~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
/*****************************************************************************

Copyright (c) 1996, 2009, Innobase Oy. All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

*****************************************************************************/

/******************************************************
General row routines

Created 4/20/1996 Heikki Tuuri
*******************************************************/

#include "row0row.h"

#ifdef UNIV_NONINL
#include "row0row.ic"
#endif

#include "data0type.h"
#include "dict0dict.h"
#include "btr0btr.h"
#include "ha_prototypes.h"
#include "mach0data.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "trx0undo.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "que0que.h"
#include "row0ext.h"
#include "row0upd.h"
#include "rem0cmp.h"
#include "read0read.h"
#include "ut0mem.h"

/*************************************************************************
Gets the offset of trx id field, in bytes relative to the origin of
a clustered index record. */
UNIV_INTERN
ulint
row_get_trx_id_offset(
/*==================*/
				/* out: offset of DATA_TRX_ID */
	const rec_t*	rec __attribute__((unused)),
				/* in: record */
	dict_index_t*	index,	/* in: clustered index */
	const ulint*	offsets)/* in: rec_get_offsets(rec, index) */
{
	ulint	pos;
	ulint	offset;
	ulint	len;

	ut_ad(dict_index_is_clust(index));
	ut_ad(rec_offs_validate(rec, index, offsets));

	pos = dict_index_get_sys_col_pos(index, DATA_TRX_ID);

	offset = rec_get_nth_field_offs(offsets, pos, &len);

	ut_ad(len == DATA_TRX_ID_LEN);

	return(offset);
}

/*********************************************************************
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table. */
UNIV_INTERN
dtuple_t*
row_build_index_entry(
/*==================*/
				/* out: index entry which should be
				inserted or purged, or NULL if the
				externally stored columns in the
				clustered index record are unavailable
				and ext != NULL */
	const dtuple_t*	row,	/* in: row which should be
				inserted or purged */
	row_ext_t*	ext,	/* in: externally stored column prefixes,
				or NULL */
	dict_index_t*	index,	/* in: index on the table */
	mem_heap_t*	heap)	/* in: memory heap from which the memory for
				the index entry is allocated */
{
	dtuple_t*	entry;
	ulint		entry_len;
	ulint		i;

	ut_ad(row && index && heap);
	ut_ad(dtuple_check_typed(row));

	entry_len = dict_index_get_n_fields(index);
	entry = dtuple_create(heap, entry_len);

	if (UNIV_UNLIKELY(index->type & DICT_UNIVERSAL)) {
		dtuple_set_n_fields_cmp(entry, entry_len);
		/* There may only be externally stored columns
		in a clustered index B-tree of a user table. */
		ut_a(!ext);
	} else {
		dtuple_set_n_fields_cmp(
			entry, dict_index_get_n_unique_in_tree(index));
	}

	for (i = 0; i < entry_len; i++) {
		const dict_field_t*	ind_field
			= dict_index_get_nth_field(index, i);
		const dict_col_t*	col
			= ind_field->col;
		ulint			col_no
			= dict_col_get_no(col);
		dfield_t*		dfield
			= dtuple_get_nth_field(entry, i);
		const dfield_t*		dfield2
			= dtuple_get_nth_field(row, col_no);
		ulint			len
			= dfield_get_len(dfield2);

		dfield_copy(dfield, dfield2);

		if (dfield_is_null(dfield) || ind_field->prefix_len == 0) {
			continue;
		}

		/* If a column prefix index, take only the prefix.
		Prefix-indexed columns may be externally stored. */
		ut_ad(col->ord_part);

		if (UNIV_LIKELY_NULL(ext)) {
			/* See if the column is stored externally. */
			const byte*	buf = row_ext_lookup(ext, col_no,
							     &len);
			if (UNIV_LIKELY_NULL(buf)) {
				if (UNIV_UNLIKELY(buf == field_ref_zero)) {
					return(NULL);
				}
				dfield_set_data(dfield, buf, len);
			}
		} else if (dfield_is_ext(dfield)) {
			ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
			len -= BTR_EXTERN_FIELD_REF_SIZE;
			ut_a(ind_field->prefix_len <= len
			     || dict_index_is_clust(index));
		}

		len = dtype_get_at_most_n_mbchars(
			col->prtype, col->mbminlen, col->mbmaxlen,
			ind_field->prefix_len, len, dfield_get_data(dfield));
		dfield_set_len(dfield, len);
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}

