~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/* Copyright (C) 2000-2006 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/* Write a row to a MyISAM table */

#include "myisamdef.h"

#include <mystrings/m_string.h>
#include <drizzled/util/test.h>


#define MAX_POINTER_LENGTH 8

	/* Functions declared in this file */

static int w_search(MI_INFO *info,MI_KEYDEF *keyinfo,
		    uint32_t comp_flag, unsigned char *key,
		    uint32_t key_length, my_off_t pos, unsigned char *father_buff,
		    unsigned char *father_keypos, my_off_t father_page,
		    bool insert_last);
static int _mi_balance_page(MI_INFO *info,MI_KEYDEF *keyinfo,unsigned char *key,
			    unsigned char *curr_buff,unsigned char *father_buff,
			    unsigned char *father_keypos,my_off_t father_page);
static unsigned char *_mi_find_last_pos(MI_KEYDEF *keyinfo, unsigned char *page,
				unsigned char *key, uint32_t *return_key_length,
				unsigned char **after_key);
int _mi_ck_write_tree(register MI_INFO *info, uint32_t keynr,unsigned char *key,
		      uint32_t key_length);
int _mi_ck_write_btree(register MI_INFO *info, uint32_t keynr,unsigned char *key,
		       uint32_t key_length);

	/* Write new record to database */

int mi_write(MI_INFO *info, unsigned char *record)
{
  MYISAM_SHARE *share=info->s;
  uint32_t i;
  int save_errno;
  my_off_t filepos;
  unsigned char *buff;
  bool lock_tree= share->concurrent_insert;

  if (share->options & HA_OPTION_READ_ONLY_DATA)
  {
    return(my_errno=EACCES);
  }
  if (_mi_readinfo(info,F_WRLCK,1))
    return(my_errno);
  filepos= ((share->state.dellink != HA_OFFSET_ERROR &&
             !info->append_insert_at_end) ?
	    share->state.dellink :
	    info->state->data_file_length);

  if (share->base.reloc == (ha_rows) 1 &&
      share->base.records == (ha_rows) 1 &&
      info->state->records == (ha_rows) 1)
  {						/* System file */
    my_errno=HA_ERR_RECORD_FILE_FULL;
    goto err2;
  }
  if (info->state->key_file_length >= share->base.margin_key_file_length)
  {
    my_errno=HA_ERR_INDEX_FILE_FULL;
    goto err2;
  }
  if (_mi_mark_file_changed(info))
    goto err2;

  /* Calculate and check all unique constraints */
  for (i=0 ; i < share->state.header.uniques ; i++)
  {
    if (mi_check_unique(info,share->uniqueinfo+i,record,
		     mi_unique_hash(share->uniqueinfo+i,record),
		     HA_OFFSET_ERROR))
      goto err2;
  }

	/* Write all keys to indextree */

  buff=info->lastkey2;
  for (i=0 ; i < share->base.keys ; i++)
  {
    if (mi_is_key_active(share->state.key_map, i))
    {
      bool local_lock_tree= (lock_tree &&
                                !(info->bulk_insert &&
                                  is_tree_inited(&info->bulk_insert[i])));
      if (local_lock_tree)
      {
	pthread_rwlock_wrlock(&share->key_root_lock[i]);
	share->keyinfo[i].version++;
      }
      {
        if (share->keyinfo[i].ck_insert(info,i,buff,
			_mi_make_key(info,i,buff,record,filepos)))
        {
          if (local_lock_tree)
            pthread_rwlock_unlock(&share->key_root_lock[i]);
          goto err;
        }
      }

