~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/* Copyright (C) 2000-2006 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */


/* Functions to handle keys and fields in forms */

#include "drizzled/server_includes.h"
#include "drizzled/table.h"
#include "drizzled/key.h"
#include "drizzled/field/blob.h"

#include <string>

#include <algorithm>

using namespace std;

/*
  Search after a key that starts with 'field'

  SYNOPSIS
    find_ref_key()
    key			First key to check
    key_count		How many keys to check
    record		Start of record
    field		Field to search after
    key_length		On partial match, contains length of fields before
			field
    keypart             key part # of a field

  NOTES
   Used when calculating key for NEXT_NUMBER

  IMPLEMENTATION
    If no key starts with field test if field is part of some key. If we find
    one, then return first key and set key_length to the number of bytes
    preceding 'field'.

  RETURN
   -1  field is not part of the key
   #   Key part for key matching key.
       key_length is set to length of key before (not including) field
*/

int find_ref_key(KEY *key, uint32_t key_count, unsigned char *record, Field *field,
                 uint32_t *key_length, uint32_t *keypart)
{
  register int i;
  register KEY *key_info;
  uint32_t fieldpos;

  fieldpos= field->offset(record);

  /* Test if some key starts as fieldpos */
  for (i= 0, key_info= key ;
       i < (int) key_count ;
       i++, key_info++)
  {
    if (key_info->key_part[0].offset == fieldpos)
    {                                  		/* Found key. Calc keylength */
      *key_length= *keypart= 0;
      return i;                                 /* Use this key */
    }
  }

  /* Test if some key contains fieldpos */
  for (i= 0, key_info= key;
       i < (int) key_count ;
       i++, key_info++)
  {
    uint32_t j;
    KEY_PART_INFO *key_part;
    *key_length=0;
    for (j=0, key_part=key_info->key_part ;
	 j < key_info->key_parts ;
	 j++, key_part++)
    {
      if (key_part->offset == fieldpos)
      {
        *keypart= j;
        return i;                               /* Use this key */
      }
      *key_length+= key_part->store_length;
    }
  }
  return(-1);					/* No key is ok */
}


void key_copy(unsigned char *to_key, unsigned char *from_record, KEY *key_info,
              unsigned int key_length)
{
  uint32_t length;
  KEY_PART_INFO *key_part;

  if (key_length == 0)
    key_length= key_info->key_length;
  for (key_part= key_info->key_part; (int) key_length > 0; key_part++)
  {
    if (key_part->null_bit)
    {
      *to_key++= test(from_record[key_part->null_offset] &
		   key_part->null_bit);
      key_length--;
    }
    if (key_part->key_part_flag & HA_BLOB_PART ||
        key_part->key_part_flag & HA_VAR_LENGTH_PART)
    {
      key_length-= HA_KEY_BLOB_LENGTH;
      length= min((uint16_t)key_length, key_part->length);
      key_part->field->get_key_image(to_key, length);
      to_key+= HA_KEY_BLOB_LENGTH;
    }
    else
    {
      length= min((uint16_t)key_length, key_part->length);
      Field *field= key_part->field;
      const CHARSET_INFO * const cs= field->charset();
      uint32_t bytes= field->get_key_image(to_key, length);
      if (bytes < length)
        cs->cset->fill(cs, (char*) to_key + bytes, length - bytes, ' ');
    }
    to_key+= length;
    key_length-= length;
  }
}


/**
  Zero the null components of key tuple.
*/

void key_zero_nulls(unsigned char *tuple, KEY *key_info)
{
  KEY_PART_INFO *key_part= key_info->key_part;
  KEY_PART_INFO *key_part_end= key_part + key_info->key_parts;
  for (; key_part != key_part_end; key_part++)
  {
    if (key_part->null_bit && *tuple)
      memset(tuple+1, 0, key_part->store_length-1);
    tuple+= key_part->store_length;
  }
}


/*
  Restore a key from some buffer to record.

    This function converts a key into record format. It can be used in cases
    when we want to return a key as a result row.

  @param to_record   record buffer where the key will be restored to
  @param from_key    buffer that contains a key
  @param key_info    descriptor of the index
  @param key_length  specifies length of all keyparts that will be restored
*/

void key_restore(unsigned char *to_record, unsigned char *from_key, KEY *key_info,
                 uint16_t key_length)
{
  uint32_t length;
  KEY_PART_INFO *key_part;

  if (key_length == 0)
  {
    key_length= key_info->key_length;
  }
  for (key_part= key_info->key_part ; (int) key_length > 0 ; key_part++)
  {
    unsigned char used_uneven_bits= 0;
    if (key_part->null_bit)
    {
      if (*from_key++)
	to_record[key_part->null_offset]|= key_part->null_bit;
      else
	to_record[key_part->null_offset]&= ~key_part->null_bit;
      key_length--;
    }
    if (key_part->key_part_flag & HA_BLOB_PART)
    {
      /*
        This in fact never happens, as we have only partial BLOB
        keys yet anyway, so it's difficult to find any sence to
        restore the part of a record.
        Maybe this branch is to be removed, but now we
        have to ignore GCov compaining.