/***********************************************************************
An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index. */
UNIV_INTERN
dtuple_t*
row_build(
/*======*/
					/* out, own: row built;
					see the NOTE below! */
	ulint			type,	/* in: ROW_COPY_POINTERS or
					ROW_COPY_DATA; the latter
					copies also the data fields to
					heap while the first only
					places pointers to data fields
					on the index page, and thus is
					more efficient */
	const dict_index_t*	index,	/* in: clustered index */
	const rec_t*		rec,	/* in: record in the clustered
					index; NOTE: in the case
					ROW_COPY_POINTERS the data
					fields in the row will point
					directly into this record,
					therefore, the buffer page of
					this record must be at least
					s-latched and the latch held
					as long as the row dtuple is used! */
	const ulint*		offsets,/* in: rec_get_offsets(rec,index)
					or NULL, in which case this function
					will invoke rec_get_offsets() */
	const dict_table_t*	col_table,
					/* in: table, to check which
					externally stored columns
					occur in the ordering columns
					of an index, or NULL if
					index->table should be
					consulted instead */
	row_ext_t**		ext,	/* out, own: cache of
					externally stored column
					prefixes, or NULL */
	mem_heap_t*		heap)	/* in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*		row;
	const dict_table_t*	table;
	ulint			n_fields;
	ulint			n_ext_cols;
	ulint*			ext_cols	= NULL; /* remove warning */
	ulint			len;
	ulint			row_len;
	byte*			buf;
	ulint			i;
	ulint			j;
	mem_heap_t*		tmp_heap	= NULL;
	ulint			offsets_[REC_OFFS_NORMAL_SIZE];
	rec_offs_init(offsets_);

	ut_ad(index && rec && heap);
	ut_ad(dict_index_is_clust(index));

	if (!offsets) {
		offsets = rec_get_offsets(rec, index, offsets_,
					  ULINT_UNDEFINED, &tmp_heap);
	} else {
		ut_ad(rec_offs_validate(rec, index, offsets));
	}

	if (type != ROW_COPY_POINTERS) {
		/* Take a copy of rec to heap */
		buf = mem_heap_alloc(heap, rec_offs_size(offsets));
		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, (ulint*) offsets);
	}

	table = index->table;
	row_len = dict_table_get_n_cols(table);

	row = dtuple_create(heap, row_len);

	dict_table_copy_types(row, table);

	dtuple_set_info_bits(row, rec_get_info_bits(
				     rec, dict_table_is_comp(table)));

	n_fields = rec_offs_n_fields(offsets);
	n_ext_cols = rec_offs_n_extern(offsets);
	if (n_ext_cols) {
		ext_cols = mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols);
	}

	for (i = j = 0; i < n_fields; i++) {
		dict_field_t*		ind_field
			= dict_index_get_nth_field(index, i);
		const dict_col_t*	col
			= dict_field_get_col(ind_field);
		ulint			col_no
			= dict_col_get_no(col);
		dfield_t*		dfield
			= dtuple_get_nth_field(row, col_no);

		if (ind_field->prefix_len == 0) {

			const byte*	field = rec_get_nth_field(
				rec, offsets, i, &len);

			dfield_set_data(dfield, field, len);
		}

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);

			if (UNIV_LIKELY_NULL(col_table)) {
				ut_a(col_no
				     < dict_table_get_n_cols(col_table));
				col = dict_table_get_nth_col(
					col_table, col_no);
			}

			if (col->ord_part) {
				/* We will have to fetch prefixes of
				externally stored columns that are
				referenced by column prefixes. */
				ext_cols[j++] = col_no;
			}
		}
	}

	ut_ad(dtuple_check_typed(row));

	if (j) {
		*ext = row_ext_create(j, ext_cols, row,
				      dict_table_zip_size(index->table),
				      heap);
	} else {
		*ext = NULL;
	}