      /* The above changed info->lastkey2. Inform mi_rnext_same(). */
      info->update&= ~HA_STATE_RNEXT_SAME;

      if (local_lock_tree)
        pthread_rwlock_unlock(&share->key_root_lock[i]);
    }
  }
  if (share->calc_checksum)
    info->checksum=(*share->calc_checksum)(info,record);
  if (!(info->opt_flag & OPT_NO_ROWS))
  {
    if ((*share->write_record)(info,record))
      goto err;
    info->state->checksum+=info->checksum;
  }
  if (share->base.auto_key)
    set_if_bigger(info->s->state.auto_increment,
                  retrieve_auto_increment(info, record));
  info->update= (HA_STATE_CHANGED | HA_STATE_AKTIV | HA_STATE_WRITTEN |
		 HA_STATE_ROW_CHANGED);
  info->state->records++;
  info->lastpos=filepos;
  _mi_writeinfo(info, WRITEINFO_UPDATE_KEYFILE);

  /*
    Update status of the table. We need to do so after each row write
    for the log tables, as we want the new row to become visible to
    other threads as soon as possible. We don't lock mutex here
    (as it is required by pthread memory visibility rules) as (1) it's
    not critical to use outdated share->is_log_table value (2) locking
    mutex here for every write is too expensive.
  */
  if (share->is_log_table)
    mi_update_status((void*) info);

  return(0);

err:
  save_errno=my_errno;
  if (my_errno == HA_ERR_FOUND_DUPP_KEY || my_errno == HA_ERR_RECORD_FILE_FULL ||
      my_errno == HA_ERR_NULL_IN_SPATIAL || my_errno == HA_ERR_OUT_OF_MEM)
  {
    if (info->bulk_insert)
    {
      uint32_t j;
      for (j=0 ; j < share->base.keys ; j++)
        mi_flush_bulk_insert(info, j);
    }
    info->errkey= (int) i;
    while ( i-- > 0)
    {
      if (mi_is_key_active(share->state.key_map, i))
      {
	bool local_lock_tree= (lock_tree &&
                                  !(info->bulk_insert &&
                                    is_tree_inited(&info->bulk_insert[i])));
	if (local_lock_tree)
	  pthread_rwlock_wrlock(&share->key_root_lock[i]);
	{
	  uint32_t key_length=_mi_make_key(info,i,buff,record,filepos);
	  if (_mi_ck_delete(info,i,buff,key_length))
	  {
	    if (local_lock_tree)
	      pthread_rwlock_unlock(&share->key_root_lock[i]);
	    break;
	  }
	}
	if (local_lock_tree)
	  pthread_rwlock_unlock(&share->key_root_lock[i]);
      }
    }
  }
  else
  {
    mi_print_error(info->s, HA_ERR_CRASHED);
    mi_mark_crashed(info);
  }
  info->update= (HA_STATE_CHANGED | HA_STATE_WRITTEN | HA_STATE_ROW_CHANGED);
  my_errno=save_errno;
err2:
  save_errno=my_errno;
  _mi_writeinfo(info,WRITEINFO_UPDATE_KEYFILE);
  return(my_errno=save_errno);
} /* mi_write */


	/* Write one key to btree */

int _mi_ck_write(MI_INFO *info, uint32_t keynr, unsigned char *key, uint32_t key_length)
{
  if (info->bulk_insert && is_tree_inited(&info->bulk_insert[keynr]))
  {
    return(_mi_ck_write_tree(info, keynr, key, key_length));
  }
  else
  {
    return(_mi_ck_write_btree(info, keynr, key, key_length));
  }
} /* _mi_ck_write */


/**********************************************************************
 *                Normal insert code                                  *
 **********************************************************************/

int _mi_ck_write_btree(register MI_INFO *info, uint32_t keynr, unsigned char *key,
		       uint32_t key_length)
{
  uint32_t error;
  uint32_t comp_flag;
  MI_KEYDEF *keyinfo=info->s->keyinfo+keynr;
  my_off_t  *root=&info->s->state.key_root[keynr];

