; Not exists"));
if (quick_type == QUICK_SELECT_I::QS_TYPE_RANGE &&
!(((QUICK_RANGE_SELECT*)(tab->select->quick))->mrr_flags &
HA_MRR_USE_DEFAULT_IMPL))
{
extra.append(STRING_WITH_LEN("; Using MRR"));
}
if (table_list->schema_table &&
table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
{
if (!table_list->table_open_method)
extra.append(STRING_WITH_LEN("; Skip_open_table"));
else if (table_list->table_open_method == OPEN_FRM_ONLY)
extra.append(STRING_WITH_LEN("; Open_frm_only"));
else
extra.append(STRING_WITH_LEN("; Open_full_table"));
if (table_list->has_db_lookup_value &&
table_list->has_table_lookup_value)
extra.append(STRING_WITH_LEN("; Scanned 0 databases"));
else if (table_list->has_db_lookup_value ||
table_list->has_table_lookup_value)
extra.append(STRING_WITH_LEN("; Scanned 1 database"));
else
extra.append(STRING_WITH_LEN("; Scanned all databases"));
}
if (need_tmp_table)
{
need_tmp_table=0;
extra.append(STRING_WITH_LEN("; Using temporary"));
}
if (need_order)
{
need_order=0;
extra.append(STRING_WITH_LEN("; Using filesort"));
}
if (distinct & test_all_bits(used_tables,session->used_tables))
extra.append(STRING_WITH_LEN("; Distinct"));
if (tab->insideout_match_tab)
{
extra.append(STRING_WITH_LEN("; LooseScan"));
}
if (tab->flush_weedout_table)
extra.append(STRING_WITH_LEN("; Start temporary"));
else if (tab->check_weed_out_table)
extra.append(STRING_WITH_LEN("; End temporary"));
else if (tab->do_firstmatch)
{
extra.append(STRING_WITH_LEN("; FirstMatch("));
Table *prev_table=tab->do_firstmatch->table;
if (prev_table->derived_select_number)
{
char namebuf[NAME_LEN];
/* Derived table name generation */
int len= snprintf(namebuf, sizeof(namebuf)-1,
"<derived%u>",
prev_table->derived_select_number);
extra.append(namebuf, len);
}
else
extra.append(prev_table->pos_in_table_list->alias);
extra.append(STRING_WITH_LEN(")"));
}
for (uint32_t part= 0; part < tab->ref.key_parts; part++)
{
if (tab->ref.cond_guards[part])
{
extra.append(STRING_WITH_LEN("; Full scan on NULL key"));
break;
}
}
if (i > 0 && tab[-1].next_select == sub_select_cache)
extra.append(STRING_WITH_LEN("; Using join buffer"));
/* Skip initial "; "*/
const char *str= extra.ptr();
uint32_t len= extra.length();
if (len)
{
str += 2;
len -= 2;
}
item_list.push_back(new Item_string(str, len, cs));
}
// For next iteration
used_tables|=table->map;
if (result->send_data(item_list))
join->error= 1;
}
}
for (Select_Lex_Unit *unit= join->select_lex->first_inner_unit();
unit;
unit= unit->next_unit())
{
if (mysql_explain_union(session, unit, result))
return;
}
return;
}
bool mysql_explain_union(Session *session, Select_Lex_Unit *unit, select_result *result)
{
bool res= false;
Select_Lex *first= unit->first_select();
for (Select_Lex *sl= first;
sl;
sl= sl->next_select())
{
// drop UNCACHEABLE_EXPLAIN, because it is for internal usage only
uint8_t uncacheable= (sl->uncacheable & ~UNCACHEABLE_EXPLAIN);
sl->type= (((&session->lex->select_lex)==sl)?
(sl->first_inner_unit() || sl->next_select() ?
"PRIMARY" : "SIMPLE"):
((sl == first)?
((sl->linkage == DERIVED_TABLE_TYPE) ?
"DERIVED":
((uncacheable & UNCACHEABLE_DEPENDENT) ?
