~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* Copyright (c) 2008 PrimeBase Technologies GmbH, Germany
 *
 * PrimeBase S3Daemon
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 *  Modified by Barry Leslie on 10/21/08.
 *	I have put a C++ wrapper around the data and functions to create an sha1 class.
 *
 */
/*
  Original Source from: http://www.faqs.org/rfcs/rfc3174.html
  and MySQL mysys/sha1.c build 5.1.24.

 DESCRIPTION
   This file implements the Secure Hashing Algorithm 1 as
   defined in FIPS PUB 180-1 published April 17, 1995.

   The SHA-1, produces a 160-bit message digest for a given data
   stream.  It should take about 2**n steps to find a message with the
   same digest as a given message and 2**(n/2) to find any two
   messages with the same digest, when n is the digest size in bits.
   Therefore, this algorithm can serve as a means of providing a
   "fingerprint" for a message.

 PORTABILITY ISSUES
   SHA-1 is defined in terms of 32-bit "words".  This code uses
   <stdint.h> (included via "sha1.h" to define 32 and 8 bit unsigned
   integer types.  If your C compiler does not support 32 bit unsigned
   integers, this code is not appropriate.

 CAVEATS
   SHA-1 is designed to work with messages less than 2^64 bits long.
   Although SHA-1 allows a message digest to be generated for messages
   of any number of bits less than 2^64, this implementation only
   works with messages with a length that is a multiple of the size of
   an 8-bit character.

  CHANGES
    2002 by Peter Zaitsev to
     - fit to new prototypes according to MySQL standard
     - Some optimizations
     - All checking is now done in debug only mode
     - More comments
*/

#include "CSConfig.h"
#include <string.h>

#include "CSDefs.h"
#include "CSObject.h"

#include "CSSha1.h"

#define SHA1CircularShift(bits,word) (((word) << (bits)) | ((word) >> (32-(bits))))

void CSSha1::sha1_reset()
{
	Length = 0;
	Message_Block_Index = 0;

	Intermediate_Hash[0] = 0x67452301;
	Intermediate_Hash[1] = 0xEFCDAB89;
	Intermediate_Hash[2] = 0x98BADCFE;
	Intermediate_Hash[3] = 0x10325476;
	Intermediate_Hash[4] = 0xC3D2E1F0;

	Computed = false;

}

//------------------------------
void CSSha1::sha1_digest(Sha1Digest *digest)
{
	if (!Computed) {
		sha1_pad();		
		memset(Message_Block, 0, 64);
		Length = 0;
		Computed = true;
	}

	for (int i = 0; i < SHA1_HASH_SIZE; i++)
		digest->val[i] = (int8_t)((Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) )));
}

//------------------------------
void CSSha1::sha1_input(const void *data, size_t len)
{
	uint8_t *message_array = (u_char *) data;
	
	if (!len)
		return;

	if (Computed)
		sha1_reset();

	while (len--) {
		Message_Block[Message_Block_Index++]= (*message_array & 0xFF);
		Length += 8;  /* Length is in bits */

		if (Message_Block_Index == 64)
			sha1_process();

		message_array++;
	}
}

//------------------------------
void CSSha1::sha1_pad()
{
	/*
	Check to see if the current message block is too small to hold
	the initial padding bits and length.  If so, we will pad the
	block, process it, and then continue padding into a second
	block.
	*/

	int i = Message_Block_Index;

	if (i > 55) {
		Message_Block[i++] = 0x80;
		memset(&Message_Block[i], 0, sizeof(Message_Block[0]) * 64-i);
		Message_Block_Index=64;

		/* This function sets Message_Block_Index to zero	*/
		sha1_process();

		memset(Message_Block, 0, sizeof(Message_Block[0]) * 56);
		Message_Block_Index=56;
	} else {
		Message_Block[i++] = 0x80;
		memset(&Message_Block[i], 0, sizeof(Message_Block[0])*(56-i));
		Message_Block_Index=56;
	}

	/*
	Store the message length as the last 8 octets
	*/

	Message_Block[56] = (int8_t) (Length >> 56);
	Message_Block[57] = (int8_t) (Length >> 48);
	Message_Block[58] = (int8_t) (Length >> 40);
	Message_Block[59] = (int8_t) (Length >> 32);
	Message_Block[60] = (int8_t) (Length >> 24);
	Message_Block[61] = (int8_t) (Length >> 16);
	Message_Block[62] = (int8_t) (Length >> 8);
	Message_Block[63] = (int8_t) (Length);

	sha1_process();
}

//------------------------------
void CSSha1::sha1_process()
{
    const uint32_t K[] = { 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 };
	int		t;		   /* Loop counter		  */
	uint32_t	temp;		   /* Temporary word value	  */
	uint32_t	W[80];		   /* Word sequence		  */
	uint32_t	A, B, C, D, E;	   /* Word buffers		  */
	int idx;

	/*
	Initialize the first 16 words in the array W
	*/

	for (t = 0; t < 16; t++) {
		idx=t*4;
		W[t] = Message_Block[idx] << 24;
		W[t] |= Message_Block[idx + 1] << 16;
		W[t] |= Message_Block[idx + 2] << 8;
		W[t] |= Message_Block[idx + 3];
	}


	for (t = 16; t < 80; t++) {
		W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
	}

	A = Intermediate_Hash[0];
	B = Intermediate_Hash[1];
	C = Intermediate_Hash[2];
	D = Intermediate_Hash[3];
	E = Intermediate_Hash[4];

	for (t = 0; t < 20; t++) {
		temp= SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
		E = D;
		D = C;
		C = SHA1CircularShift(30,B);
		B = A;
		A = temp;
	}

	for (t = 20; t < 40; t++) {
		temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
		E = D;
		D = C;
		C = SHA1CircularShift(30,B);
		B = A;
		A = temp;
	}

	for (t = 40; t < 60; t++) {
		temp= (SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]);
		E = D;
		D = C;
		C = SHA1CircularShift(30,B);
		B = A;
		A = temp;
	}

	for (t = 60; t < 80; t++) {
		temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
		E = D;
		D = C;
		C = SHA1CircularShift(30,B);
		B = A;
		A = temp;
	}

	Intermediate_Hash[0] += A;
	Intermediate_Hash[1] += B;
	Intermediate_Hash[2] += C;
	Intermediate_Hash[3] += D;
	Intermediate_Hash[4] += E;

	Message_Block_Index = 0;
}