~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
/* Copyright (C) 2000 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
=======================================================================
  NOTE: this library implements SQL standard "exact numeric" type
  and is not at all generic, but rather intentinally crippled to
  follow the standard :)
=======================================================================
  Quoting the standard
  (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)

4.4.2 Characteristics of numbers, page 27:

  An exact numeric type has a precision P and a scale S. P is a positive
  integer that determines the number of significant digits in a
  particular radix R, where R is either 2 or 10. S is a non-negative
  integer. Every value of an exact numeric type of scale S is of the
  form n*10^{-S}, where n is an integer such that ­-R^P <= n <= R^P.

  [...]

  If an assignment of some number would result in a loss of its most
  significant digit, an exception condition is raised. If least
  significant digits are lost, implementation-defined rounding or
  truncating occurs, with no exception condition being raised.

  [...]

  Whenever an exact or approximate numeric value is assigned to an exact
  numeric value site, an approximation of its value that preserves
  leading significant digits after rounding or truncating is represented
  in the declared type of the target. The value is converted to have the
  precision and scale of the target. The choice of whether to truncate
  or round is implementation-defined.

  [...]

  All numeric values between the smallest and the largest value,
  inclusive, in a given exact numeric type have an approximation
  obtained by rounding or truncation for that type; it is
  implementation-defined which other numeric values have such
  approximations.

5.3 <literal>, page 143

  <exact numeric literal> ::=
    <unsigned integer> [ <period> [ <unsigned integer> ] ]
  | <period> <unsigned integer>

6.1 <data type>, page 165:

  19) The <scale> of an <exact numeric type> shall not be greater than
      the <precision> of the <exact numeric type>.

  20) For the <exact numeric type>s DECIMAL and NUMERIC:

    a) The maximum value of <precision> is implementation-defined.
       <precision> shall not be greater than this value.
    b) The maximum value of <scale> is implementation-defined. <scale>
       shall not be greater than this maximum value.

  21) NUMERIC specifies the data type exact numeric, with the decimal
      precision and scale specified by the <precision> and <scale>.

  22) DECIMAL specifies the data type exact numeric, with the decimal
      scale specified by the <scale> and the implementation-defined
      decimal precision equal to or greater than the value of the
      specified <precision>.

6.26 <numeric value expression>, page 241:

  1) If the declared type of both operands of a dyadic arithmetic
     operator is exact numeric, then the declared type of the result is
     an implementation-defined exact numeric type, with precision and
     scale determined as follows:

   a) Let S1 and S2 be the scale of the first and second operands
      respectively.
   b) The precision of the result of addition and subtraction is
      implementation-defined, and the scale is the maximum of S1 and S2.
   c) The precision of the result of multiplication is
      implementation-defined, and the scale is S1 + S2.
   d) The precision and scale of the result of division are
      implementation-defined.
*/

#include <drizzled/global.h>

#include "m_string.h"
#include "m_ctype.h"
#include "decimal.h"

#include <plugin/myisam/myisampack.h>
#include <drizzled/util/test.h>

#include <alloca.h>
/*
  Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
  So one variable of type decimal_digit_t is limited:

      0 < decimal_digit <= DIG_MAX < DIG_BASE

  in the struct st_decimal_t:

    intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
         before the point
    frac - number of decimal digits after the point
    buf is an array of decimal_digit_t's
    len is the length of buf (length of allocated space) in decimal_digit_t's,
        not in bytes
*/
typedef decimal_digit_t dec1;
typedef int64_t      dec2;

#define DIG_PER_DEC1 9
#define DIG_MASK     100000000
#define DIG_BASE     1000000000
#define DIG_MAX      (DIG_BASE-1)
#define ROUND_UP(X)  (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1)
static const dec1 powers10[DIG_PER_DEC1+1]={
  1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
static const dec1 frac_max[DIG_PER_DEC1-1]={
  900000000, 990000000, 999000000,
  999900000, 999990000, 999999000,
  999999900, 999999990 };

#ifdef HAVE_purify
#define sanity(d) assert((d)->len > 0)
#else
#define sanity(d) assert((d)->len >0 && ((d)->buf[0] | \
                              (d)->buf[(d)->len-1] | 1))
#endif

#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error)                   \
        do                                                              \
        {                                                               \
          if (unlikely(intg1+frac1 > (len)))                            \
          {                                                             \
            if (unlikely(intg1 > (len)))                                \
            {                                                           \
              intg1=(len);                                              \
              frac1=0;                                                  \
              error=E_DEC_OVERFLOW;                                     \
            }                                                           \
            else                                                        \
            {                                                           \
              frac1=(len)-intg1;                                        \
              error=E_DEC_TRUNCATED;                                    \
            }                                                           \
          }                                                             \
          else                                                          \
            error=E_DEC_OK;                                             \
        } while(0)

#define ADD(to, from1, from2, carry)  /* assume carry <= 1 */           \
        do                                                              \
        {                                                               \
          dec1 a=(from1)+(from2)+(carry);                               \
          assert((carry) <= 1);                                    \
          if (((carry)= a >= DIG_BASE)) /* no division here! */         \
            a-=DIG_BASE;                                                \
          (to)=a;                                                       \
        } while(0)

#define ADD2(to, from1, from2, carry)                                   \
        do                                                              \
        {                                                               \
          dec2 a=((dec2)(from1))+(from2)+(carry);                       \
          if (((carry)= a >= DIG_BASE))                                 \
            a-=DIG_BASE;                                                \
          if (unlikely(a >= DIG_BASE))                                  \
          {                                                             \
            a-=DIG_BASE;                                                \
            carry++;                                                    \
          }                                                             \
          (to)=(dec1) a;                                                \
        } while(0)

#define SUB(to, from1, from2, carry) /* to=from1-from2 */               \
        do                                                              \
        {                                                               \
          dec1 a=(from1)-(from2)-(carry);                               \
          if (((carry)= a < 0))                                         \
            a+=DIG_BASE;                                                \
          (to)=a;                                                       \
        } while(0)

#define SUB2(to, from1, from2, carry) /* to=from1-from2 */              \
        do                                                              \
        {                                                               \
          dec1 a=(from1)-(from2)-(carry);                               \
          if (((carry)= a < 0))                                         \
            a+=DIG_BASE;                                                \
          if (unlikely(a < 0))                                          \
          {                                                             \
            a+=DIG_BASE;                                                \
            carry++;                                                    \
          }                                                             \
          (to)=a;                                                       \
        } while(0)

/**
  Swap the contents of two variables.
 */
#define swap_variables(TYPE, a, b) \
  do {                             \
    TYPE dummy;                    \
    dummy= a;                      \
    a= b;                          \
    b= dummy;                      \
  } while (0)


/*
  Get maximum value for given precision and scale

  SYNOPSIS
    max_decimal()
    precision/scale - see decimal_bin_size() below
    to              - decimal where where the result will be stored
                      to->buf and to->len must be set.
*/

void max_decimal(int precision, int frac, decimal_t *to)
{
  int intpart;
  dec1 *buf= to->buf;
  assert(precision && precision >= frac);

  to->sign= 0;
  if ((intpart= to->intg= (precision - frac)))
  {
    const int firstdigits= intpart % DIG_PER_DEC1;
    if (firstdigits)
      *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
    for(intpart/= DIG_PER_DEC1; intpart; intpart--)
      *buf++= DIG_MAX;
  }

  if ((to->frac= frac))
  {
    const int lastdigits= frac % DIG_PER_DEC1;
    for(frac/= DIG_PER_DEC1; frac; frac--)
      *buf++= DIG_MAX;
    if (lastdigits)
      *buf= frac_max[lastdigits - 1];
  }
}


static dec1 *remove_leading_zeroes(decimal_t *from, int *intg_result)
{
  int intg= from->intg, i;
  dec1 *buf0= from->buf;
  i= ((intg - 1) % DIG_PER_DEC1) + 1;
  while (intg > 0 && *buf0 == 0)
  {
    intg-= i;
    i= DIG_PER_DEC1;
    buf0++;
  }
  if (intg > 0)
  {
    for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ;
    assert(intg > 0);
  }
  else
    intg=0;
  *intg_result= intg;
  return buf0;
}


/*
  Count actual length of fraction part (without ending zeroes)

  SYNOPSIS
    decimal_actual_fraction()
    from    number for processing
*/

int decimal_actual_fraction(decimal_t *from)
{
  int frac= from->frac, i;
  dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;

  if (frac == 0)
    return 0;

  i= ((frac - 1) % DIG_PER_DEC1 + 1);
  while (frac > 0 && *buf0 == 0)
  {
    frac-= i;
    i= DIG_PER_DEC1;
    buf0--;
  }
  if (frac > 0)
  {
    for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); *buf0 % powers10[i++] == 0; frac--) {};
  }
  return frac;
}


/*
  Convert decimal to its printable string representation

  SYNOPSIS
    decimal2string()
      from            - value to convert
      to              - points to buffer where string representation
                        should be stored
      *to_len         - in:  size of to buffer
                        out: length of the actually written string
      fixed_precision - 0 if representation can be variable length and
                        fixed_decimals will not be checked in this case.
                        Put number as with fixed point position with this
                        number of digits (sign counted and decimal point is
                        counted)
      fixed_decimals  - number digits after point.
      filler          - character to fill gaps in case of fixed_precision > 0

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
*/

int decimal2string(decimal_t *from, char *to, int *to_len,
                   int fixed_precision, int fixed_decimals,
                   char filler)
{
  int len, intg, frac= from->frac, i, intg_len, frac_len, fill;
  /* number digits before decimal point */
  int fixed_intg= (fixed_precision ?
                   (fixed_precision - fixed_decimals) : 0);
  int error=E_DEC_OK;
  char *s=to;
  dec1 *buf, *buf0=from->buf, tmp;

  assert(*to_len >= 2+from->sign);