        This may make more sense once we push down block lengths to the engine (aka partial retrieval).
      */
      uint32_t blob_length= uint2korr(from_key);
      Field_blob *field= (Field_blob*) key_part->field;

      field->setReadSet();
      from_key+= HA_KEY_BLOB_LENGTH;
      key_length-= HA_KEY_BLOB_LENGTH;
      field->set_ptr_offset(to_record - field->table->record[0],
                            (ulong) blob_length, from_key);
      length= key_part->length;
    }
    else if (key_part->key_part_flag & HA_VAR_LENGTH_PART)
    {
      Field *field= key_part->field;
      my_ptrdiff_t ptrdiff= to_record - field->table->record[0];

      field->setReadSet();
      field->setWriteSet();
      field->move_field_offset(ptrdiff);
      key_length-= HA_KEY_BLOB_LENGTH;
      length= min(key_length, key_part->length);
      field->set_key_image(from_key, length);
      from_key+= HA_KEY_BLOB_LENGTH;
      field->move_field_offset(-ptrdiff);
    }
    else
    {
      length= min(key_length, key_part->length);
      /* skip the byte with 'uneven' bits, if used */
      memcpy(to_record + key_part->offset, from_key + used_uneven_bits
             , (size_t) length - used_uneven_bits);
    }
    from_key+= length;
    key_length-= length;
  }
}


/**
  Compare if a key has changed.

  @param table		Table
  @param key		key to compare to row
  @param idx		Index used
  @param key_length	Length of key

  @note
    In theory we could just call field->cmp() for all field types,
    but as we are only interested if a key has changed (not if the key is
    larger or smaller than the previous value) we can do things a bit
    faster by using memcmp() instead.

  @retval
    0	If key is equal
  @retval
    1	Key has changed
*/

bool key_cmp_if_same(Table *table,const unsigned char *key,uint32_t idx,uint32_t key_length)
{
  uint32_t store_length;
  KEY_PART_INFO *key_part;
  const unsigned char *key_end= key + key_length;;

  for (key_part=table->key_info[idx].key_part;
       key < key_end ;
       key_part++, key+= store_length)
  {
    uint32_t length;
    store_length= key_part->store_length;

    if (key_part->null_bit)
    {
      if (*key != test(table->record[0][key_part->null_offset] &
		       key_part->null_bit))
	return 1;
      if (*key)
	continue;
      key++;
      store_length--;
    }
    if (key_part->key_part_flag & (HA_BLOB_PART | HA_VAR_LENGTH_PART |
                                   HA_BIT_PART))
    {
      if (key_part->field->key_cmp(key, key_part->length))
	return 1;
      continue;
    }
    length= min((uint32_t) (key_end-key), store_length);
    if (!(key_part->key_type & (FIELDFLAG_NUMBER+FIELDFLAG_BINARY+
                                FIELDFLAG_PACK)))
    {
      const CHARSET_INFO * const cs= key_part->field->charset();
      uint32_t char_length= key_part->length / cs->mbmaxlen;
      const unsigned char *pos= table->record[0] + key_part->offset;
      if (length > char_length)
      {
        char_length= my_charpos(cs, pos, pos + length, char_length);
        set_if_smaller(char_length, length);
      }
      if (cs->coll->strnncollsp(cs,
                                (const unsigned char*) key, length,
                                (const unsigned char*) pos, char_length, 0))
        return 1;
      continue;
    }
    if (memcmp(key,table->record[0]+key_part->offset,length))
      return 1;
  }
  return 0;
}

/*
  unpack key-fields from record to some buffer.

  This is used mainly to get a good error message.  We temporary
  change the column bitmap so that all columns are readable.

  @param
     to		Store value here in an easy to read form
  @param
     table	Table to use
  @param
     idx	Key number
*/

void key_unpack(String *to,Table *table,uint32_t idx)
{
  KEY_PART_INFO *key_part,*key_part_end;
  Field *field;
  String tmp;

  to->length(0);
  for (key_part=table->key_info[idx].key_part,key_part_end=key_part+
	 table->key_info[idx].key_parts ;
       key_part < key_part_end;
       key_part++)
  {
    if (to->length())
      to->append('-');
    if (key_part->null_bit)
    {
      if (table->record[0][key_part->null_offset] & key_part->null_bit)
      {
	to->append(STRING_WITH_LEN("NULL"));
	continue;
      }
    }
    if ((field= key_part->field))
    {
      const CHARSET_INFO * const cs= field->charset();
      field->setReadSet();
      field->val_str(&tmp);
      if (cs->mbmaxlen > 1 &&
          table->field[key_part->fieldnr - 1]->field_length !=
          key_part->length)
      {
        /*
          Prefix key, multi-byte charset.
          For the columns of type CHAR(N), the above val_str()
          call will return exactly "key_part->length" bytes,
          which can break a multi-byte characters in the middle.
          Align, returning not more than "char_length" characters.
        */
        uint32_t charpos, char_length= key_part->length / cs->mbmaxlen;
        if ((charpos= my_charpos(cs, tmp.c_ptr(),
                                 tmp.c_ptr() + tmp.length(),
                                 char_length)) < key_part->length)
          tmp.length(charpos);
      }

      if (key_part->length < field->pack_length())
        tmp.length(min(tmp.length(),(uint32_t)key_part->length));
      to->append(tmp);
    }
    else
      to->append(STRING_WITH_LEN("???"));
  }
}


/*
  Check if key uses field that is marked in passed field bitmap.