  if (keyinfo->flag & HA_SORT_ALLOWS_SAME)
    comp_flag=SEARCH_BIGGER;			/* Put after same key */
  else if (keyinfo->flag & (HA_NOSAME))
  {
    comp_flag=SEARCH_FIND | SEARCH_UPDATE;	/* No duplicates */
    if (keyinfo->flag & HA_NULL_ARE_EQUAL)
      comp_flag|= SEARCH_NULL_ARE_EQUAL;
  }
  else
    comp_flag=SEARCH_SAME;			/* Keys in rec-pos order */

  error=_mi_ck_real_write_btree(info, keyinfo, key, key_length,
                                root, comp_flag);
  return(error);
} /* _mi_ck_write_btree */

int _mi_ck_real_write_btree(MI_INFO *info, MI_KEYDEF *keyinfo,
    unsigned char *key, uint32_t key_length, my_off_t *root, uint32_t comp_flag)
{
  int error;
  /* key_length parameter is used only if comp_flag is SEARCH_FIND */
  if (*root == HA_OFFSET_ERROR ||
      (error=w_search(info, keyinfo, comp_flag, key, key_length,
		      *root, (unsigned char *) 0, (unsigned char*) 0,
		      (my_off_t) 0, 1)) > 0)
    error=_mi_enlarge_root(info,keyinfo,key,root);
  return(error);
} /* _mi_ck_real_write_btree */


	/* Make a new root with key as only pointer */

int _mi_enlarge_root(MI_INFO *info, MI_KEYDEF *keyinfo, unsigned char *key,
                     my_off_t *root)
{
  uint32_t t_length,nod_flag;
  MI_KEY_PARAM s_temp;
  MYISAM_SHARE *share=info->s;

  nod_flag= (*root != HA_OFFSET_ERROR) ?  share->base.key_reflength : 0;
  _mi_kpointer(info,info->buff+2,*root); /* if nod */
  t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(unsigned char*) 0,
				(unsigned char*) 0, (unsigned char*) 0, key,&s_temp);
  mi_putint(info->buff,t_length+2+nod_flag,nod_flag);
  (*keyinfo->store_key)(keyinfo,info->buff+2+nod_flag,&s_temp);
  info->buff_used=info->page_changed=1;		/* info->buff is used */
  if ((*root= _mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR ||
      _mi_write_keypage(info,keyinfo,*root,DFLT_INIT_HITS,info->buff))
    return(-1);
  return(0);
} /* _mi_enlarge_root */


	/*
	  Search after a position for a key and store it there
	  Returns -1 = error
		   0  = ok
		   1  = key should be stored in higher tree
	*/

static int w_search(register MI_INFO *info, register MI_KEYDEF *keyinfo,
		    uint32_t comp_flag, unsigned char *key, uint32_t key_length, my_off_t page,
		    unsigned char *father_buff, unsigned char *father_keypos,
		    my_off_t father_page, bool insert_last)
{
  int error,flag;
  uint32_t nod_flag, search_key_length;
  unsigned char *temp_buff,*keypos;
  unsigned char keybuff[MI_MAX_KEY_BUFF];
  bool was_last_key;
  my_off_t next_page, dupp_key_pos;

  search_key_length= (comp_flag & SEARCH_FIND) ? key_length : USE_WHOLE_KEY;
  if (!(temp_buff= (unsigned char*) malloc(keyinfo->block_length+
				           MI_MAX_KEY_BUFF*2)))
    return(-1);
  if (!_mi_fetch_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff,0))
    goto err;

  flag=(*keyinfo->bin_search)(info,keyinfo,temp_buff,key,search_key_length,
			      comp_flag, &keypos, keybuff, &was_last_key);
  nod_flag=mi_test_if_nod(temp_buff);
  if (flag == 0)
  {
    uint32_t tmp_key_length;
	/* get position to record with duplicated key */
    tmp_key_length=(*keyinfo->get_key)(keyinfo,nod_flag,&keypos,keybuff);
    if (tmp_key_length)
      dupp_key_pos=_mi_dpos(info,0,keybuff+tmp_key_length);
    else
      dupp_key_pos= HA_OFFSET_ERROR;