  /* removing leading zeroes */
  buf0= remove_leading_zeroes(from, &intg);
  if (unlikely(intg+frac==0))
  {
    intg=1;
    tmp=0;
    buf0=&tmp;
  }

  if (!(intg_len= fixed_precision ? fixed_intg : intg))
    intg_len= 1;
  frac_len= fixed_precision ? fixed_decimals : frac;
  len= from->sign + intg_len + test(frac) + frac_len;
  if (fixed_precision)
  {
    if (frac > fixed_decimals)
    {
      error= E_DEC_TRUNCATED;
      frac= fixed_decimals;
    }
    if (intg > fixed_intg)
    {
      error= E_DEC_OVERFLOW;
      intg= fixed_intg;
    }
  }
  else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
  {
    int j= len-*to_len;
    error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
    if (frac && j >= frac + 1) j--;
    if (j > frac)
    {
      intg-= j-frac;
      frac= 0;
    }
    else
      frac-=j;
    len= from->sign + intg_len + test(frac) + frac_len;
  }
  *to_len=len;
  s[len]=0;

  if (from->sign)
    *s++='-';

  if (frac)
  {
    char *s1= s + intg_len;
    fill= frac_len - frac;
    buf=buf0+ROUND_UP(intg);
    *s1++='.';
    for (; frac>0; frac-=DIG_PER_DEC1)
    {
      dec1 x=*buf++;
      for (i=cmin(frac, DIG_PER_DEC1); i; i--)
      {
        dec1 y=x/DIG_MASK;
        *s1++='0'+(unsigned char)y;
        x-=y*DIG_MASK;
        x*=10;
      }
    }
    for(; fill; fill--)
      *s1++=filler;
  }

  fill= intg_len - intg;
  if (intg == 0)
    fill--; /* symbol 0 before digital point */
  for(; fill; fill--)
    *s++=filler;
  if (intg)
  {
    s+=intg;
    for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
    {
      dec1 x=*--buf;
      for (i=cmin(intg, DIG_PER_DEC1); i; i--)
      {
        dec1 y=x/10;
        *--s='0'+(unsigned char)(x-y*10);
        x=y;
      }
    }
  }
  else
    *s= '0';
  return error;
}


/*
  Return bounds of decimal digits in the number

  SYNOPSIS
    digits_bounds()
      from         - decimal number for processing
      start_result - index (from 0 ) of first decimal digits will
                     be written by this address
      end_result   - index of position just after last decimal digit
                     be written by this address
*/

static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
{
  int start, stop, i;
  dec1 *buf_beg= from->buf;
  dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
  dec1 *buf_end= end - 1;

  /* find non-zero digit from number begining */
  while (buf_beg < end && *buf_beg == 0)
    buf_beg++;

  if (buf_beg >= end)
  {
    /* it is zero */
    *start_result= *end_result= 0;
    return;
  }

  /* find non-zero decimal digit from number begining */
  if (buf_beg == from->buf && from->intg)
  {
    start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
    i--;
  }
  else
  {
    i= DIG_PER_DEC1 - 1;
    start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
  }
  if (buf_beg < end)
    for (; *buf_beg < powers10[i--]; start++) ;
  *start_result= start; /* index of first decimal digit (from 0) */

  /* find non-zero digit at the end */
  while (buf_end > buf_beg  && *buf_end == 0)
    buf_end--;
  /* find non-zero decimal digit from the end */
  if (buf_end == end - 1 && from->frac)
  {
    stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
           (i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
    i= DIG_PER_DEC1 - i + 1;
  }
  else
  {
    stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
    i= 1;
  }
  for (; *buf_end % powers10[i++] == 0; stop--) {};
  *end_result= stop; /* index of position after last decimal digit (from 0) */
}


/*
  Left shift for alignment of data in buffer

  SYNOPSIS
    do_mini_left_shift()
    dec     pointer to decimal number which have to be shifted
    shift   number of decimal digits on which it should be shifted
    beg/end bounds of decimal digits (see digits_bounds())

  NOTE
    Result fitting in the buffer should be garanted.
    'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
*/

static void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
{
  dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
  dec1 *end= dec->buf + ROUND_UP(last) - 1;
  int c_shift= DIG_PER_DEC1 - shift;
  assert(from >= dec->buf);
  assert(end < dec->buf + dec->len);
  if (beg % DIG_PER_DEC1 < shift)
    *(from - 1)= (*from) / powers10[c_shift];
  for(; from < end; from++)
    *from= ((*from % powers10[c_shift]) * powers10[shift] +
            (*(from + 1)) / powers10[c_shift]);
  *from= (*from % powers10[c_shift]) * powers10[shift];
}


/*
  Right shift for alignment of data in buffer

  SYNOPSIS
    do_mini_left_shift()
    dec     pointer to decimal number which have to be shifted
    shift   number of decimal digits on which it should be shifted
    beg/end bounds of decimal digits (see digits_bounds())

  NOTE
    Result fitting in the buffer should be garanted.
    'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
*/

static void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
{
  dec1 *from= dec->buf + ROUND_UP(last) - 1;
  dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
  int c_shift= DIG_PER_DEC1 - shift;
  assert(from < dec->buf + dec->len);
  assert(end >= dec->buf);
  if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
    *(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
  for(; from > end; from--)
    *from= (*from / powers10[shift] +
            (*(from - 1) % powers10[shift]) * powers10[c_shift]);
  *from= *from / powers10[shift];
}


/*
  Shift of decimal digits in given number (with rounding if it need)

  SYNOPSIS
    decimal_shift()
    dec       number to be shifted
    shift     number of decimal positions
              shift > 0 means shift to left shift
              shift < 0 meand right shift
  NOTE
    In fact it is multipling on 10^shift.
  RETURN
    E_DEC_OK          OK
    E_DEC_OVERFLOW    operation lead to overflow, number is untoched
    E_DEC_TRUNCATED   number was rounded to fit into buffer
*/

static int decimal_shift(decimal_t *dec, int shift)
{
  /* index of first non zero digit (all indexes from 0) */
  int beg;
  /* index of position after last decimal digit */
  int end;
  /* index of digit position just after point */
  int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
  /* new point position */
  int new_point= point + shift;
  /* number of digits in result */
  int digits_int, digits_frac;
  /* length of result and new fraction in big digits*/
  int new_len, new_frac_len;
  /* return code */
  int err= E_DEC_OK;
  int new_front;

  if (shift == 0)
    return E_DEC_OK;

  digits_bounds(dec, &beg, &end);

  if (beg == end)
  {
    decimal_make_zero(dec);
    return E_DEC_OK;
  }

  digits_int= new_point - beg;
  set_if_bigger(digits_int, 0);
  digits_frac= end - new_point;
  set_if_bigger(digits_frac, 0);

  if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
      dec->len)
  {
    int lack= new_len - dec->len;
    int diff;

    if (new_frac_len < lack)
      return E_DEC_OVERFLOW; /* lack more then we have in fraction */

    /* cat off fraction part to allow new number to fit in our buffer */
    err= E_DEC_TRUNCATED;
    new_frac_len-= lack;
    diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
    /* Make rounding method as parameter? */
    decimal_round(dec, dec, end - point - diff, HALF_UP);
    end-= diff;
    digits_frac= new_frac_len * DIG_PER_DEC1;

    if (end <= beg)
    {
      /*
        we lost all digits (they will be shifted out of buffer), so we can
        just return 0
      */
      decimal_make_zero(dec);
      return E_DEC_TRUNCATED;
    }
  }

  if (shift % DIG_PER_DEC1)
  {
    int l_mini_shift, r_mini_shift, mini_shift;
    int do_left;
    /*
      Calculate left/right shift to align decimal digits inside our bug
      digits correctly
    */
    if (shift > 0)
    {
      l_mini_shift= shift % DIG_PER_DEC1;
      r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
      /*
        It is left shift so prefer left shift, but if we have not place from
        left, we have to have it from right, because we checked length of
        result
      */
      do_left= l_mini_shift <= beg;
      assert(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
    }
    else
    {
      r_mini_shift= (-shift) % DIG_PER_DEC1;
      l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
      /* see comment above */
      do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
      assert(!do_left || l_mini_shift <= beg);
    }
    if (do_left)
    {
      do_mini_left_shift(dec, l_mini_shift, beg, end);
      mini_shift=- l_mini_shift;
    }
    else
    {
      do_mini_right_shift(dec, r_mini_shift, beg, end);
      mini_shift= r_mini_shift;
    }
    new_point+= mini_shift;
    /*
      If number is shifted and correctly aligned in buffer we can
      finish
    */
    if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
    {
      dec->intg= digits_int;
      dec->frac= digits_frac;
      return err;                 /* already shifted as it should be */
    }
    beg+= mini_shift;
    end+= mini_shift;
  }

  /* if new 'decimal front' is in first digit, we do not need move digits */
  if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
      new_front < 0)
  {
    /* need to move digits */
    int d_shift;
    dec1 *to, *barier;
    if (new_front > 0)
    {
      /* move left */
      d_shift= new_front / DIG_PER_DEC1;
      to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
      barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
      assert(to >= dec->buf);
      assert(barier + d_shift < dec->buf + dec->len);
      for(; to <= barier; to++)
        *to= *(to + d_shift);
      for(barier+= d_shift; to <= barier; to++)
        *to= 0;
      d_shift= -d_shift;
    }
    else
    {
      /* move right */
      d_shift= (1 - new_front) / DIG_PER_DEC1;
      to= dec->buf + ROUND_UP(end) - 1 + d_shift;
      barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
      assert(to < dec->buf + dec->len);
      assert(barier - d_shift >= dec->buf);
      for(; to >= barier; to--)
        *to= *(to - d_shift);
      for(barier-= d_shift; to >= barier; to--)
        *to= 0;
    }
    d_shift*= DIG_PER_DEC1;
    beg+= d_shift;
    end+= d_shift;
    new_point+= d_shift;
  }

  /*
    If there are gaps then fill ren with 0.