  SYNOPSIS
    is_key_used()
      table   Table object with which keys and fields are associated.
      idx     Key to be checked.
      fields  Bitmap of fields to be checked.

  NOTE
    This function uses Table::tmp_set bitmap so the caller should care
    about saving/restoring its state if it also uses this bitmap.

  RETURN VALUE
    TRUE   Key uses field from bitmap
    FALSE  Otherwise
*/

bool is_key_used(Table *table, uint32_t idx, const MY_BITMAP *fields)
{
  bitmap_clear_all(&table->tmp_set);
  table->mark_columns_used_by_index_no_reset(idx, &table->tmp_set);
  if (bitmap_is_overlapping(&table->tmp_set, fields))
    return 1;

  /*
    If table handler has primary key as part of the index, check that primary
    key is not updated
  */
  if (idx != table->s->primary_key && table->s->primary_key < MAX_KEY &&
      (table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
    return is_key_used(table, table->s->primary_key, fields);
  return 0;
}


/**
  Compare key in row to a given key.

  @param key_part		Key part handler
  @param key			Key to compare to value in table->record[0]
  @param key_length		length of 'key'

  @return
    The return value is SIGN(key_in_row - range_key):
    -   0		Key is equal to range or 'range' == 0 (no range)
    -  -1		Key is less than range
    -   1		Key is larger than range
*/

int key_cmp(KEY_PART_INFO *key_part, const unsigned char *key, uint32_t key_length)
{
  uint32_t store_length;

  for (const unsigned char *end=key + key_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      /* This key part allows null values; NULL is lower than everything */
      register bool field_is_null= key_part->field->is_null();
      if (*key)                                 // If range key is null
      {
	/* the range is expecting a null value */
	if (!field_is_null)
	  return 1;                             // Found key is > range
        /* null -- exact match, go to next key part */
	continue;
      }
      else if (field_is_null)
	return -1;                              // NULL is less than any value
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
      return -1;
    if (cmp > 0)
      return 1;
  }
  return 0;                                     // Keys are equal
}


/*
  Compare two records in index order
  SYNOPSIS
    key_rec_cmp()
    key                         Index information
    rec0                        Pointer to table->record[0]
    first_rec                   Pointer to record compare with
    second_rec                  Pointer to record compare against first_rec

  DESCRIPTION
    This method is set-up such that it can be called directly from the
    priority queue and it is attempted to be optimised as much as possible
    since this will be called O(N * log N) times while performing a merge
    sort in various places in the code.

    We retrieve the pointer to table->record[0] using the fact that key_parts
    have an offset making it possible to calculate the start of the record.
    We need to get the diff to the compared record since none of the records
    being compared are stored in table->record[0].

    We first check for NULL values, if there are no NULL values we use
    a compare method that gets two field pointers and a max length
    and return the result of the comparison.
*/

int key_rec_cmp(void *key, unsigned char *first_rec, unsigned char *second_rec)
{
  KEY *key_info= (KEY*)key;
  uint32_t key_parts= key_info->key_parts, i= 0;
  KEY_PART_INFO *key_part= key_info->key_part;
  unsigned char *rec0= key_part->field->ptr - key_part->offset;
  my_ptrdiff_t first_diff= first_rec - rec0, sec_diff= second_rec - rec0;
  int result= 0;

  do
  {
    Field *field= key_part->field;

    if (key_part->null_bit)
    {
      /* The key_part can contain NULL values */
      bool first_is_null= field->is_null_in_record_with_offset(first_diff);
      bool sec_is_null= field->is_null_in_record_with_offset(sec_diff);
      /*
        NULL is smaller then everything so if first is NULL and the other
        not then we know that we should return -1 and for the opposite
        we should return +1. If both are NULL then we call it equality
        although it is a strange form of equality, we have equally little
        information of the real value.
      */
      if (!first_is_null)
      {
        if (!sec_is_null)
          ; /* Fall through, no NULL fields */
        else
        {
          return(1);
        }
      }
      else if (!sec_is_null)
      {
        return(-1);
      }
      else
        goto next_loop; /* Both were NULL */
    }
    /*
      No null values in the fields
      We use the virtual method cmp_max with a max length parameter.
      For most field types this translates into a cmp without
      max length. The exceptions are the BLOB and VARCHAR field types
      that take the max length into account.
    */
    result= field->cmp_max(field->ptr+first_diff, field->ptr+sec_diff,
                           key_part->length);
next_loop:
    key_part++;
  } while (!result && ++i < key_parts);
  return(result);
}

Key::Key(const Key &rhs, MEM_ROOT *mem_root)
  :type(rhs.type),
  key_create_info(rhs.key_create_info),
  columns(rhs.columns, mem_root),
  name(rhs.name),
  generated(rhs.generated)
{
  list_copy_and_replace_each_value(columns, mem_root);
}