	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(row);
}

/***********************************************************************
Converts an index record to a typed data tuple. */
UNIV_INTERN
dtuple_t*
row_rec_to_index_entry_low(
/*=======================*/
					/* out: index entry built; does not
					set info_bits, and the data fields in
					the entry will point directly to rec */
	const rec_t*		rec,	/* in: record in the index */
	const dict_index_t*	index,	/* in: index */
	const ulint*		offsets,/* in: rec_get_offsets(rec, index) */
	ulint*			n_ext,	/* out: number of externally
					stored columns */
	mem_heap_t*		heap)	/* in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*	entry;
	dfield_t*	dfield;
	ulint		i;
	const byte*	field;
	ulint		len;
	ulint		rec_len;

	ut_ad(rec && heap && index);
	/* Because this function may be invoked by row0merge.c
	on a record whose header is in different format, the check
	rec_offs_validate(rec, index, offsets) must be avoided here. */
	ut_ad(n_ext);
	*n_ext = 0;

	rec_len = rec_offs_n_fields(offsets);

	entry = dtuple_create(heap, rec_len);

	dtuple_set_n_fields_cmp(entry,
				dict_index_get_n_unique_in_tree(index));
	ut_ad(rec_len == dict_index_get_n_fields(index));

	dict_index_copy_types(entry, index, rec_len);

	for (i = 0; i < rec_len; i++) {

		dfield = dtuple_get_nth_field(entry, i);
		field = rec_get_nth_field(rec, offsets, i, &len);

		dfield_set_data(dfield, field, len);

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);
			(*n_ext)++;
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}

/***********************************************************************
Converts an index record to a typed data tuple. NOTE that externally
stored (often big) fields are NOT copied to heap. */
UNIV_INTERN
dtuple_t*
row_rec_to_index_entry(
/*===================*/
					/* out, own: index entry
					built; see the NOTE below! */
	ulint			type,	/* in: ROW_COPY_DATA, or
					ROW_COPY_POINTERS: the former
					copies also the data fields to
					heap as the latter only places
					pointers to data fields on the
					index page */
	const rec_t*		rec,	/* in: record in the index;
					NOTE: in the case
					ROW_COPY_POINTERS the data
					fields in the row will point
					directly into this record,
					therefore, the buffer page of
					this record must be at least
					s-latched and the latch held
					as long as the dtuple is used! */
	const dict_index_t*	index,	/* in: index */
	ulint*			offsets,/* in/out: rec_get_offsets(rec) */
	ulint*			n_ext,	/* out: number of externally
					stored columns */
	mem_heap_t*		heap)	/* in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*	entry;
	byte*		buf;

	ut_ad(rec && heap && index);
	ut_ad(rec_offs_validate(rec, index, offsets));

	if (type == ROW_COPY_DATA) {
		/* Take a copy of rec to heap */
		buf = mem_heap_alloc(heap, rec_offs_size(offsets));
		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, offsets);
	}

	entry = row_rec_to_index_entry_low(rec, index, offsets, n_ext, heap);

	dtuple_set_info_bits(entry,
			     rec_get_info_bits(rec, rec_offs_comp(offsets)));