    Only one of following 'for' loops will work becouse beg <= end
  */
  beg= ROUND_UP(beg + 1) - 1;
  end= ROUND_UP(end) - 1;
  assert(new_point >= 0);

  /* We don't want negative new_point below */
  if (new_point != 0)
    new_point= ROUND_UP(new_point) - 1;

  if (new_point > end)
  {
    do
    {
      dec->buf[new_point]=0;
    } while (--new_point > end);
  }
  else
  {
    for (; new_point < beg; new_point++)
      dec->buf[new_point]= 0;
  }
  dec->intg= digits_int;
  dec->frac= digits_frac;
  return err;
}


/*
  Convert string to decimal

  SYNOPSIS
    internal_str2decl()
      from    - value to convert. Doesn't have to be \0 terminated!
      to      - decimal where where the result will be stored
                to->buf and to->len must be set.
      end     - Pointer to pointer to end of string. Will on return be
		set to the char after the last used character
      fixed   - use to->intg, to->frac as limits for input number

  NOTE
    to->intg and to->frac can be modified even when fixed=1
    (but only decreased, in this case)

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
    In case of E_DEC_FATAL_ERROR *to is set to decimal zero
    (to make error handling easier)
*/

int
internal_str2dec(char *from, decimal_t *to, char **end, bool fixed)
{
  char *s= from, *s1;
  char *end_of_string = *end;
  char *endp;
  int i, intg, frac, error, intg1, frac1;
  dec1 x,*buf;
  sanity(to);

  error= E_DEC_BAD_NUM;                         /* In case of bad number */
  while (s < end_of_string && my_isspace(&my_charset_utf8_general_ci, *s))
    s++;
  if (s == end_of_string)
    goto fatal_error;

  if ((to->sign= (*s == '-')))
    s++;
  else if (*s == '+')
    s++;

  s1=s;
  while (s < end_of_string && my_isdigit(&my_charset_utf8_general_ci, *s))
    s++;
  intg= (int) (s-s1);
  if (s < end_of_string && *s=='.')
  {
    endp= s+1;
    while (endp < end_of_string && my_isdigit(&my_charset_utf8_general_ci, *endp))
      endp++;
    frac= (int) (endp - s - 1);
  }
  else
  {
    frac= 0;
    endp= s;
  }

  *end= endp;

  if (frac+intg == 0)
    goto fatal_error;

  error= 0;
  if (fixed)
  {
    if (frac > to->frac)
    {
      error=E_DEC_TRUNCATED;
      frac=to->frac;
    }
    if (intg > to->intg)
    {
      error=E_DEC_OVERFLOW;
      intg=to->intg;
    }
    intg1=ROUND_UP(intg);
    frac1=ROUND_UP(frac);
    if (intg1+frac1 > to->len)
    {
      error= E_DEC_OOM;
      goto fatal_error;
    }
  }
  else
  {
    intg1=ROUND_UP(intg);
    frac1=ROUND_UP(frac);
    FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
    if (unlikely(error))
    {
      frac=frac1*DIG_PER_DEC1;
      if (error == E_DEC_OVERFLOW)
        intg=intg1*DIG_PER_DEC1;
    }
  }
  /* Error is guranteed to be set here */
  to->intg=intg;
  to->frac=frac;

  buf=to->buf+intg1;
  s1=s;

  for (x=0, i=0; intg; intg--)
  {
    x+= (*--s - '0')*powers10[i];

    if (unlikely(++i == DIG_PER_DEC1))
    {
      *--buf=x;
      x=0;
      i=0;
    }
  }
  if (i)
    *--buf=x;

  buf=to->buf+intg1;
  for (x=0, i=0; frac; frac--)
  {
    x= (*++s1 - '0') + x*10;

    if (unlikely(++i == DIG_PER_DEC1))
    {
      *buf++=x;
      x=0;
      i=0;
    }
  }
  if (i)
    *buf=x*powers10[DIG_PER_DEC1-i];

  /* Handle exponent */
  if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
  {
    int str_error;
    const int64_t exponent= my_strtoll10(endp+1, (char**) &end_of_string,
                                    &str_error);

    if (end_of_string != endp +1)               /* If at least one digit */
    {
      *end= (char*) end_of_string;
      if (str_error > 0)
      {
        error= E_DEC_BAD_NUM;
        goto fatal_error;
      }
      if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
      {
        error= E_DEC_OVERFLOW;
        goto fatal_error;
      }
      if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
      {
        error= E_DEC_TRUNCATED;
        goto fatal_error;
      }
      if (error != E_DEC_OVERFLOW)
        error= decimal_shift(to, (int) exponent);
    }
  }
  return error;

fatal_error:
  decimal_make_zero(to);
  return error;
}


/*
  Convert decimal to double

  SYNOPSIS
    decimal2double()
      from    - value to convert
      to      - result will be stored there

  RETURN VALUE
    E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
*/

int decimal2double(decimal_t *from, double *to)
{
  char strbuf[FLOATING_POINT_BUFFER], *end;
  int len= sizeof(strbuf);
  int rc, error;

  rc = decimal2string(from, strbuf, &len, 0, 0, 0);
  end= strbuf + len;

  *to= my_strtod(strbuf, &end, &error);

  return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
}

/*
  Convert double to decimal

  SYNOPSIS
    double2decimal()
      from    - value to convert
      to      - result will be stored there

  RETURN VALUE
    E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
*/

int double2decimal(double from, decimal_t *to)
{
  char buff[FLOATING_POINT_BUFFER], *end;
  int res;
  end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL);
  res= string2decimal(buff, to, &end);
  return(res);
}


static int ull2dec(uint64_t from, decimal_t *to)
{
  int intg1, error=E_DEC_OK;
  uint64_t x=from;
  dec1 *buf;

  sanity(to);

  for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {};
  if (unlikely(intg1 > to->len))
  {
    intg1=to->len;
    error=E_DEC_OVERFLOW;
  }
  to->frac=0;
  to->intg=intg1*DIG_PER_DEC1;

  for (buf=to->buf+intg1; intg1; intg1--)
  {
    uint64_t y=x/DIG_BASE;
    *--buf=(dec1)(x-y*DIG_BASE);
    x=y;
  }
  return error;
}

int uint64_t2decimal(uint64_t from, decimal_t *to)
{
  to->sign=0;
  return ull2dec(from, to);
}

int int64_t2decimal(int64_t from, decimal_t *to)
{
  if ((to->sign= from < 0))
    return ull2dec(-from, to);
  return ull2dec(from, to);
}

int decimal2uint64_t(decimal_t *from, uint64_t *to)
{
  dec1 *buf=from->buf;
  uint64_t x=0;
  int intg, frac;

  if (from->sign)
  {
      *to= 0ULL;
      return E_DEC_OVERFLOW;
  }

  for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
  {
    uint64_t y=x;
    x=x*DIG_BASE + *buf++;
    if (unlikely(y > ((uint64_t) UINT64_MAX/DIG_BASE) || x < y))
    {
      *to=UINT64_MAX;
      return E_DEC_OVERFLOW;
    }
  }
  *to=x;
  for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
    if (*buf++)
      return E_DEC_TRUNCATED;
  return E_DEC_OK;
}

int decimal2int64_t(decimal_t *from, int64_t *to)
{
  dec1 *buf=from->buf;
  int64_t x=0;
  int intg, frac;

  for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
  {
    int64_t y=x;
    /*
      Attention: trick!
      we're calculating -|from| instead of |from| here
      because |INT64_MIN| > INT64_MAX
      so we can convert -9223372036854775808 correctly
    */
    x=x*DIG_BASE - *buf++;
    if (unlikely(y < (INT64_MIN/DIG_BASE) || x > y))
    {
      /*
        the decimal is bigger than any possible integer
        return border integer depending on the sign
      */
      *to= from->sign ? INT64_MIN : INT64_MAX;
      return E_DEC_OVERFLOW;
    }
  }
  /* boundary case: 9223372036854775808 */
  if (unlikely(from->sign==0 && x == INT64_MIN))
  {
    *to= INT64_MAX;
    return E_DEC_OVERFLOW;
  }

  *to=from->sign ? x : -x;
  for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
    if (*buf++)
      return E_DEC_TRUNCATED;
  return E_DEC_OK;
}

/*
  Convert decimal to its binary fixed-length representation
  two representations of the same length can be compared with memcmp
  with the correct -1/0/+1 result

  SYNOPSIS
    decimal2bin()
      from    - value to convert
      to      - points to buffer where string representation should be stored
      precision/scale - see decimal_bin_size() below

  NOTE
    the buffer is assumed to be of the size decimal_bin_size(precision, scale)

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW

  DESCRIPTION
    for storage decimal numbers are converted to the "binary" format.

    This format has the following properties:
      1. length of the binary representation depends on the {precision, scale}
      as provided by the caller and NOT on the intg/frac of the decimal to
      convert.
      2. binary representations of the same {precision, scale} can be compared
      with memcmp - with the same result as decimal_cmp() of the original
      decimals (not taking into account possible precision loss during
      conversion).

    This binary format is as follows:
      1. First the number is converted to have a requested precision and scale.
      2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
         as is
      3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
         number of bytes (enough bytes to store this number of digits -
         see dig2bytes)
      4. same for frac - full decimal_digit_t's are stored as is,
         the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
      5. If the number is negative - every byte is inversed.
      5. The very first bit of the resulting byte array is inverted (because
         memcmp compares unsigned bytes, see property 2 above)

    Example:

      1234567890.1234

    internally is represented as 3 decimal_digit_t's

      1 234567890 123400000

    (assuming we want a binary representation with precision=14, scale=4)
    in hex it's

      00-00-00-01  0D-FB-38-D2  07-5A-EF-40

    now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
    into binary representation as is:


      ...........  0D-FB-38-D2 ............

    First decimal_digit_t has only one decimal digit. We can store one digit in
    one byte, no need to waste four:

                01 0D-FB-38-D2 ............

    now, last digit. It's 123400000. We can store 1234 in two bytes:

                01 0D-FB-38-D2 04-D2

    So, we've packed 12 bytes number in 7 bytes.
    And now we invert the highest bit to get the final result:

                81 0D FB 38 D2 04 D2

    And for -1234567890.1234 it would be

                7E F2 04 37 2D FB 2D
*/
int decimal2bin(decimal_t *from, unsigned char *to, int precision, int frac)
{
  dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
  int error=E_DEC_OK, intg=precision-frac,
      isize1, intg1, intg1x, from_intg,
      intg0=intg/DIG_PER_DEC1,
      frac0=frac/DIG_PER_DEC1,
      intg0x=intg-intg0*DIG_PER_DEC1,
      frac0x=frac-frac0*DIG_PER_DEC1,
      frac1=from->frac/DIG_PER_DEC1,
      frac1x=from->frac-frac1*DIG_PER_DEC1,
      isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
      fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
      fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
  const int orig_isize0= isize0;
  const int orig_fsize0= fsize0;
  unsigned char *orig_to= to;

  buf1= remove_leading_zeroes(from, &from_intg);

  if (unlikely(from_intg+fsize1==0))
  {
    mask=0; /* just in case */
    intg=1;
    buf1=&mask;
  }

  intg1=from_intg/DIG_PER_DEC1;
  intg1x=from_intg-intg1*DIG_PER_DEC1;
  isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];

  if (intg < from_intg)
  {
    buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
    intg1=intg0; intg1x=intg0x;
    error=E_DEC_OVERFLOW;
  }
  else if (isize0 > isize1)
  {
    while (isize0-- > isize1)
      *to++= (char)mask;
  }
  if (fsize0 < fsize1)
  {
    frac1=frac0; frac1x=frac0x;
    error=E_DEC_TRUNCATED;
  }
  else if (fsize0 > fsize1 && frac1x)
  {
    if (frac0 == frac1)
    {
      frac1x=frac0x;
      fsize0= fsize1;
    }
    else
    {
      frac1++;
      frac1x=0;
    }
  }

  /* intg1x part */
  if (intg1x)
  {
    int i=dig2bytes[intg1x];
    dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
    switch (i)
    {
      case 1: mi_int1store(to, x); break;
      case 2: mi_int2store(to, x); break;
      case 3: mi_int3store(to, x); break;
      case 4: mi_int4store(to, x); break;
      default: assert(0);
    }
    to+=i;
  }