    {
      info->dupp_key_pos= dupp_key_pos;
      free(temp_buff);
      my_errno=HA_ERR_FOUND_DUPP_KEY;
      return(-1);
    }
  }
  if (flag == MI_FOUND_WRONG_KEY)
    return(-1);
  if (!was_last_key)
    insert_last=0;
  next_page=_mi_kpos(nod_flag,keypos);
  if (next_page == HA_OFFSET_ERROR ||
      (error=w_search(info, keyinfo, comp_flag, key, key_length, next_page,
		      temp_buff, keypos, page, insert_last)) >0)
  {
    error=_mi_insert(info,keyinfo,key,temp_buff,keypos,keybuff,father_buff,
		     father_keypos,father_page, insert_last);
    if (_mi_write_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff))
      goto err;
  }
  free(temp_buff);
  return(error);
err:
  free(temp_buff);
  return (-1);
} /* w_search */


/*
  Insert new key.

  SYNOPSIS
    _mi_insert()
    info                        Open table information.
    keyinfo                     Key definition information.
    key                         New key.
    anc_buff                    Key page (beginning).
    key_pos                     Position in key page where to insert.
    key_buff                    Copy of previous key.
    father_buff                 parent key page for balancing.
    father_key_pos              position in parent key page for balancing.
    father_page                 position of parent key page in file.
    insert_last                 If to append at end of page.

  DESCRIPTION
    Insert new key at right of key_pos.

  RETURN
    2           if key contains key to upper level.
    0           OK.
    < 0         Error.
*/

int _mi_insert(register MI_INFO *info, register MI_KEYDEF *keyinfo,
	       unsigned char *key, unsigned char *anc_buff, unsigned char *key_pos, unsigned char *key_buff,
               unsigned char *father_buff, unsigned char *father_key_pos, my_off_t father_page,
	       bool insert_last)
{
  uint32_t a_length,nod_flag;
  int t_length;
  unsigned char *endpos, *prev_key;
  MI_KEY_PARAM s_temp;

  nod_flag=mi_test_if_nod(anc_buff);
  a_length=mi_getint(anc_buff);
  endpos= anc_buff+ a_length;
  prev_key=(key_pos == anc_buff+2+nod_flag ? (unsigned char*) 0 : key_buff);
  t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,
				(key_pos == endpos ? (unsigned char*) 0 : key_pos),
				prev_key, prev_key,
				key,&s_temp);

  if (t_length > 0)
  {
    if (t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH)
    {
      mi_print_error(info->s, HA_ERR_CRASHED);
      my_errno=HA_ERR_CRASHED;
      return(-1);
    }
    bmove_upp((unsigned char*) endpos+t_length,(unsigned char*) endpos,(uint) (endpos-key_pos));
  }
  else
  {
    if (-t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH)
    {
      mi_print_error(info->s, HA_ERR_CRASHED);
      my_errno=HA_ERR_CRASHED;
      return(-1);
    }
    memmove(key_pos, key_pos - t_length, endpos - key_pos + t_length);
  }
  (*keyinfo->store_key)(keyinfo,key_pos,&s_temp);
  a_length+=t_length;
  mi_putint(anc_buff,a_length,nod_flag);
  if (a_length <= keyinfo->block_length)
  {
    return(0);				/* There is room on page */
  }
  /* Page is full */
  if (nod_flag)
    insert_last=0;
  if (!(keyinfo->flag & (HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY)) &&
      father_buff && !insert_last)
    return(_mi_balance_page(info,keyinfo,key,anc_buff,father_buff,
				 father_key_pos,father_page));
  return(_mi_split_page(info,keyinfo,key,anc_buff,key_buff, insert_last));
} /* _mi_insert */