	return(entry);
}

/***********************************************************************
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
UNIV_INTERN
dtuple_t*
row_build_row_ref(
/*==============*/
				/* out, own: row reference built; see the
				NOTE below! */
	ulint		type,	/* in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
				the former copies also the data fields to
				heap, whereas the latter only places pointers
				to data fields on the index page */
	dict_index_t*	index,	/* in: secondary index */
	const rec_t*	rec,	/* in: record in the index;
				NOTE: in the case ROW_COPY_POINTERS
				the data fields in the row will point
				directly into this record, therefore,
				the buffer page of this record must be
				at least s-latched and the latch held
				as long as the row reference is used! */
	mem_heap_t*	heap)	/* in: memory heap from which the memory
				needed is allocated */
{
	dict_table_t*	table;
	dict_index_t*	clust_index;
	dfield_t*	dfield;
	dtuple_t*	ref;
	const byte*	field;
	ulint		len;
	ulint		ref_len;
	ulint		pos;
	byte*		buf;
	ulint		clust_col_prefix_len;
	ulint		i;
	mem_heap_t*	tmp_heap	= NULL;
	ulint		offsets_[REC_OFFS_NORMAL_SIZE];
	ulint*		offsets		= offsets_;
	rec_offs_init(offsets_);

	ut_ad(index && rec && heap);
	ut_ad(!dict_index_is_clust(index));

	offsets = rec_get_offsets(rec, index, offsets,
				  ULINT_UNDEFINED, &tmp_heap);
	/* Secondary indexes must not contain externally stored columns. */
	ut_ad(!rec_offs_any_extern(offsets));

	if (type == ROW_COPY_DATA) {
		/* Take a copy of rec to heap */

		buf = mem_heap_alloc(heap, rec_offs_size(offsets));

		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, offsets);
	}

	table = index->table;

	clust_index = dict_table_get_first_index(table);

	ref_len = dict_index_get_n_unique(clust_index);

	ref = dtuple_create(heap, ref_len);

	dict_index_copy_types(ref, clust_index, ref_len);

	for (i = 0; i < ref_len; i++) {
		dfield = dtuple_get_nth_field(ref, i);

		pos = dict_index_get_nth_field_pos(index, clust_index, i);

		ut_a(pos != ULINT_UNDEFINED);

		field = rec_get_nth_field(rec, offsets, pos, &len);

		dfield_set_data(dfield, field, len);

		/* If the primary key contains a column prefix, then the
		secondary index may contain a longer prefix of the same
		column, or the full column, and we must adjust the length
		accordingly. */

		clust_col_prefix_len = dict_index_get_nth_field(
			clust_index, i)->prefix_len;

		if (clust_col_prefix_len > 0) {
			if (len != UNIV_SQL_NULL) {

				const dtype_t*	dtype
					= dfield_get_type(dfield);

				dfield_set_len(dfield,
					       dtype_get_at_most_n_mbchars(
						       dtype->prtype,
						       dtype->mbminlen,
						       dtype->mbmaxlen,
						       clust_col_prefix_len,
						       len, (char*) field));
			}
		}
	}

	ut_ad(dtuple_check_typed(ref));
	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(ref);
}

/***********************************************************************
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
UNIV_INTERN
void
row_build_row_ref_in_tuple(
/*=======================*/
	dtuple_t*		ref,	/* in/out: row reference built;
					see the NOTE below! */
	const rec_t*		rec,	/* in: record in the index;
					NOTE: the data fields in ref
					will point directly into this
					record, therefore, the buffer
					page of this record must be at
					least s-latched and the latch
					held as long as the row
					reference is used! */
	const dict_index_t*	index,	/* in: secondary index */
	ulint*			offsets,/* in: rec_get_offsets(rec, index)
					or NULL */
	trx_t*			trx)	/* in: transaction */
{
	const dict_index_t*	clust_index;
	dfield_t*		dfield;
	const byte*		field;
	ulint			len;
	ulint			ref_len;
	ulint			pos;
	ulint			clust_col_prefix_len;
	ulint			i;
	mem_heap_t*		heap		= NULL;
	ulint			offsets_[REC_OFFS_NORMAL_SIZE];
	rec_offs_init(offsets_);

	ut_a(ref);
	ut_a(index);
	ut_a(rec);
	ut_ad(!dict_index_is_clust(index));

	if (UNIV_UNLIKELY(!index->table)) {
		fputs("InnoDB: table ", stderr);
notfound:
		ut_print_name(stderr, trx, TRUE, index->table_name);
		fputs(" for index ", stderr);
		ut_print_name(stderr, trx, FALSE, index->name);
		fputs(" not found\n", stderr);
		ut_error;
	}

	clust_index = dict_table_get_first_index(index->table);

	if (UNIV_UNLIKELY(!clust_index)) {
		fputs("InnoDB: clust index for table ", stderr);
		goto notfound;
	}

	if (!offsets) {
		offsets = rec_get_offsets(rec, index, offsets_,
					  ULINT_UNDEFINED, &heap);
	} else {
		ut_ad(rec_offs_validate(rec, index, offsets));
	}