  /* intg1+frac1 part */
  for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
  {
    dec1 x=*buf1++ ^ mask;
    assert(sizeof(dec1) == 4);
    mi_int4store(to, x);
  }

  /* frac1x part */
  if (frac1x)
  {
    dec1 x;
    int i=dig2bytes[frac1x],
        lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
    while (frac1x < lim && dig2bytes[frac1x] == i)
      frac1x++;
    x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
    switch (i)
    {
      case 1: mi_int1store(to, x); break;
      case 2: mi_int2store(to, x); break;
      case 3: mi_int3store(to, x); break;
      case 4: mi_int4store(to, x); break;
      default: assert(0);
    }
    to+=i;
  }
  if (fsize0 > fsize1)
  {
    unsigned char *to_end= orig_to + orig_fsize0 + orig_isize0;

    while (fsize0-- > fsize1 && to < to_end)
      *to++= (unsigned char)mask;
  }
  orig_to[0]^= 0x80;

  /* Check that we have written the whole decimal and nothing more */
  assert(to == orig_to + orig_fsize0 + orig_isize0);
  return error;
}

/*
  Restores decimal from its binary fixed-length representation

  SYNOPSIS
    bin2decimal()
      from    - value to convert
      to      - result
      precision/scale - see decimal_bin_size() below

  NOTE
    see decimal2bin()
    the buffer is assumed to be of the size decimal_bin_size(precision, scale)

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
*/

int bin2decimal(const unsigned char *from, decimal_t *to, int precision, int scale)
{
  int error=E_DEC_OK, intg=precision-scale,
      intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
      intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
      intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
  dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
  const unsigned char *stop;
  unsigned char *d_copy;
  int bin_size= decimal_bin_size(precision, scale);

  sanity(to);
  d_copy= (unsigned char*) alloca(bin_size);
  memcpy(d_copy, from, bin_size);
  d_copy[0]^= 0x80;
  from= d_copy;

  FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
  if (unlikely(error))
  {
    if (intg1 < intg0+(intg0x>0))
    {
      from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
      frac0=frac0x=intg0x=0;
      intg0=intg1;
    }
    else
    {
      frac0x=0;
      frac0=frac1;
    }
  }

  to->sign=(mask != 0);
  to->intg=intg0*DIG_PER_DEC1+intg0x;
  to->frac=frac0*DIG_PER_DEC1+frac0x;

  if (intg0x)
  {
    int i=dig2bytes[intg0x];
    dec1 x= 0;
    switch (i)
    {
      case 1: x=mi_sint1korr(from); break;
      case 2: x=mi_sint2korr(from); break;
      case 3: x=mi_sint3korr(from); break;
      case 4: x=mi_sint4korr(from); break;
      default: assert(0);
    }
    from+=i;
    *buf=x ^ mask;
    if (((uint64_t)*buf) >= (uint64_t) powers10[intg0x+1])
      goto err;
    if (buf > to->buf || *buf != 0)
      buf++;
    else
      to->intg-=intg0x;
  }
  for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
  {
    assert(sizeof(dec1) == 4);
    *buf=mi_sint4korr(from) ^ mask;
    if (((uint32_t)*buf) > DIG_MAX)
      goto err;
    if (buf > to->buf || *buf != 0)
      buf++;
    else
      to->intg-=DIG_PER_DEC1;
  }
  assert(to->intg >=0);
  for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
  {
    assert(sizeof(dec1) == 4);
    *buf=mi_sint4korr(from) ^ mask;
    if (((uint32_t)*buf) > DIG_MAX)
      goto err;
    buf++;
  }
  if (frac0x)
  {
    int i=dig2bytes[frac0x];
    dec1 x= 0;
    switch (i)
    {
      case 1: x=mi_sint1korr(from); break;
      case 2: x=mi_sint2korr(from); break;
      case 3: x=mi_sint3korr(from); break;
      case 4: x=mi_sint4korr(from); break;
      default: assert(0);
    }
    *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
    if (((uint32_t)*buf) > DIG_MAX)
      goto err;
    buf++;
  }
  return error;

err:
  decimal_make_zero(((decimal_t*) to));
  return(E_DEC_BAD_NUM);
}

/*
  Returns the size of array to hold a decimal with given precision and scale

  RETURN VALUE
    size in dec1
    (multiply by sizeof(dec1) to get the size if bytes)
*/

int decimal_size(int precision, int scale)
{
  assert(scale >= 0 && precision > 0 && scale <= precision);
  return ROUND_UP(precision-scale)+ROUND_UP(scale);
}

/*
  Returns the size of array to hold a binary representation of a decimal

  RETURN VALUE
    size in bytes
*/

int decimal_bin_size(int precision, int scale)
{
  int intg=precision-scale,
      intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
      intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;

  assert(scale >= 0 && precision > 0 && scale <= precision);
  return intg0*sizeof(dec1)+dig2bytes[intg0x]+
         frac0*sizeof(dec1)+dig2bytes[frac0x];
}

/*
  Rounds the decimal to "scale" digits

  SYNOPSIS
    decimal_round()
      from    - decimal to round,
      to      - result buffer. from==to is allowed
      scale   - to what position to round. can be negative!
      mode    - round to nearest even or truncate

  NOTES
    scale can be negative !
    one TRUNCATED error (line XXX below) isn't treated very logical :(

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED
*/

int
decimal_round(decimal_t *from, decimal_t *to, int scale,
              decimal_round_mode mode)
{
  int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
      frac1=ROUND_UP(from->frac), round_digit= 0,
      intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len,
      intg1=ROUND_UP(from->intg +
                     (((intg0 + frac0)>0) && (from->buf[0] == DIG_MAX)));
  dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
  int first_dig;

  sanity(to);

  switch (mode) {
  case HALF_UP:
  case HALF_EVEN:       round_digit=5; break;
  case CEILING:         round_digit= from->sign ? 10 : 0; break;
  case FLOOR:           round_digit= from->sign ? 0 : 10; break;
  case TRUNCATE:        round_digit=10; break;
  default: assert(0);
  }

  if (unlikely(frac0+intg0 > len))
  {
    frac0=len-intg0;
    scale=frac0*DIG_PER_DEC1;
    error=E_DEC_TRUNCATED;
  }

  if (scale+from->intg < 0)
  {
    decimal_make_zero(to);
    return E_DEC_OK;
  }

  if (to != from || intg1>intg0)
  {
    dec1 *p0= buf0+intg0+cmax(frac1, frac0);
    dec1 *p1= buf1+intg1+cmax(frac1, frac0);

    while (buf0 < p0)
      *(--p1) = *(--p0);
    if (unlikely(intg1 > intg0))
      to->buf[0]= 0;

    intg0= intg1;
    buf0=to->buf;
    buf1=to->buf;
    to->sign=from->sign;
    to->intg=cmin(intg0, len)*DIG_PER_DEC1;
  }

  if (frac0 > frac1)
  {
    buf1+=intg0+frac1;
    while (frac0-- > frac1)
      *buf1++=0;
    goto done;
  }

  if (scale >= from->frac)
    goto done; /* nothing to do */

  buf0+=intg0+frac0-1;
  buf1+=intg0+frac0-1;
  if (scale == frac0*DIG_PER_DEC1)
  {
    int do_inc= false;
    assert(frac0+intg0 >= 0);
    switch (round_digit) {
    case 0:
    {
      dec1 *p0= buf0 + (frac1-frac0);
      for (; p0 > buf0; p0--)
      {
        if (*p0)
        {
          do_inc= true;
          break;
        }
      }
      break;
    }
    case 5:
    {
      x= buf0[1]/DIG_MASK;
      do_inc= (x>5) || ((x == 5) &&
                        (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
      break;
    }
    default:
      break;
    }
    if (do_inc)
    {
      if (frac0+intg0>0)
        (*buf1)++;
      else
        *(++buf1)=DIG_BASE;
    }
    else if (frac0+intg0==0)
    {
      decimal_make_zero(to);
      return E_DEC_OK;
    }
  }
  else
  {
    /* TODO - fix this code as it won't work for CEILING mode */
    int pos=frac0*DIG_PER_DEC1-scale-1;
    assert(frac0+intg0 > 0);
    x=*buf1 / powers10[pos];
    y=x % 10;
    if (y > round_digit ||
        (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
      x+=10;
    *buf1=powers10[pos]*(x-y);
  }
  /*
    In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
    the buffer are as follows.

    Before <1, 5e8>
    After  <2, 5e8>

    Hence we need to set the 2nd field to 0.
    The same holds if we round 1.5e-9 to 2e-9.
   */
  if (frac0 < frac1)
  {
    dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
    dec1 *end= to->buf + len;

    while (buf < end)
      *buf++=0;
  }
  if (*buf1 >= DIG_BASE)
  {
    carry=1;
    *buf1-=DIG_BASE;
    while (carry && --buf1 >= to->buf)
      ADD(*buf1, *buf1, 0, carry);
    if (unlikely(carry))
    {
      /* shifting the number to create space for new digit */
      if (frac0+intg0 >= len)
      {
        frac0--;
        scale=frac0*DIG_PER_DEC1;
        error=E_DEC_TRUNCATED; /* XXX */
      }
      for (buf1=to->buf+intg0+cmax(frac0,0); buf1 > to->buf; buf1--)
      {
        buf1[0]=buf1[-1];
      }
      *buf1=1;
      to->intg++;
    }
  }
  else
  {
    for (;;)
    {
      if (likely(*buf1))
        break;
      if (buf1-- == to->buf)
      {
        /* making 'zero' with the proper scale */
        dec1 *p0= to->buf + frac0 + 1;
        to->intg=1;
        to->frac= cmax(scale, 0);
        to->sign= 0;
        for (buf1= to->buf; buf1<p0; buf1++)
          *buf1= 0;
        return E_DEC_OK;
      }
    }
  }

  /* Here we  check 999.9 -> 1000 case when we need to increase intg */
  first_dig= to->intg % DIG_PER_DEC1;
  if (first_dig && (*buf1 >= powers10[first_dig]))
    to->intg++;

  if (scale<0)
    scale=0;

done:
  to->frac=scale;
  return error;
}

/*
  Returns the size of the result of the operation

  SYNOPSIS
    decimal_result_size()
      from1   - operand of the unary operation or first operand of the
                binary operation
      from2   - second operand of the binary operation
      op      - operation. one char '+', '-', '*', '/' are allowed
                others may be added later
      param   - extra param to the operation. unused for '+', '-', '*'
                scale increment for '/'

  NOTE
    returned valued may be larger than the actual buffer requred
    in the operation, as decimal_result_size, by design, operates on
    precision/scale values only and not on the actual decimal number