	/* split a full page in two and assign emerging item to key */

int _mi_split_page(register MI_INFO *info, register MI_KEYDEF *keyinfo,
		   unsigned char *key, unsigned char *buff, unsigned char *key_buff,
		   bool insert_last_key)
{
  uint32_t length,a_length,key_ref_length,t_length,nod_flag,key_length;
  unsigned char *key_pos,*pos, *after_key= NULL;
  my_off_t new_pos;
  MI_KEY_PARAM s_temp;

  if (info->s->keyinfo+info->lastinx == keyinfo)
    info->page_changed=1;			/* Info->buff is used */
  info->buff_used=1;
  nod_flag=mi_test_if_nod(buff);
  key_ref_length=2+nod_flag;
  if (insert_last_key)
    key_pos=_mi_find_last_pos(keyinfo,buff,key_buff, &key_length, &after_key);
  else
    key_pos=_mi_find_half_pos(nod_flag,keyinfo,buff,key_buff, &key_length,
			      &after_key);
  if (!key_pos)
    return(-1);

  length=(uint) (key_pos-buff);
  a_length=mi_getint(buff);
  mi_putint(buff,length,nod_flag);

  key_pos=after_key;
  if (nod_flag)
  {
    pos=key_pos-nod_flag;
    memcpy(info->buff + 2, pos, nod_flag);
  }

	/* Move middle item to key and pointer to new page */
  if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR)
    return(-1);
  _mi_kpointer(info,_mi_move_key(keyinfo,key,key_buff),new_pos);

	/* Store new page */
  if (!(*keyinfo->get_key)(keyinfo,nod_flag,&key_pos,key_buff))
    return(-1);

  t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(unsigned char *) 0,
				(unsigned char*) 0, (unsigned char*) 0,
				key_buff, &s_temp);
  length=(uint) ((buff+a_length)-key_pos);
  memcpy(info->buff+key_ref_length+t_length, key_pos, length);
  (*keyinfo->store_key)(keyinfo,info->buff+key_ref_length,&s_temp);
  mi_putint(info->buff,length+t_length+key_ref_length,nod_flag);

  if (_mi_write_keypage(info,keyinfo,new_pos,DFLT_INIT_HITS,info->buff))
    return(-1);
  return(2);				/* Middle key up */
} /* _mi_split_page */


	/*
	  Calculate how to much to move to split a page in two
	  Returns pointer to start of key.
	  key will contain the key.
	  return_key_length will contain the length of key
	  after_key will contain the position to where the next key starts
	*/

unsigned char *_mi_find_half_pos(uint32_t nod_flag, MI_KEYDEF *keyinfo, unsigned char *page,
			 unsigned char *key, uint32_t *return_key_length,
			 unsigned char **after_key)
{
  uint32_t keys,length,key_ref_length;
  unsigned char *end,*lastpos;

  key_ref_length=2+nod_flag;
  length=mi_getint(page)-key_ref_length;
  page+=key_ref_length;
  if (!(keyinfo->flag &
	(HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY |
	 HA_BINARY_PACK_KEY)))
  {
    key_ref_length=keyinfo->keylength+nod_flag;
    keys=length/(key_ref_length*2);
    *return_key_length=keyinfo->keylength;
    end=page+keys*key_ref_length;
    *after_key=end+key_ref_length;
    memcpy(key,end,key_ref_length);
    return(end);
  }

  end=page+length/2-key_ref_length;		/* This is aprox. half */
  *key='\0';
  do
  {
    lastpos=page;
    if (!(length=(*keyinfo->get_key)(keyinfo,nod_flag,&page,key)))
      return(0);
  } while (page < end);
  *return_key_length=length;
  *after_key=page;
  return(lastpos);
} /* _mi_find_half_pos */