	/* Secondary indexes must not contain externally stored columns. */
	ut_ad(!rec_offs_any_extern(offsets));
	ref_len = dict_index_get_n_unique(clust_index);

	ut_ad(ref_len == dtuple_get_n_fields(ref));

	dict_index_copy_types(ref, clust_index, ref_len);

	for (i = 0; i < ref_len; i++) {
		dfield = dtuple_get_nth_field(ref, i);

		pos = dict_index_get_nth_field_pos(index, clust_index, i);

		ut_a(pos != ULINT_UNDEFINED);

		field = rec_get_nth_field(rec, offsets, pos, &len);

		dfield_set_data(dfield, field, len);

		/* If the primary key contains a column prefix, then the
		secondary index may contain a longer prefix of the same
		column, or the full column, and we must adjust the length
		accordingly. */

		clust_col_prefix_len = dict_index_get_nth_field(
			clust_index, i)->prefix_len;

		if (clust_col_prefix_len > 0) {
			if (len != UNIV_SQL_NULL) {

				const dtype_t*	dtype
					= dfield_get_type(dfield);

				dfield_set_len(dfield,
					       dtype_get_at_most_n_mbchars(
						       dtype->prtype,
						       dtype->mbminlen,
						       dtype->mbmaxlen,
						       clust_col_prefix_len,
						       len, (char*) field));
			}
		}
	}

	ut_ad(dtuple_check_typed(ref));
	if (UNIV_LIKELY_NULL(heap)) {
		mem_heap_free(heap);
	}
}

/***********************************************************************
From a row build a row reference with which we can search the clustered
index record. */
UNIV_INTERN
void
row_build_row_ref_from_row(
/*=======================*/
	dtuple_t*		ref,	/* in/out: row reference built;
					see the NOTE below!
					ref must have the right number
					of fields! */
	const dict_table_t*	table,	/* in: table */
	const dtuple_t*		row)	/* in: row
					NOTE: the data fields in ref will point
					directly into data of this row */
{
	const dict_index_t*	clust_index;
	ulint			ref_len;
	ulint			i;

	ut_ad(ref && table && row);

	clust_index = dict_table_get_first_index(table);

	ref_len = dict_index_get_n_unique(clust_index);

	ut_ad(ref_len == dtuple_get_n_fields(ref));

	for (i = 0; i < ref_len; i++) {
		const dict_col_t*	col;
		const dict_field_t*	field;
		dfield_t*		dfield;
		const dfield_t*		dfield2;

		dfield = dtuple_get_nth_field(ref, i);

		field = dict_index_get_nth_field(clust_index, i);

		col = dict_field_get_col(field);

		dfield2 = dtuple_get_nth_field(row, dict_col_get_no(col));

		dfield_copy(dfield, dfield2);
		ut_ad(!dfield_is_ext(dfield));

		if (field->prefix_len > 0 && !dfield_is_null(dfield)) {

			ulint	len = dfield_get_len(dfield);

			len = dtype_get_at_most_n_mbchars(
				col->prtype, col->mbminlen, col->mbmaxlen,
				field->prefix_len,
				len, dfield_get_data(dfield));

			dfield_set_len(dfield, len);
		}
	}

	ut_ad(dtuple_check_typed(ref));
}

/*******************************************************************
Searches the clustered index record for a row, if we have the row reference. */
UNIV_INTERN
ibool
row_search_on_row_ref(
/*==================*/
					/* out: TRUE if found */
	btr_pcur_t*		pcur,	/* out: persistent cursor, which must
					be closed by the caller */
	ulint			mode,	/* in: BTR_MODIFY_LEAF, ... */
	const dict_table_t*	table,	/* in: table */
	const dtuple_t*		ref,	/* in: row reference */
	mtr_t*			mtr)	/* in/out: mtr */
{
	ulint		low_match;
	rec_t*		rec;
	dict_index_t*	index;

	ut_ad(dtuple_check_typed(ref));

	index = dict_table_get_first_index(table);

	ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));

	btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);

	low_match = btr_pcur_get_low_match(pcur);

	rec = btr_pcur_get_rec(pcur);

	if (page_rec_is_infimum(rec)) {

		return(FALSE);
	}

	if (low_match != dtuple_get_n_fields(ref)) {

		return(FALSE);
	}

	return(TRUE);
}

/*************************************************************************
Fetches the clustered index record for a secondary index record. The latches
on the secondary index record are preserved. */
UNIV_INTERN
rec_t*
row_get_clust_rec(
/*==============*/
				/* out: record or NULL, if no record found */
	ulint		mode,	/* in: BTR_MODIFY_LEAF, ... */
	const rec_t*	rec,	/* in: record in a secondary index */
	dict_index_t*	index,	/* in: secondary index */
	dict_index_t**	clust_index,/* out: clustered index */
	mtr_t*		mtr)	/* in: mtr */
{
	mem_heap_t*	heap;
	dtuple_t*	ref;
	dict_table_t*	table;
	btr_pcur_t	pcur;
	ibool		found;
	rec_t*		clust_rec;

	ut_ad(!dict_index_is_clust(index));

	table = index->table;

	heap = mem_heap_create(256);

	ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);

	found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);

	clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;

	mem_heap_free(heap);

	btr_pcur_close(&pcur);

	*clust_index = dict_table_get_first_index(table);

	return(clust_rec);
}

/*******************************************************************
Searches an index record. */
UNIV_INTERN
ibool
row_search_index_entry(
/*===================*/
				/* out: TRUE if found */
	dict_index_t*	index,	/* in: index */
	const dtuple_t*	entry,	/* in: index entry */
	ulint		mode,	/* in: BTR_MODIFY_LEAF, ... */
	btr_pcur_t*	pcur,	/* in/out: persistent cursor, which must
				be closed by the caller */
	mtr_t*		mtr)	/* in: mtr */
{
	ulint	n_fields;
	ulint	low_match;
	rec_t*	rec;

	ut_ad(dtuple_check_typed(entry));

	btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
	low_match = btr_pcur_get_low_match(pcur);

	rec = btr_pcur_get_rec(pcur);

	n_fields = dtuple_get_n_fields(entry);

	return(!page_rec_is_infimum(rec) && low_match == n_fields);
}

#ifndef UNIV_HOTBACKUP

#if defined(BUILD_DRIZZLE)
# include <mysys/my_sys.h>
#else
# include <my_sys.h>
#endif

/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_INT using "prtype" and writes the result to "buf".
If the data is in unknown format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
static
ulint
row_raw_format_int(
/*===============*/
					/* out: number of bytes
					that were written */
	const char*	data,		/* in: raw data */
	ulint		data_len,	/* in: raw data length
					in bytes */
	ulint		prtype,		/* in: precise type */
	char*		buf,		/* out: output buffer */
	ulint		buf_size,	/* in: output buffer size
					in bytes */
	ibool*		format_in_hex)	/* out: should the data be
					formated in hex */
{
	ulint	ret;

	if (data_len <= sizeof(ullint)) {

		ullint		value;
		ibool		unsigned_type = prtype & DATA_UNSIGNED;

		value = mach_read_int_type((const byte*) data,
					   data_len, unsigned_type);