  RETURN VALUE
    size of to->buf array in dec1 elements. to get size in bytes
    multiply by sizeof(dec1)
*/

int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
{
  switch (op) {
  case '-':
    return ROUND_UP(cmax(from1->intg, from2->intg)) +
           ROUND_UP(cmax(from1->frac, from2->frac));
  case '+':
    return ROUND_UP(cmax(from1->intg, from2->intg)+1) +
           ROUND_UP(cmax(from1->frac, from2->frac));
  case '*':
    return ROUND_UP(from1->intg+from2->intg)+
           ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
  case '/':
    return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
  default: assert(0);
  }
  return -1; /* shut up the warning */
}

static int do_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
      frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
      frac0=cmax(frac1, frac2), intg0=cmax(intg1, intg2), error;
  dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;

  sanity(to);

  /* is there a need for extra word because of carry ? */
  x=intg1 > intg2 ? from1->buf[0] :
    intg2 > intg1 ? from2->buf[0] :
    from1->buf[0] + from2->buf[0] ;
  if (unlikely(x > DIG_MAX-1)) /* yes, there is */
  {
    intg0++;
    to->buf[0]=0; /* safety */
  }

  FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
  if (unlikely(error == E_DEC_OVERFLOW))
  {
    max_decimal(to->len * DIG_PER_DEC1, 0, to);
    return error;
  }

  buf0=to->buf+intg0+frac0;

  to->sign=from1->sign;
  to->frac=cmax(from1->frac, from2->frac);
  to->intg=intg0*DIG_PER_DEC1;
  if (unlikely(error))
  {
    set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
    set_if_smaller(frac1, frac0);
    set_if_smaller(frac2, frac0);
    set_if_smaller(intg1, intg0);
    set_if_smaller(intg2, intg0);
  }

  /* part 1 - cmax(frac) ... cmin(frac) */
  if (frac1 > frac2)
  {
    buf1=from1->buf+intg1+frac1;
    stop=from1->buf+intg1+frac2;
    buf2=from2->buf+intg2+frac2;
    stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
  }
  else
  {
    buf1=from2->buf+intg2+frac2;
    stop=from2->buf+intg2+frac1;
    buf2=from1->buf+intg1+frac1;
    stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
  }
  while (buf1 > stop)
    *--buf0=*--buf1;

  /* part 2 - cmin(frac) ... cmin(intg) */
  carry=0;
  while (buf1 > stop2)
  {
    ADD(*--buf0, *--buf1, *--buf2, carry);
  }

  /* part 3 - cmin(intg) ... cmax(intg) */
  buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
                        ((stop=from2->buf)+intg2-intg1) ;
  while (buf1 > stop)
  {
    ADD(*--buf0, *--buf1, 0, carry);
  }

  if (unlikely(carry))
    *--buf0=1;
  assert(buf0 == to->buf || buf0 == to->buf+1);

  return error;
}

/* to=from1-from2.
   if to==0, return -1/0/+1 - the result of the comparison */
static int do_sub(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
      frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
  int frac0=cmax(frac1, frac2), error;
  dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0;

  /* let carry:=1 if from2 > from1 */
  start1=buf1=from1->buf; stop1=buf1+intg1;
  start2=buf2=from2->buf; stop2=buf2+intg2;
  if (unlikely(*buf1 == 0))
  {
    while (buf1 < stop1 && *buf1 == 0)
      buf1++;
    start1=buf1;
    intg1= (int) (stop1-buf1);
  }
  if (unlikely(*buf2 == 0))
  {
    while (buf2 < stop2 && *buf2 == 0)
      buf2++;
    start2=buf2;
    intg2= (int) (stop2-buf2);
  }
  if (intg2 > intg1)
    carry=1;
  else if (intg2 == intg1)
  {
    dec1 *end1= stop1 + (frac1 - 1);
    dec1 *end2= stop2 + (frac2 - 1);
    while (unlikely((buf1 <= end1) && (*end1 == 0)))
      end1--;
    while (unlikely((buf2 <= end2) && (*end2 == 0)))
      end2--;
    frac1= (int) (end1 - stop1) + 1;
    frac2= (int) (end2 - stop2) + 1;
    while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
      buf1++, buf2++;
    if (buf1 <= end1)
    {
      if (buf2 <= end2)
        carry= *buf2 > *buf1;
      else
        carry= 0;
    }
    else
    {
      if (buf2 <= end2)
        carry=1;
      else /* short-circuit everything: from1 == from2 */
      {
        if (to == 0) /* decimal_cmp() */
          return 0;
        decimal_make_zero(to);
        return E_DEC_OK;
      }
    }
  }

  if (to == 0) /* decimal_cmp() */
    return carry == from1->sign ? 1 : -1;

  sanity(to);

  to->sign=from1->sign;

  /* ensure that always from1 > from2 (and intg1 >= intg2) */
  if (carry)
  {
    swap_variables(decimal_t *,from1,from1);
    swap_variables(dec1 *,start1, start2);
    swap_variables(int,intg1,intg2);
    swap_variables(int,frac1,frac2);
    to->sign= 1 - to->sign;
  }

  FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
  buf0=to->buf+intg1+frac0;

  to->frac=cmax(from1->frac, from2->frac);
  to->intg=intg1*DIG_PER_DEC1;
  if (unlikely(error))
  {
    set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
    set_if_smaller(frac1, frac0);
    set_if_smaller(frac2, frac0);
    set_if_smaller(intg2, intg1);
  }
  carry=0;

  /* part 1 - cmax(frac) ... cmin(frac) */
  if (frac1 > frac2)
  {
    buf1=start1+intg1+frac1;
    stop1=start1+intg1+frac2;
    buf2=start2+intg2+frac2;
    while (frac0-- > frac1)
      *--buf0=0;
    while (buf1 > stop1)
      *--buf0=*--buf1;
  }
  else
  {
    buf1=start1+intg1+frac1;
    buf2=start2+intg2+frac2;
    stop2=start2+intg2+frac1;
    while (frac0-- > frac2)
      *--buf0=0;
    while (buf2 > stop2)
    {
      SUB(*--buf0, 0, *--buf2, carry);
    }
  }

  /* part 2 - cmin(frac) ... intg2 */
  while (buf2 > start2)
  {
    SUB(*--buf0, *--buf1, *--buf2, carry);
  }

  /* part 3 - intg2 ... intg1 */
  while (carry && buf1 > start1)
  {
    SUB(*--buf0, *--buf1, 0, carry);
  }

  while (buf1 > start1)
    *--buf0=*--buf1;

  while (buf0 > to->buf)
    *--buf0=0;

  return error;
}

int decimal_intg(decimal_t *from)
{
  int res;
  dec1 *tmp_res;
  tmp_res= remove_leading_zeroes(from, &res);
  return res;
}

int decimal_add(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  if (likely(from1->sign == from2->sign))
    return do_add(from1, from2, to);
  return do_sub(from1, from2, to);
}

int decimal_sub(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  if (likely(from1->sign == from2->sign))
    return do_sub(from1, from2, to);
  return do_add(from1, from2, to);
}

int decimal_cmp(decimal_t *from1, decimal_t *from2)
{
  if (likely(from1->sign == from2->sign))
    return do_sub(from1, from2, 0);
  return from1->sign > from2->sign ? -1 : 1;
}

int decimal_is_zero(decimal_t *from)
{
  dec1 *buf1=from->buf,
       *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
  while (buf1 < end)
    if (*buf1++)
      return 0;
  return 1;
}

/*
  multiply two decimals

  SYNOPSIS
    decimal_mul()
      from1, from2 - factors
      to      - product

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;

  NOTES
    in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
    and 63-digit number will take only 7 dec1 words (basically a 7-digit
    "base 999999999" number).  Thus there's no need in fast multiplication
    algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
    method.

    XXX if this library is to be used with huge numbers of thousands of
    digits, fast multiplication must be implemented.
*/
int decimal_mul(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
      frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
      intg0=ROUND_UP(from1->intg+from2->intg),
      frac0=frac1+frac2, error, i, j, d_to_move;
  dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
       *start2, *stop2, *stop1, *start0, carry;

  sanity(to);

  i=intg0;
  j=frac0;
  FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
  to->sign=from1->sign != from2->sign;
  to->frac=from1->frac+from2->frac;
  to->intg=intg0*DIG_PER_DEC1;

  if (unlikely(error))
  {
    set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
    set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
    if (unlikely(i > intg0))
    {
      i-=intg0;
      j=i >> 1;
      intg1-= j;
      intg2-=i-j;
      frac1=frac2=0; /* frac0 is already 0 here */
    }
    else
    {
      j-=frac0;
      i=j >> 1;
      frac1-= i;
      frac2-=j-i;
    }
  }
  start0=to->buf+intg0+frac0-1;
  start2=buf2+frac2-1;
  stop1=buf1-intg1;
  stop2=buf2-intg2;

  memset(to->buf, 0, (intg0+frac0)*sizeof(dec1));

  for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
  {
    carry=0;
    for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
    {
      dec1 hi, lo;
      dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
      hi=(dec1)(p/DIG_BASE);
      lo=(dec1)(p-((dec2)hi)*DIG_BASE);
      ADD2(*buf0, *buf0, lo, carry);
      carry+=hi;
    }
    if (carry)
    {
      if (buf0 < to->buf)
        return E_DEC_OVERFLOW;
      ADD2(*buf0, *buf0, 0, carry);
    }
    for (buf0--; carry; buf0--)
    {
      if (buf0 < to->buf)
        return E_DEC_OVERFLOW;
      ADD(*buf0, *buf0, 0, carry);
    }
  }

  /* Now we have to check for -0.000 case */
  if (to->sign)
  {
    dec1 *buf= to->buf;
    dec1 *end= to->buf + intg0 + frac0;
    assert(buf != end);
    for (;;)
    {
      if (*buf)
        break;
      if (++buf == end)
      {
        /* We got decimal zero */
        decimal_make_zero(to);
        break;
      }
    }
  }
  buf1= to->buf;
  d_to_move= intg0 + ROUND_UP(to->frac);
  while (!*buf1 && (to->intg > DIG_PER_DEC1))
  {
    buf1++;
    to->intg-= DIG_PER_DEC1;
    d_to_move--;
  }
  if (to->buf < buf1)
  {
    dec1 *cur_d= to->buf;
    for (; d_to_move--; cur_d++, buf1++)
      *cur_d= *buf1;
  }
  return error;
}

/*
  naive division algorithm (Knuth's Algorithm D in 4.3.1) -
  it's ok for short numbers
  also we're using alloca() to allocate a temporary buffer