	/*
	  Split buffer at last key
	  Returns pointer to the start of the key before the last key
	  key will contain the last key
	*/

static unsigned char *_mi_find_last_pos(MI_KEYDEF *keyinfo, unsigned char *page,
				unsigned char *key, uint32_t *return_key_length,
				unsigned char **after_key)
{
  uint32_t keys;
  uint32_t length;
  uint32_t last_length= 0;
  uint32_t key_ref_length;
  unsigned char *end, *lastpos, *prevpos= NULL;
  unsigned char key_buff[MI_MAX_KEY_BUFF];

  key_ref_length=2;
  length=mi_getint(page)-key_ref_length;
  page+=key_ref_length;
  if (!(keyinfo->flag &
	(HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY |
	 HA_BINARY_PACK_KEY)))
  {
    keys=length/keyinfo->keylength-2;
    *return_key_length=length=keyinfo->keylength;
    end=page+keys*length;
    *after_key=end+length;
    memcpy(key,end,length);
    return(end);
  }

  end= page + length - key_ref_length;
  *key='\0';
  length=0;
  lastpos=page;
  while (page < end)
  {
    prevpos=lastpos; lastpos=page;
    last_length=length;
    memcpy(key, key_buff, length);		/* previous key */
    if (!(length=(*keyinfo->get_key)(keyinfo,0,&page,key_buff)))
    {
      mi_print_error(keyinfo->share, HA_ERR_CRASHED);
      my_errno=HA_ERR_CRASHED;
      return(0);
    }
  }
  *return_key_length=last_length;
  *after_key=lastpos;
  return(prevpos);
} /* _mi_find_last_pos */


	/* Balance page with not packed keys with page on right/left */
	/* returns 0 if balance was done */

static int _mi_balance_page(register MI_INFO *info, MI_KEYDEF *keyinfo,
			    unsigned char *key, unsigned char *curr_buff, unsigned char *father_buff,
			    unsigned char *father_key_pos, my_off_t father_page)
{
  bool right;
  uint32_t k_length,father_length,father_keylength,nod_flag,curr_keylength,
       right_length,left_length,new_right_length,new_left_length,extra_length,
       length,keys;
  unsigned char *pos,*buff,*extra_buff;
  my_off_t next_page,new_pos;
  unsigned char tmp_part_key[MI_MAX_KEY_BUFF];

  k_length=keyinfo->keylength;
  father_length=mi_getint(father_buff);
  father_keylength=k_length+info->s->base.key_reflength;
  nod_flag=mi_test_if_nod(curr_buff);
  curr_keylength=k_length+nod_flag;
  info->page_changed=1;

  if ((father_key_pos != father_buff+father_length &&
       (info->state->records & 1)) ||
      father_key_pos == father_buff+2+info->s->base.key_reflength)
  {
    right=1;
    next_page= _mi_kpos(info->s->base.key_reflength,
			father_key_pos+father_keylength);
    buff=info->buff;
  }
  else
  {
    right=0;
    father_key_pos-=father_keylength;
    next_page= _mi_kpos(info->s->base.key_reflength,father_key_pos);
					/* Fix that curr_buff is to left */
    buff=curr_buff; curr_buff=info->buff;
  }					/* father_key_pos ptr to parting key */

  if (!_mi_fetch_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff,0))
    goto err;

	/* Test if there is room to share keys */

  left_length=mi_getint(curr_buff);
  right_length=mi_getint(buff);
  keys=(left_length+right_length-4-nod_flag*2)/curr_keylength;

  if ((right ? right_length : left_length) + curr_keylength <=
      keyinfo->block_length)
  {						/* Merge buffs */
    new_left_length=2+nod_flag+(keys/2)*curr_keylength;
    new_right_length=2+nod_flag+((keys+1)/2)*curr_keylength;
    mi_putint(curr_buff,new_left_length,nod_flag);
    mi_putint(buff,new_right_length,nod_flag);