"DEPENDENT SUBQUERY":
(uncacheable?"UNCACHEABLE SUBQUERY":
"SUBQUERY"))):
((uncacheable & UNCACHEABLE_DEPENDENT) ?
"DEPENDENT UNION":
uncacheable?"UNCACHEABLE UNION":
"UNION")));
sl->options|= SELECT_DESCRIBE;
}
if (unit->is_union())
{
unit->fake_select_lex->select_number= UINT_MAX; // jost for initialization
unit->fake_select_lex->type= "UNION RESULT";
unit->fake_select_lex->options|= SELECT_DESCRIBE;
if (!(res= unit->prepare(session, result, SELECT_NO_UNLOCK | SELECT_DESCRIBE)))
res= unit->exec();
res|= unit->cleanup();
}
else
{
session->lex->current_select= first;
unit->set_limit(unit->global_parameters);
res= mysql_select(session, &first->ref_pointer_array,
(TableList*) first->table_list.first,
first->with_wild, first->item_list,
first->where,
first->order_list.elements +
first->group_list.elements,
(order_st*) first->order_list.first,
(order_st*) first->group_list.first,
first->having,
first->options | session->options | SELECT_DESCRIBE,
result, unit, first);
}
return(res || session->is_error());
}
static void print_table_array(Session *session, String *str, TableList **table,
TableList **end)
{
(*table)->print(session, str, QT_ORDINARY);
for (TableList **tbl= table + 1; tbl < end; tbl++)
{
TableList *curr= *tbl;
if (curr->outer_join)
{
/* MySQL converts right to left joins */
str->append(STRING_WITH_LEN(" left join "));
}
else if (curr->straight)
str->append(STRING_WITH_LEN(" straight_join "));
else if (curr->sj_inner_tables)
str->append(STRING_WITH_LEN(" semi join "));
else
str->append(STRING_WITH_LEN(" join "));
curr->print(session, str, QT_ORDINARY);
if (curr->on_expr)
{
str->append(STRING_WITH_LEN(" on("));
curr->on_expr->print(str, QT_ORDINARY);
str->append(')');
}
}
}
/**
Print joins from the FROM clause.
@param session thread handler
@param str string where table should be printed
@param tables list of tables in join
@query_type type of the query is being generated
*/
static void print_join(Session *session, String *str,
List<TableList> *tables, enum_query_type)
{
/* List is reversed => we should reverse it before using */
List_iterator_fast<TableList> ti(*tables);
TableList **table= (TableList **)session->alloc(sizeof(TableList*) *
tables->elements);
if (table == 0)
return; // out of memory
for (TableList **t= table + (tables->elements - 1); t >= table; t--)
*t= ti++;
/*
If the first table is a semi-join nest, swap it with something that is
not a semi-join nest.
*/
if ((*table)->sj_inner_tables)
{
TableList **end= table + tables->elements;
for (TableList **t2= table; t2!=end; t2++)
{
if (!(*t2)->sj_inner_tables)
{
TableList *tmp= *t2;
*t2= *table;
*table= tmp;
break;
}
}
}
assert(tables->elements >= 1);
print_table_array(session, str, table, table + tables->elements);
}
/**
Print table as it should be in join list.