  XXX if this library is to be used with huge numbers of thousands of
  digits, fast division must be implemented and alloca should be
  changed to malloc (or at least fallback to malloc if alloca() fails)
  but then, decimal_mul() should be rewritten too :(
*/
static int do_div_mod(decimal_t *from1, decimal_t *from2,
                       decimal_t *to, decimal_t *mod, int scale_incr)
{
  int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
      frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
      error= 0, i, intg0, frac0, len1, len2, dintg, div_mod=(!mod);
  dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
       *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry;
  dec2 norm_factor, x, guess, y;

  if (mod)
    to=mod;

  sanity(to);

  /* removing all the leading zeroes */
  i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
  while (prec2 > 0 && *buf2 == 0)
  {
    prec2-= i;
    i= DIG_PER_DEC1;
    buf2++;
  }
  if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
    return E_DEC_DIV_ZERO;
  for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ;
  assert(prec2 > 0);

  i=((prec1-1) % DIG_PER_DEC1)+1;
  while (prec1 > 0 && *buf1 == 0)
  {
    prec1-=i;
    i=DIG_PER_DEC1;
    buf1++;
  }
  if (prec1 <= 0)
  { /* short-circuit everything: from1 == 0 */
    decimal_make_zero(to);
    return E_DEC_OK;
  }
  for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ;
  assert(prec1 > 0);

  /* let's fix scale_incr, taking into account frac1,frac2 increase */
  if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
    scale_incr=0;

  dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
  if (dintg < 0)
  {
    dintg/=DIG_PER_DEC1;
    intg0=0;
  }
  else
    intg0=ROUND_UP(dintg);
  if (mod)
  {
    /* we're calculating N1 % N2.
       The result will have
         frac=cmax(frac1, frac2), as for subtraction
         intg=intg2
    */
    to->sign=from1->sign;
    to->frac=cmax(from1->frac, from2->frac);
    frac0=0;
  }
  else
  {
    /*
      we're calculating N1/N2. N1 is in the buf1, has prec1 digits
      N2 is in the buf2, has prec2 digits. Scales are frac1 and
      frac2 accordingly.
      Thus, the result will have
         frac = ROUND_UP(frac1+frac2+scale_incr)
      and
         intg = (prec1-frac1) - (prec2-frac2) + 1
         prec = intg+frac
    */
    frac0=ROUND_UP(frac1+frac2+scale_incr);
    FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
    to->sign=from1->sign != from2->sign;
    to->intg=intg0*DIG_PER_DEC1;
    to->frac=frac0*DIG_PER_DEC1;
  }
  buf0=to->buf;
  stop0=buf0+intg0+frac0;
  if (likely(div_mod))
    while (dintg++ < 0)
      *buf0++=0;

  len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
  set_if_bigger(len1, 3);
  if (!(tmp1=(dec1 *)alloca(len1*sizeof(dec1))))
    return E_DEC_OOM;
  memcpy(tmp1, buf1, i*sizeof(dec1));
  memset(tmp1+i, 0, (len1-i)*sizeof(dec1));

  start1=tmp1;
  stop1=start1+len1;
  start2=buf2;
  stop2=buf2+ROUND_UP(prec2)-1;

  /* removing end zeroes */
  while (*stop2 == 0 && stop2 >= start2)
    stop2--;
  len2= (int) (stop2++ - start2);

  /*
    calculating norm2 (normalized *start2) - we need *start2 to be large
    (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
    normalize input numbers (as we don't make a copy of the divisor).
    Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
    on the fly for the purpose of guesstimation only.
    It's also faster, as we're saving on normalization of buf2
  */
  norm_factor=DIG_BASE/(*start2+1);
  norm2=(dec1)(norm_factor*start2[0]);
  if (likely(len2>0))
    norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);

  if (*start1 < *start2)
    dcarry=*start1++;
  else
    dcarry=0;

  /* main loop */
  for (; buf0 < stop0; buf0++)
  {
    /* short-circuit, if possible */
    if (unlikely(dcarry == 0 && *start1 < *start2))
      guess=0;
    else
    {
      /* D3: make a guess */
      x=start1[0]+((dec2)dcarry)*DIG_BASE;
      y=start1[1];
      guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
      if (unlikely(guess >= DIG_BASE))
        guess=DIG_BASE-1;
      if (likely(len2>0))
      {
        /* hmm, this is a suspicious trick - I removed normalization here */
        if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
          guess--;
        if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
          guess--;
        assert(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
      }

      /* D4: multiply and subtract */
      buf2=stop2;
      buf1=start1+len2;
      assert(buf1 < stop1);
      for (carry=0; buf2 > start2; buf1--)
      {
        dec1 hi, lo;
        x=guess * (*--buf2);
        hi=(dec1)(x/DIG_BASE);
        lo=(dec1)(x-((dec2)hi)*DIG_BASE);
        SUB2(*buf1, *buf1, lo, carry);
        carry+=hi;
      }
      carry= dcarry < carry;

      /* D5: check the remainder */
      if (unlikely(carry))
      {
        /* D6: correct the guess */
        guess--;
        buf2=stop2;
        buf1=start1+len2;
        for (carry=0; buf2 > start2; buf1--)
        {
          ADD(*buf1, *buf1, *--buf2, carry);
        }
      }
    }
    if (likely(div_mod))
      *buf0=(dec1)guess;
    dcarry= *start1;
    start1++;
  }
  if (mod)
  {
    /*
      now the result is in tmp1, it has
        intg=prec1-frac1
        frac=cmax(frac1, frac2)=to->frac
    */
    if (dcarry)
      *--start1=dcarry;
    buf0=to->buf;
    intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1));
    frac0=ROUND_UP(to->frac);
    error=E_DEC_OK;
    if (unlikely(frac0==0 && intg0==0))
    {
      decimal_make_zero(to);
      goto done;
    }
    if (intg0<=0)
    {
      if (unlikely(-intg0 >= to->len))
      {
        decimal_make_zero(to);
        error=E_DEC_TRUNCATED;
        goto done;
      }
      stop1=start1+frac0;
      frac0+=intg0;
      to->intg=0;
      while (intg0++ < 0)
        *buf0++=0;
    }
    else
    {
      if (unlikely(intg0 > to->len))
      {
        frac0=0;
        intg0=to->len;
        error=E_DEC_OVERFLOW;
        goto done;
      }
      assert(intg0 <= ROUND_UP(from2->intg));
      stop1=start1+frac0+intg0;
      to->intg=cmin(intg0*DIG_PER_DEC1, from2->intg);
    }
    if (unlikely(intg0+frac0 > to->len))
    {
      stop1-=frac0+intg0-to->len;
      frac0=to->len-intg0;
      to->frac=frac0*DIG_PER_DEC1;
        error=E_DEC_TRUNCATED;
    }
    assert(buf0 + (stop1 - start1) <= to->buf + to->len);
    while (start1 < stop1)
        *buf0++=*start1++;
  }
done:
  return error;
}

/*
  division of two decimals

  SYNOPSIS
    decimal_div()
      from1   - dividend
      from2   - divisor
      to      - quotient

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;

  NOTES
    see do_div_mod()
*/

int
decimal_div(decimal_t *from1, decimal_t *from2, decimal_t *to, int scale_incr)
{
  return do_div_mod(from1, from2, to, 0, scale_incr);
}

/*
  modulus

  SYNOPSIS
    decimal_mod()
      from1   - dividend
      from2   - divisor
      to      - modulus

  RETURN VALUE
    E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;

  NOTES
    see do_div_mod()

  DESCRIPTION
    the modulus R in    R = M mod N

   is defined as

     0 <= |R| < |M|
     sign R == sign M
     R = M - k*N, where k is integer

   thus, there's no requirement for M or N to be integers
*/

int decimal_mod(decimal_t *from1, decimal_t *from2, decimal_t *to)
{
  return do_div_mod(from1, from2, 0, to, 0);
}

#ifdef MAIN

int full= 0;
decimal_t a, b, c;
char buf1[100], buf2[100], buf3[100];

void dump_decimal(decimal_t *d)
{
  int i;
  printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign);
  for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++)
    printf("%09d, ", d->buf[i]);
  printf("%09d} */ ", d->buf[i]);
}


void check_result_code(int actual, int want)
{
  if (actual != want)
  {
    printf("\n^^^^^^^^^^^^^ must return %d\n", want);
    exit(1);
  }
}


void print_decimal(decimal_t *d, const char *orig, int actual, int want)
{
  char s[100];
  int slen=sizeof(s);

  if (full) dump_decimal(d);
  decimal2string(d, s, &slen, 0, 0, 0);
  printf("'%s'", s);
  check_result_code(actual, want);
  if (orig && strcmp(orig, s))
  {
    printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
    exit(1);
  }
}

void test_d2s()
{
  char s[100];
  int slen, res;

  /***********************************/
  printf("==== decimal2string ====\n");
  a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0;
  slen=sizeof(s);
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);

  a.buf[1]=987000000; a.frac=3;
  slen=sizeof(s);
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);

  a.sign=1;
  slen=sizeof(s);
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);

  slen=8;
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);

  slen=5;
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);

  a.buf[0]=987000000; a.frac=3; a.intg=0;
  slen=sizeof(s);
  res=decimal2string(&a, s, &slen, 0, 0, 0);
  dump_decimal(&a); printf("  -->  res=%d str='%s' len=%d\n", res, s, slen);
}

void test_s2d(const char *s, const char *orig, int ex)
{
  char s1[100], *end;
  int res;
  sprintf(s1, "'%s'", s);
  end= strend(s);
  printf("len=%2d %-30s => res=%d    ", a.len, s1,
         (res= string2decimal(s, &a, &end)));
  print_decimal(&a, orig, res, ex);
  printf("\n");
}

void test_d2f(const char *s, int ex)
{
  char s1[100], *end;
  double x;
  int res;

  sprintf(s1, "'%s'", s);
  end= strend(s);
  string2decimal(s, &a, &end);
  res=decimal2double(&a, &x);
  if (full) dump_decimal(&a);
  printf("%-40s => res=%d    %.*g\n", s1, res, a.intg+a.frac, x);
  check_result_code(res, ex);
}

void test_d2b2d(const char *str, int p, int s, const char *orig, int ex)
{
  char s1[100], buf[100], *end;
  int res, i, size=decimal_bin_size(p, s);

  sprintf(s1, "'%s'", str);
  end= strend(str);
  string2decimal(str, &a, &end);
  res=decimal2bin(&a, buf, p, s);
  printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size);
  if (full)
  {
    printf("0x");
    for (i=0; i < size; i++)
      printf("%02x", ((unsigned char *)buf)[i]);
  }
  res=bin2decimal(buf, &a, p, s);
  printf(" => res=%d ", res);
  print_decimal(&a, orig, res, ex);
  printf("\n");
}