    if (left_length < new_left_length)
    {						/* Move keys buff -> leaf */
      pos=curr_buff+left_length;
      memcpy(pos, father_key_pos, k_length);
      length= new_left_length - left_length - k_length;
      memcpy(pos+k_length, buff+2, length);
      pos=buff+2+length;
      memcpy(father_key_pos, pos, k_length);
      memmove(buff+2, pos+k_length, new_right_length);
    }
    else
    {						/* Move keys -> buff */

      bmove_upp((unsigned char*) buff+new_right_length,(unsigned char*) buff+right_length,
		right_length-2);
      length=new_right_length-right_length-k_length;
      memcpy(buff+2+length,father_key_pos, k_length);
      pos=curr_buff+new_left_length;
      memcpy(father_key_pos, pos, k_length);
      memcpy(buff+2, pos+k_length, length);
    }

    if (_mi_write_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff) ||
	_mi_write_keypage(info,keyinfo,father_page,DFLT_INIT_HITS,father_buff))
      goto err;
    return(0);
  }

	/* curr_buff[] and buff[] are full, lets split and make new nod */

  extra_buff=info->buff+info->s->base.max_key_block_length;
  new_left_length=new_right_length=2+nod_flag+(keys+1)/3*curr_keylength;
  if (keys == 5)				/* Too few keys to balance */
    new_left_length-=curr_keylength;
  extra_length=nod_flag+left_length+right_length-
    new_left_length-new_right_length-curr_keylength;
  mi_putint(curr_buff,new_left_length,nod_flag);
  mi_putint(buff,new_right_length,nod_flag);
  mi_putint(extra_buff,extra_length+2,nod_flag);

  /* move first largest keys to new page  */
  pos=buff+right_length-extra_length;
  memcpy(extra_buff+2, pos, extra_length);
  /* Save new parting key */
  memcpy(tmp_part_key, pos-k_length,k_length);
  /* Make place for new keys */
  bmove_upp((unsigned char*) buff+new_right_length,(unsigned char*) pos-k_length,
	    right_length-extra_length-k_length-2);
  /* Copy keys from left page */
  pos= curr_buff+new_left_length;
  length= left_length - new_left_length - k_length;
  memcpy(buff+2, pos+k_length, length);
  /* Copy old parting key */
  memcpy(buff+2+length, father_key_pos, k_length);

  /* Move new parting keys up to caller */
  memcpy((right ? key : father_key_pos), pos, k_length);
  memcpy((right ? father_key_pos : key), tmp_part_key, k_length);

  if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR)
    goto err;
  _mi_kpointer(info,key+k_length,new_pos);
  if (_mi_write_keypage(info,keyinfo,(right ? new_pos : next_page),
			DFLT_INIT_HITS,info->buff) ||
      _mi_write_keypage(info,keyinfo,(right ? next_page : new_pos),
                        DFLT_INIT_HITS,extra_buff))
    goto err;

  return(1);				/* Middle key up */

err:
  return(-1);
} /* _mi_balance_page */

/**********************************************************************
 *                Bulk insert code                                    *
 **********************************************************************/

typedef struct {
  MI_INFO *info;
  uint32_t keynr;
} bulk_insert_param;

int _mi_ck_write_tree(register MI_INFO *info, uint32_t keynr, unsigned char *key,
		      uint32_t key_length)
{
  int error;

  error= tree_insert(&info->bulk_insert[keynr], key,
         key_length + info->s->rec_reflength,
         info->bulk_insert[keynr].custom_arg) ? 0 : HA_ERR_OUT_OF_MEM ;

  return(error);
} /* _mi_ck_write_tree */


/* typeof(_mi_keys_compare)=qsort_cmp2 */

static int keys_compare(bulk_insert_param *param, unsigned char *key1, unsigned char *key2)
{
  uint32_t not_used[2];
  return ha_key_cmp(param->info->s->keyinfo[param->keynr].seg,
                    key1, key2, USE_WHOLE_KEY, SEARCH_SAME,
                    not_used);
}