		if (unsigned_type) {

			ret = ut_snprintf(buf, buf_size, "%llu",
					  value) + 1;
		} else {

			ret = ut_snprintf(buf, buf_size, "%lld",
					  (long long) value) + 1;
		}

	} else {

		*format_in_hex = TRUE;
		ret = 0;
	}

	return(ut_min(ret, buf_size));
}

/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
result to "buf".
If the data is in binary format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
static
ulint
row_raw_format_str(
/*===============*/
					/* out: number of bytes
					that were written */
	const char*	data,		/* in: raw data */
	ulint		data_len,	/* in: raw data length
					in bytes */
	ulint		prtype,		/* in: precise type */
	char*		buf,		/* out: output buffer */
	ulint		buf_size,	/* in: output buffer size
					in bytes */
	ibool*		format_in_hex)	/* out: should the data be
					formated in hex */
{
	ulint	charset_coll;

	if (buf_size == 0) {

		return(0);
	}

	/* we assume system_charset_info is UTF-8 */

	charset_coll = dtype_get_charset_coll(prtype);

	if (UNIV_LIKELY(dtype_is_utf8(prtype))) {

		return(ut_str_sql_format(data, data_len, buf, buf_size));
	}
	/* else */

	if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {

		*format_in_hex = TRUE;
		return(0);
	}
	/* else */

	return(innobase_raw_format(data, data_len, charset_coll,
					  buf, buf_size));
}

/***********************************************************************
Formats the raw data in "data" (in InnoDB on-disk format) using
"dict_field" and writes the result to "buf".
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0'). */
UNIV_INTERN
ulint
row_raw_format(
/*===========*/
						/* out: number of bytes
						that were written */
	const char*		data,		/* in: raw data */
	ulint			data_len,	/* in: raw data length
						in bytes */
	const dict_field_t*	dict_field,	/* in: index field */
	char*			buf,		/* out: output buffer */
	ulint			buf_size)	/* in: output buffer size
						in bytes */
{
	ulint	mtype;
	ulint	prtype;
	ulint	ret;
	ibool	format_in_hex;

        ret = 0;

	if (buf_size == 0) {

		return(ret);
	}

	if (data_len == UNIV_SQL_NULL) {

		ret = ut_snprintf((char*) buf, buf_size, "NULL") + 1;

		return(ut_min(ret, buf_size));
	}

	mtype = dict_field->col->mtype;
	prtype = dict_field->col->prtype;

	format_in_hex = FALSE;

	switch (mtype) {
	case DATA_INT:

		ret = row_raw_format_int(data, data_len, prtype,
					 buf, buf_size, &format_in_hex);
		break;
	case DATA_CHAR:
	case DATA_VARCHAR:
	case DATA_MYSQL:
	case DATA_VARMYSQL:

		ret = row_raw_format_str(data, data_len, prtype,
					 buf, buf_size, &format_in_hex);
		break;
	/* XXX support more data types */
	default:

		format_in_hex = TRUE;
	}

	if (format_in_hex) {

		if (UNIV_LIKELY(buf_size > 2)) {

			memcpy(buf, "0x", 2);
			buf += 2;
			buf_size -= 2;
			ret = 2 + ut_raw_to_hex(data, data_len,
						buf, buf_size);
		} else {

			buf[0] = '\0';
			ret = 1;
		}
	}

	return(ret);
}

#endif /* !UNIV_HOTBACKUP */

#ifdef UNIV_COMPILE_TEST_FUNCS

#include "ut0dbg.h"

void
test_row_raw_format_int()
{
	ulint	ret;
	char	buf[128];
	ibool	format_in_hex;