void test_f2d(double from, int ex)
{
  int res;

  res=double2decimal(from, &a);
  printf("%-40.*f => res=%d    ", DBL_DIG-2, from, res);
  print_decimal(&a, 0, res, ex);
  printf("\n");
}

void test_ull2d(uint64_t from, const char *orig, int ex)
{
  char s[100];
  int res;

  res=uint64_t2decimal(from, &a);
  int64_t10_to_str(from,s,10);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&a, orig, res, ex);
  printf("\n");
}

void test_ll2d(int64_t from, const char *orig, int ex)
{
  char s[100];
  int res;

  res=int64_t2decimal(from, &a);
  int64_t10_to_str(from,s,-10);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&a, orig, res, ex);
  printf("\n");
}

void test_d2ull(const char *s, const char *orig, int ex)
{
  char s1[100], *end;
  uint64_t x;
  int res;

  end= strend(s);
  string2decimal(s, &a, &end);
  res=decimal2uint64_t(&a, &x);
  if (full) dump_decimal(&a);
  int64_t10_to_str(x,s1,10);
  printf("%-40s => res=%d    %s\n", s, res, s1);
  check_result_code(res, ex);
  if (orig && strcmp(orig, s1))
  {
    printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
    exit(1);
  }
}

void test_d2ll(const char *s, const char *orig, int ex)
{
  char s1[100], *end;
  int64_t x;
  int res;

  end= strend(s);
  string2decimal(s, &a, &end);
  res=decimal2int64_t(&a, &x);
  if (full) dump_decimal(&a);
  int64_t10_to_str(x,s1,-10);
  printf("%-40s => res=%d    %s\n", s, res, s1);
  check_result_code(res, ex);
  if (orig && strcmp(orig, s1))
  {
    printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
    exit(1);
  }
}

void test_da(const char *s1, const char *s2, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' + '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_add(&a, &b, &c);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&c, orig, res, ex);
  printf("\n");
}

void test_ds(const char *s1, const char *s2, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' - '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_sub(&a, &b, &c);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&c, orig, res, ex);
  printf("\n");
}

void test_dc(const char *s1, const char *s2, int orig)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' <=> '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_cmp(&a, &b);
  printf("%-40s => res=%d\n", s, res);
  if (orig != res)
  {
    printf("\n^^^^^^^^^^^^^ must've been %d\n", orig);
    exit(1);
  }
}

void test_dm(const char *s1, const char *s2, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' * '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_mul(&a, &b, &c);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&c, orig, res, ex);
  printf("\n");
}

void test_dv(const char *s1, const char *s2, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' / '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_div(&a, &b, &c, 5);
  printf("%-40s => res=%d    ", s, res);
  check_result_code(res, ex);
  if (res == E_DEC_DIV_ZERO)
    printf("E_DEC_DIV_ZERO");
  else
    print_decimal(&c, orig, res, ex);
  printf("\n");
}

void test_md(const char *s1, const char *s2, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' %% '%s'", s1, s2);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  end= strend(s2);
  string2decimal(s2, &b, &end);
  res=decimal_mod(&a, &b, &c);
  printf("%-40s => res=%d    ", s, res);
  check_result_code(res, ex);
  if (res == E_DEC_DIV_ZERO)
    printf("E_DEC_DIV_ZERO");
  else
    print_decimal(&c, orig, res, ex);
  printf("\n");
}

const char *round_mode[]=
{"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"};

void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig,
             int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  res=decimal_round(&a, &b, n, mode);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&b, orig, res, ex);
  printf("\n");
}


void test_mx(int precision, int frac, const char *orig)
{
  char s[100];
  sprintf(s, "%d, %d", precision, frac);
  max_decimal(precision, frac, &a);
  printf("%-40s =>          ", s);
  print_decimal(&a, orig, 0, 0);
  printf("\n");
}


void test_pr(const char *s1, int prec, int dec, char filler, const char *orig,
             int ex)
{
  char s[100], *end;
  char s2[100];
  int slen= sizeof(s2);
  int res;

  sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'",
          s1, prec, dec, filler);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  res= decimal2string(&a, s2, &slen, prec, dec, filler);
  printf("%-40s => res=%d    '%s'", s, res, s2);
  check_result_code(res, ex);
  if (orig && strcmp(orig, s2))
  {
    printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
    exit(1);
  }
  printf("\n");
}


void test_sh(const char *s1, int shift, const char *orig, int ex)
{
  char s[100], *end;
  int res;
  sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift));
  end= strend(s1);
  string2decimal(s1, &a, &end);
  res= decimal_shift(&a, shift);
  printf("%-40s => res=%d    ", s, res);
  print_decimal(&a, orig, res, ex);
  printf("\n");
}


void test_fr(const char *s1, const char *orig)
{
  char s[100], *end;
  sprintf(s, "'%s'", s1);
  printf("%-40s =>          ", s);
  end= strend(s1);
  string2decimal(s1, &a, &end);
  a.frac= decimal_actual_fraction(&a);
  print_decimal(&a, orig, 0, 0);
  printf("\n");
}


int main()
{
  a.buf=(void*)buf1;
  a.len=sizeof(buf1)/sizeof(dec1);
  b.buf=(void*)buf2;
  b.len=sizeof(buf2)/sizeof(dec1);
  c.buf=(void*)buf3;
  c.len=sizeof(buf3)/sizeof(dec1);

  if (full)
    test_d2s();

  printf("==== string2decimal ====\n");
  test_s2d("12345", "12345", 0);
  test_s2d("12345.", "12345", 0);
  test_s2d("123.45", "123.45", 0);
  test_s2d("-123.45", "-123.45", 0);
  test_s2d(".00012345000098765", "0.00012345000098765", 0);
  test_s2d(".12345000098765", "0.12345000098765", 0);
  test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0);
  test_s2d("1234500009876.5", "1234500009876.5", 0);
  a.len=1;
  test_s2d("123450000098765", "98765", 2);
  test_s2d("123450.000098765", "123450", 1);
  a.len=sizeof(buf1)/sizeof(dec1);
  test_s2d("123E5", "12300000", 0);
  test_s2d("123E-2", "1.23", 0);

  printf("==== decimal2double ====\n");
  test_d2f("12345", 0);
  test_d2f("123.45", 0);
  test_d2f("-123.45", 0);
  test_d2f("0.00012345000098765", 0);
  test_d2f("1234500009876.5", 0);

  printf("==== double2decimal ====\n");
  test_f2d(12345, 0);
  test_f2d(1.0/3, 0);
  test_f2d(-123.45, 0);
  test_f2d(0.00012345000098765, 0);
  test_f2d(1234500009876.5, 0);

  printf("==== uint64_t2decimal ====\n");
  test_ull2d(12345ULL, "12345", 0);
  test_ull2d(0ULL, "0", 0);
  test_ull2d(18446744073709551615ULL, "18446744073709551615", 0);

  printf("==== decimal2uint64_t ====\n");
  test_d2ull("12345", "12345", 0);
  test_d2ull("0", "0", 0);
  test_d2ull("18446744073709551615", "18446744073709551615", 0);
  test_d2ull("18446744073709551616", "18446744073", 2);
  test_d2ull("-1", "0", 2);
  test_d2ull("1.23", "1", 1);
  test_d2ull("9999999999999999999999999.000", "9999999999999999", 2);

  printf("==== int64_t2decimal ====\n");
  test_ll2d(12345LL, "-12345", 0);
  test_ll2d(1LL, "-1", 0);
  test_ll2d(9223372036854775807LL, "-9223372036854775807", 0);
  test_ll2d(9223372036854775808ULL, "-9223372036854775808", 0);

  printf("==== decimal2int64_t ====\n");
  test_d2ll("18446744073709551615", "18446744073", 2);
  test_d2ll("-1", "-1", 0);
  test_d2ll("-1.23", "-1", 1);
  test_d2ll("-9223372036854775807", "-9223372036854775807", 0);
  test_d2ll("-9223372036854775808", "-9223372036854775808", 0);
  test_d2ll("9223372036854775808", "9223372036854775807", 2);

  printf("==== do_add ====\n");
  test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0);
  test_da(".1" ,".45", "0.55", 0);
  test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0);
  test_da("9999909999999.5" ,".555", "9999910000000.055", 0);
  test_da("99999999" ,"1", "100000000", 0);
  test_da("989999999" ,"1", "990000000", 0);
  test_da("999999999" ,"1", "1000000000", 0);
  test_da("12345" ,"123.45", "12468.45", 0);
  test_da("-12345" ,"-123.45", "-12468.45", 0);
  test_ds("-12345" ,"123.45", "-12468.45", 0);
  test_ds("12345" ,"-123.45", "12468.45", 0);

  printf("==== do_sub ====\n");
  test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0);
  test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0);
  test_ds("9999900000000.5", ".555","9999899999999.945", 0);
  test_ds("1111.5551", "1111.555","0.0001", 0);
  test_ds(".555", ".555","0", 0);
  test_ds("10000000", "1","9999999", 0);
  test_ds("1000001000", ".1","1000000999.9", 0);
  test_ds("1000000000", ".1","999999999.9", 0);
  test_ds("12345", "123.45","12221.55", 0);
  test_ds("-12345", "-123.45","-12221.55", 0);
  test_da("-12345", "123.45","-12221.55", 0);
  test_da("12345", "-123.45","12221.55", 0);
  test_ds("123.45", "12345","-12221.55", 0);
  test_ds("-123.45", "-12345","12221.55", 0);
  test_da("123.45", "-12345","-12221.55", 0);
  test_da("-123.45", "12345","12221.55", 0);
  test_da("5", "-6.0","-1.0", 0);

  printf("==== decimal_mul ====\n");
  test_dm("12", "10","120", 0);
  test_dm("-123.456", "98765.4321","-12193185.1853376", 0);
  test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0);
  test_dm("123456", "987654321","121931851853376", 0);
  test_dm("123456", "9876543210","1219318518533760", 0);
  test_dm("123", "0.01","1.23", 0);
  test_dm("123", "0","0", 0);

  printf("==== decimal_div ====\n");
  test_dv("120", "10","12.000000000", 0);
  test_dv("123", "0.01","12300.000000000", 0);
  test_dv("120", "100000000000.00000","0.000000001200000000", 0);
  test_dv("123", "0","", 4);
  test_dv("0", "0", "", 4);
  test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0);
  test_dv("121931851853376", "987654321","123456.000000000", 0);
  test_dv("0", "987","0", 0);
  test_dv("1", "3","0.333333333", 0);
  test_dv("1.000000000000", "3","0.333333333333333333", 0);
  test_dv("1", "1","1.000000000", 0);
  test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0);
  test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0);
  test_dv("10.000000000060", "2","5.000000000030000000", 0);