static int keys_free(unsigned char *key, TREE_FREE mode, bulk_insert_param *param)
{
  /*
    Probably I can use info->lastkey here, but I'm not sure,
    and to be safe I'd better use local lastkey.
  */
  unsigned char lastkey[MI_MAX_KEY_BUFF];
  uint32_t keylen;
  MI_KEYDEF *keyinfo;

  switch (mode) {
  case free_init:
    if (param->info->s->concurrent_insert)
    {
      pthread_rwlock_wrlock(&param->info->s->key_root_lock[param->keynr]);
      param->info->s->keyinfo[param->keynr].version++;
    }
    return 0;
  case free_free:
    keyinfo=param->info->s->keyinfo+param->keynr;
    keylen=_mi_keylength(keyinfo, key);
    memcpy(lastkey, key, keylen);
    return _mi_ck_write_btree(param->info,param->keynr,lastkey,
			      keylen - param->info->s->rec_reflength);
  case free_end:
    if (param->info->s->concurrent_insert)
      pthread_rwlock_unlock(&param->info->s->key_root_lock[param->keynr]);
    return 0;
  }
  return -1;
}


int mi_init_bulk_insert(MI_INFO *info, uint32_t cache_size, ha_rows rows)
{
  MYISAM_SHARE *share=info->s;
  MI_KEYDEF *key=share->keyinfo;
  bulk_insert_param *params;
  uint32_t i, num_keys, total_keylength;
  uint64_t key_map;

  assert(!info->bulk_insert &&
	      (!rows || rows >= MI_MIN_ROWS_TO_USE_BULK_INSERT));

  mi_clear_all_keys_active(key_map);
  for (i=total_keylength=num_keys=0 ; i < share->base.keys ; i++)
  {
    if (! (key[i].flag & HA_NOSAME) && (share->base.auto_key != i + 1) &&
        mi_is_key_active(share->state.key_map, i))
    {
      num_keys++;
      mi_set_key_active(key_map, i);
      total_keylength+=key[i].maxlength+TREE_ELEMENT_EXTRA_SIZE;
    }
  }

  if (num_keys==0 ||
      num_keys * MI_MIN_SIZE_BULK_INSERT_TREE > cache_size)
    return(0);

  if (rows && rows*total_keylength < cache_size)
    cache_size= (uint32_t)rows;
  else
    cache_size/=total_keylength*16;

  info->bulk_insert=(TREE *)
    malloc((sizeof(TREE)*share->base.keys+
           sizeof(bulk_insert_param)*num_keys));

  if (!info->bulk_insert)
    return(HA_ERR_OUT_OF_MEM);

  params=(bulk_insert_param *)(info->bulk_insert+share->base.keys);
  for (i=0 ; i < share->base.keys ; i++)
  {
    if (mi_is_key_active(key_map, i))
    {
      params->info=info;
      params->keynr=i;
      /* Only allocate a 16'th of the buffer at a time */
      init_tree(&info->bulk_insert[i],
                cache_size * key[i].maxlength,
                cache_size * key[i].maxlength, 0,
		(qsort_cmp2)keys_compare, 0,
		(tree_element_free) keys_free, (void *)params++);
    }
    else
     info->bulk_insert[i].root=0;
  }

  return(0);
}

void mi_flush_bulk_insert(MI_INFO *info, uint32_t inx)
{
  if (info->bulk_insert)
  {
    if (is_tree_inited(&info->bulk_insert[inx]))
      reset_tree(&info->bulk_insert[inx]);
  }
}

void mi_end_bulk_insert(MI_INFO *info)
{
  if (info->bulk_insert)
  {
    uint32_t i;
    for (i=0 ; i < info->s->base.keys ; i++)
    {
      if (is_tree_inited(& info->bulk_insert[i]))
      {
        delete_tree(& info->bulk_insert[i]);
      }
    }
    free((void *)info->bulk_insert);
    info->bulk_insert=0;
  }
}