#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
		      ret_expected, buf_expected, format_in_hex_expected)\
	do {\
		ibool	ok = TRUE;\
		ulint	i;\
		memset(buf, 'x', 10);\
		buf[10] = '\0';\
		format_in_hex = FALSE;\
		fprintf(stderr, "TESTING \"\\x");\
		for (i = 0; i < data_len; i++) {\
			fprintf(stderr, "%02hhX", data[i]);\
		}\
		fprintf(stderr, "\", %lu, %lu, %lu\n",\
                        (ulint) data_len, (ulint) prtype,\
			(ulint) buf_size);\
		ret = row_raw_format_int(data, data_len, prtype,\
					 buf, buf_size, &format_in_hex);\
		if (ret != ret_expected) {\
			fprintf(stderr, "expected ret %lu, got %lu\n",\
				(ulint) ret_expected, ret);\
			ok = FALSE;\
                }\
                if (strcmp((char*) buf, buf_expected) != 0) {\
                        fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
                                buf_expected, buf);\
                        ok = FALSE;\
                }\
                if (format_in_hex != format_in_hex_expected) {\
                        fprintf(stderr, "expected format_in_hex %d, got %d\n",\
                                (int) format_in_hex_expected,\
				(int) format_in_hex);\
                        ok = FALSE;\
                }\
                if (ok) {\
                        fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
                                (ulint) ret, buf, (int) format_in_hex);\
                } else {\
                        return;\
                }\
        } while (0)

#if 1
	/* min values for signed 1-8 byte integers */

	CALL_AND_TEST("\x00", 1, 0,
		      buf, sizeof(buf), 5, "-128", 0);

	CALL_AND_TEST("\x00\x00", 2, 0,
		      buf, sizeof(buf), 7, "-32768", 0);

	CALL_AND_TEST("\x00\x00\x00", 3, 0,
		      buf, sizeof(buf), 9, "-8388608", 0);

	CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
		      buf, sizeof(buf), 12, "-2147483648", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
		      buf, sizeof(buf), 14, "-549755813888", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
		      buf, sizeof(buf), 17, "-140737488355328", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
		      buf, sizeof(buf), 19, "-36028797018963968", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
		      buf, sizeof(buf), 21, "-9223372036854775808", 0);

	/* min values for unsigned 1-8 byte integers */

	CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	/* max values for signed 1-8 byte integers */

	CALL_AND_TEST("\xFF", 1, 0,
		      buf, sizeof(buf), 4, "127", 0);

	CALL_AND_TEST("\xFF\xFF", 2, 0,
		      buf, sizeof(buf), 6, "32767", 0);

	CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
		      buf, sizeof(buf), 8, "8388607", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
		      buf, sizeof(buf), 11, "2147483647", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
		      buf, sizeof(buf), 13, "549755813887", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
		      buf, sizeof(buf), 16, "140737488355327", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
		      buf, sizeof(buf), 18, "36028797018963967", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
		      buf, sizeof(buf), 20, "9223372036854775807", 0);

	/* max values for unsigned 1-8 byte integers */

	CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 4, "255", 0);

	CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "65535", 0);

	CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 9, "16777215", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 11, "4294967295", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
		      buf, sizeof(buf), 14, "1099511627775", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
		      buf, sizeof(buf), 16, "281474976710655", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
		      buf, sizeof(buf), 18, "72057594037927935", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 21, "18446744073709551615", 0);

	/* some random values */

	CALL_AND_TEST("\x52", 1, 0,
		      buf, sizeof(buf), 4, "-46", 0);

	CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 3, "14", 0);

	CALL_AND_TEST("\x62\xCE", 2, 0,
		      buf, sizeof(buf), 6, "-7474", 0);

	CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "10710", 0);

	CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
		      buf, sizeof(buf), 5, "-112", 0);

	CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "41238", 0);

	CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
		      buf, sizeof(buf), 3, "-9", 0);

	CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 3, "92", 0);

	CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
		      buf, sizeof(buf), 6, "-9117", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "91234", 0);
#endif

	/* speed test */

	speedo_t	speedo;
	ulint		i;

	speedo_reset(&speedo);

	for (i = 0; i < 1000000; i++) {
		row_raw_format_int("\x23", 1,
				   0, buf, sizeof(buf),
				   &format_in_hex);
		row_raw_format_int("\x23", 1,
				   DATA_UNSIGNED, buf, sizeof(buf),
				   &format_in_hex);

		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
				   0, buf, sizeof(buf),
				   &format_in_hex);
		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
				   DATA_UNSIGNED, buf, sizeof(buf),
				   &format_in_hex);
	}

	speedo_show(&speedo);
}

#endif /* UNIV_COMPILE_TEST_FUNCS */