  printf("==== decimal_mod ====\n");
  test_md("234","10","4", 0);
  test_md("234.567","10.555","2.357", 0);
  test_md("-234.567","10.555","-2.357", 0);
  test_md("234.567","-10.555","2.357", 0);
  c.buf[1]=0x3ABECA;
  test_md("99999999999999999999999999999999999999","3","0", 0);
  if (c.buf[1] != 0x3ABECA)
  {
    printf("%X - overflow\n", c.buf[1]);
    exit(1);
  }

  printf("==== decimal2bin/bin2decimal ====\n");
  test_d2b2d("-10.55", 4, 2,"-10.55", 0);
  test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0);
  test_d2b2d("12345", 5, 0,"12345", 0);
  test_d2b2d("12345", 10, 3,"12345.000", 0);
  test_d2b2d("123.45", 10, 3,"123.450", 0);
  test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0);
  test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0);
  test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0);
  test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0);
  test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0);
  test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0);
  test_d2b2d("111111111.11", 10, 2,"11111111.11", 0);
  test_d2b2d("000000000.01", 7, 3,"0.010", 0);
  test_d2b2d("123.4", 10, 2, "123.40", 0);


  printf("==== decimal_cmp ====\n");
  test_dc("12","13",-1);
  test_dc("13","12",1);
  test_dc("-10","10",-1);
  test_dc("10","-10",1);
  test_dc("-12","-13",1);
  test_dc("0","12",-1);
  test_dc("-10","0",-1);
  test_dc("4","4",0);

  printf("==== decimal_round ====\n");
  test_ro("5678.123451",-4,TRUNCATE,"0", 0);
  test_ro("5678.123451",-3,TRUNCATE,"5000", 0);
  test_ro("5678.123451",-2,TRUNCATE,"5600", 0);
  test_ro("5678.123451",-1,TRUNCATE,"5670", 0);
  test_ro("5678.123451",0,TRUNCATE,"5678", 0);
  test_ro("5678.123451",1,TRUNCATE,"5678.1", 0);
  test_ro("5678.123451",2,TRUNCATE,"5678.12", 0);
  test_ro("5678.123451",3,TRUNCATE,"5678.123", 0);
  test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0);
  test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0);
  test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0);
  test_ro("-5678.123451",-4,TRUNCATE,"0", 0);
  memset(buf2, 33, sizeof(buf2));
  test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0);
  test_ro("15.1",0,HALF_UP,"15", 0);
  test_ro("15.5",0,HALF_UP,"16", 0);
  test_ro("15.9",0,HALF_UP,"16", 0);
  test_ro("-15.1",0,HALF_UP,"-15", 0);
  test_ro("-15.5",0,HALF_UP,"-16", 0);
  test_ro("-15.9",0,HALF_UP,"-16", 0);
  test_ro("15.1",1,HALF_UP,"15.1", 0);
  test_ro("-15.1",1,HALF_UP,"-15.1", 0);
  test_ro("15.17",1,HALF_UP,"15.2", 0);
  test_ro("15.4",-1,HALF_UP,"20", 0);
  test_ro("-15.4",-1,HALF_UP,"-20", 0);
  test_ro("5.4",-1,HALF_UP,"10", 0);
  test_ro(".999", 0, HALF_UP, "1", 0);
  memset(buf2, 33, sizeof(buf2));
  test_ro("999999999", -9, HALF_UP, "1000000000", 0);
  test_ro("15.1",0,HALF_EVEN,"15", 0);
  test_ro("15.5",0,HALF_EVEN,"16", 0);
  test_ro("14.5",0,HALF_EVEN,"14", 0);
  test_ro("15.9",0,HALF_EVEN,"16", 0);
  test_ro("15.1",0,CEILING,"16", 0);
  test_ro("-15.1",0,CEILING,"-15", 0);
  test_ro("15.1",0,FLOOR,"15", 0);
  test_ro("-15.1",0,FLOOR,"-16", 0);
  test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0);
  test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0);

  b.buf[0]=DIG_BASE+1;
  b.buf++;
  test_ro(".3", 0, HALF_UP, "0", 0);
  b.buf--;
  if (b.buf[0] != DIG_BASE+1)
  {
    printf("%d - underflow\n", b.buf[0]);
    exit(1);
  }

  printf("==== max_decimal ====\n");
  test_mx(1,1,"0.9");
  test_mx(1,0,"9");
  test_mx(2,1,"9.9");
  test_mx(4,2,"99.99");
  test_mx(6,3,"999.999");
  test_mx(8,4,"9999.9999");
  test_mx(10,5,"99999.99999");
  test_mx(12,6,"999999.999999");
  test_mx(14,7,"9999999.9999999");
  test_mx(16,8,"99999999.99999999");
  test_mx(18,9,"999999999.999999999");
  test_mx(20,10,"9999999999.9999999999");
  test_mx(20,20,"0.99999999999999999999");
  test_mx(20,0,"99999999999999999999");
  test_mx(40,20,"99999999999999999999.99999999999999999999");

  printf("==== decimal2string ====\n");
  test_pr("123.123", 0, 0, 0, "123.123", 0);
  test_pr("123.123", 7, 3, '0', "123.123", 0);
  test_pr("123.123", 9, 3, '0', "00123.123", 0);
  test_pr("123.123", 9, 4, '0', "0123.1230", 0);
  test_pr("123.123", 9, 5, '0', "123.12300", 0);
  test_pr("123.123", 9, 2, '0', "000123.12", 1);
  test_pr("123.123", 9, 6, '0', "23.123000", 2);

  printf("==== decimal_shift ====\n");
  test_sh("123.123", 1, "1231.23", 0);
  test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0);
  test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0);
  test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0);
  test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0);
  test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0);
  test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0);
  test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0);
  test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0);
  test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
  test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
  test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
  test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
  test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
  test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
  test_sh("123", 1, "1230", 0);
  test_sh("123", 10, "1230000000000", 0);
  test_sh(".123", 1, "1.23", 0);
  test_sh(".123", 10, "1230000000", 0);
  test_sh(".123", 14, "12300000000000", 0);
  test_sh("000.000", 1000, "0", 0);
  test_sh("000.", 1000, "0", 0);
  test_sh(".000", 1000, "0", 0);
  test_sh("1", 1000, "1", 2);
  test_sh("123.123", -1, "12.3123", 0);
  test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0);
  test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0);
  test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0);
  test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0);
  test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0);
  test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0);
  test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0);
  test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0);
  test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0);
  test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0);
  test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0);
  a.len= 2;
  test_sh("123.123", -2, "1.23123", 0);
  test_sh("123.123", -3, "0.123123", 0);
  test_sh("123.123", -6, "0.000123123", 0);
  test_sh("123.123", -7, "0.0000123123", 0);
  test_sh("123.123", -15, "0.000000000000123123", 0);
  test_sh("123.123", -16, "0.000000000000012312", 1);
  test_sh("123.123", -17, "0.000000000000001231", 1);
  test_sh("123.123", -18, "0.000000000000000123", 1);
  test_sh("123.123", -19, "0.000000000000000012", 1);
  test_sh("123.123", -20, "0.000000000000000001", 1);
  test_sh("123.123", -21, "0", 1);
  test_sh(".000000000123", -1, "0.0000000000123", 0);
  test_sh(".000000000123", -6, "0.000000000000000123", 0);
  test_sh(".000000000123", -7, "0.000000000000000012", 1);
  test_sh(".000000000123", -8, "0.000000000000000001", 1);
  test_sh(".000000000123", -9, "0", 1);
  test_sh(".000000000123", 1, "0.00000000123", 0);
  test_sh(".000000000123", 8, "0.0123", 0);
  test_sh(".000000000123", 9, "0.123", 0);
  test_sh(".000000000123", 10, "1.23", 0);
  test_sh(".000000000123", 17, "12300000", 0);
  test_sh(".000000000123", 18, "123000000", 0);
  test_sh(".000000000123", 19, "1230000000", 0);
  test_sh(".000000000123", 20, "12300000000", 0);
  test_sh(".000000000123", 21, "123000000000", 0);
  test_sh(".000000000123", 22, "1230000000000", 0);
  test_sh(".000000000123", 23, "12300000000000", 0);
  test_sh(".000000000123", 24, "123000000000000", 0);
  test_sh(".000000000123", 25, "1230000000000000", 0);
  test_sh(".000000000123", 26, "12300000000000000", 0);
  test_sh(".000000000123", 27, "123000000000000000", 0);
  test_sh(".000000000123", 28, "0.000000000123", 2);
  test_sh("123456789.987654321", -1, "12345678.998765432", 1);
  test_sh("123456789.987654321", -2, "1234567.899876543", 1);
  test_sh("123456789.987654321", -8, "1.234567900", 1);
  test_sh("123456789.987654321", -9, "0.123456789987654321", 0);
  test_sh("123456789.987654321", -10, "0.012345678998765432", 1);
  test_sh("123456789.987654321", -17, "0.000000001234567900", 1);
  test_sh("123456789.987654321", -18, "0.000000000123456790", 1);
  test_sh("123456789.987654321", -19, "0.000000000012345679", 1);
  test_sh("123456789.987654321", -26, "0.000000000000000001", 1);
  test_sh("123456789.987654321", -27, "0", 1);
  test_sh("123456789.987654321", 1, "1234567900", 1);
  test_sh("123456789.987654321", 2, "12345678999", 1);
  test_sh("123456789.987654321", 4, "1234567899877", 1);
  test_sh("123456789.987654321", 8, "12345678998765432", 1);
  test_sh("123456789.987654321", 9, "123456789987654321", 0);
  test_sh("123456789.987654321", 10, "123456789.987654321", 2);
  test_sh("123456789.987654321", 0, "123456789.987654321", 0);
  a.len= sizeof(buf1)/sizeof(dec1);

  printf("==== decimal_actual_fraction ====\n");
  test_fr("1.123456789000000000", "1.123456789");
  test_fr("1.12345678000000000", "1.12345678");
  test_fr("1.1234567000000000", "1.1234567");
  test_fr("1.123456000000000", "1.123456");
  test_fr("1.12345000000000", "1.12345");
  test_fr("1.1234000000000", "1.1234");
  test_fr("1.123000000000", "1.123");
  test_fr("1.12000000000", "1.12");
  test_fr("1.1000000000", "1.1");
  test_fr("1.000000000", "1");
  test_fr("1.0", "1");
  test_fr("10000000000000000000.0", "10000000000000000000");

  return 0;
}
#endif