@param str string where table should be printed
*/
void TableList::print(Session *session, String *str, enum_query_type query_type)
{
if (nested_join)
{
str->append('(');
print_join(session, str, &nested_join->join_list, query_type);
str->append(')');
}
else
{
const char *cmp_name; // Name to compare with alias
if (derived)
{
// A derived table
str->append('(');
derived->print(str, query_type);
str->append(')');
cmp_name= ""; // Force printing of alias
}
else
{
// A normal table
{
str->append_identifier(db, db_length);
str->append('.');
}
if (schema_table)
{
str->append_identifier(schema_table_name, strlen(schema_table_name));
cmp_name= schema_table_name;
}
else
{
str->append_identifier(table_name, table_name_length);
cmp_name= table_name;
}
}
if (my_strcasecmp(table_alias_charset, cmp_name, alias))
{
if (alias && alias[0])
{
str->append(' ');
string t_alias(alias);
if (lower_case_table_names== 1)
transform(t_alias.begin(), t_alias.end(),
t_alias.begin(), ::tolower);
str->append_identifier(t_alias.c_str(), t_alias.length());
}
}
if (index_hints)
{
List_iterator<Index_hint> it(*index_hints);
Index_hint *hint;
while ((hint= it++))
{
str->append (STRING_WITH_LEN(" "));
hint->print (session, str);
}
}
}
}
void Select_Lex::print(Session *session, String *str, enum_query_type query_type)
{
/* QQ: session may not be set for sub queries, but this should be fixed */
if (!session)
session= current_session;
str->append(STRING_WITH_LEN("select "));
/* First add options */
if (options & SELECT_STRAIGHT_JOIN)
str->append(STRING_WITH_LEN("straight_join "));
if (options & SELECT_DISTINCT)
str->append(STRING_WITH_LEN("distinct "));
if (options & SELECT_SMALL_RESULT)
str->append(STRING_WITH_LEN("sql_small_result "));
if (options & SELECT_BIG_RESULT)
str->append(STRING_WITH_LEN("sql_big_result "));
if (options & OPTION_BUFFER_RESULT)
str->append(STRING_WITH_LEN("sql_buffer_result "));
if (options & OPTION_FOUND_ROWS)
str->append(STRING_WITH_LEN("sql_calc_found_rows "));
//Item List
bool first= 1;
List_iterator_fast<Item> it(item_list);
Item *item;
while ((item= it++))
{
if (first)
first= 0;
else
str->append(',');
item->print_item_w_name(str, query_type);
}
/*
from clause
TODO: support USING/FORCE/IGNORE index
*/
if (table_list.elements)
{
str->append(STRING_WITH_LEN(" from "));
/* go through join tree */
print_join(session, str, &top_join_list, query_type);
}
else if (where)
{
/*
"SELECT 1 FROM DUAL WHERE 2" should not be printed as
"SELECT 1 WHERE 2": the 1st syntax is valid, but the 2nd is not.
*/
str->append(STRING_WITH_LEN(" from DUAL "));
}
// Where
Item *cur_where= where;
if (join)
cur_where= join->conds;
if (cur_where || cond_value != Item::COND_UNDEF)
{
str->append(STRING_WITH_LEN(" where "));
if (cur_where)
cur_where->print(str, query_type);
else
str->append(cond_value != Item::COND_FALSE ? "1" : "0");
}
// group by & olap
if (group_list.elements)
{
str->append(STRING_WITH_LEN(" group by "));
print_order(str, (order_st *) group_list.first, query_type);
switch (olap)
{
case CUBE_TYPE:
str->append(STRING_WITH_LEN(" with cube"));
break;
case ROLLUP_TYPE:
str->append(STRING_WITH_LEN(" with rollup"));
break;
default:
; //satisfy compiler
}
}
// having
Item *cur_having= having;
if (join)
cur_having= join->having;
if (cur_having || having_value != Item::COND_UNDEF)
{
str->append(STRING_WITH_LEN(" having "));
if (cur_having)
cur_having->print(str, query_type);
else
str->append(having_value != Item::COND_FALSE ? "1" : "0");
}
if (order_list.elements)
{
str->append(STRING_WITH_LEN(" order by "));
print_order(str, (order_st *) order_list.first, query_type);
}
// limit
print_limit(session, str, query_type);
// PROCEDURE unsupported here
}
/**
change select_result object of JOIN.
@param res new select_result object
@retval
false OK
@retval
true error
*/
bool JOIN::change_result(select_result *res)
{
result= res;
if (result->prepare(fields_list, select_lex->master_unit()))
{
return(true);
}
return(false);
}
/**
@} (end of group Query_Optimizer)
*/
|