~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* Copyright (C) 2000 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */

#ifndef DRIZZLED_DECIMAL_H
#define DRIZZLED_DECIMAL_H
#include <assert.h>
#include <drizzled/sql_string.h>
#include "drizzled/definitions.h"
#include "drizzled/drizzle_time.h"
namespace drizzled
{

typedef enum
{TRUNCATE=0, HALF_EVEN, HALF_UP, CEILING, FLOOR}
  decimal_round_mode;
typedef int32_t decimal_digit_t;

typedef struct st_decimal_t {
  int    intg, frac, len;
  bool sign;
  decimal_digit_t *buf;
} decimal_t;

int internal_str2dec(char *from, decimal_t *to, char **end,
                     bool fixed);
int decimal2string(const decimal_t *from, char *to, int *to_len,
                   int fixed_precision, int fixed_decimals,
                   char filler);
int decimal2uint64_t(const decimal_t *from, uint64_t *to);
int uint64_t2decimal(const uint64_t from, decimal_t *to);
int decimal2int64_t(const decimal_t *from, int64_t *to);
int int64_t2decimal(const int64_t from, decimal_t *to);
int decimal2double(const decimal_t *from, double *to);
int double2decimal(const double from, decimal_t *to);
int decimal_actual_fraction(decimal_t *from);
int decimal2bin(const decimal_t *from, unsigned char *to, int precision, int scale);
int bin2decimal(const unsigned char *from, decimal_t *to, int precision, int scale);

int decimal_bin_size(int precision, int scale);

int decimal_intg(const decimal_t *from);
int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to);
int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to);
int decimal_cmp(const decimal_t *from1, const decimal_t *from2);
int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to);
int decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
                int scale_incr);
int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to);
int decimal_round(const decimal_t *from, decimal_t *to, int new_scale,
                  decimal_round_mode mode);
int decimal_is_zero(const decimal_t *from);
void max_decimal(int precision, int frac, decimal_t *to);

#define string2decimal(A,B,C) internal_str2dec((A), (B), (C), 0)

/* set a decimal_t to zero */

#define decimal_make_zero(dec)        do {                \
                                        (dec)->buf[0]=0;    \
                                        (dec)->intg=1;      \
                                        (dec)->frac=0;      \
                                        (dec)->sign=0;      \
                                      } while(0)

/*
  returns the length of the buffer to hold string representation
  of the decimal (including decimal dot, possible sign and \0)
*/

#define decimal_string_size(dec) (((dec)->intg ? (dec)->intg : 1) + \
				  (dec)->frac + ((dec)->frac > 0) + 2)

/* negate a decimal */
#define decimal_neg(dec) do { (dec)->sign^=1; } while(0)

/*
  conventions:

    decimal_smth() == 0     -- everything's ok
    decimal_smth() <= 1     -- result is usable, but precision loss is possible
    decimal_smth() <= 2     -- result can be unusable, most significant digits
                               could've been lost
    decimal_smth() >  2     -- no result was generated
*/

#define E_DEC_OK                0
#define E_DEC_TRUNCATED         1
#define E_DEC_OVERFLOW          2
#define E_DEC_DIV_ZERO          4
#define E_DEC_BAD_NUM           8
#define E_DEC_OOM              16

#define E_DEC_ERROR            31
#define E_DEC_FATAL_ERROR      30
#define DECIMAL_LONGLONG_DIGITS 22
#define DECIMAL_LONG_DIGITS 10
#define DECIMAL_LONG3_DIGITS 8

/** maximum length of buffer in our big digits (uint32_t). */
#define DECIMAL_BUFF_LENGTH 9

/* the number of digits that my_decimal can possibly contain */
#define DECIMAL_MAX_POSSIBLE_PRECISION (DECIMAL_BUFF_LENGTH * 9)


/**
  maximum guaranteed precision of number in decimal digits (number of our
  digits * number of decimal digits in one our big digit - number of decimal
  digits in one our big digit decreased by 1 (because we always put decimal
  point on the border of our big digits))
*/
#define DECIMAL_MAX_PRECISION (DECIMAL_MAX_POSSIBLE_PRECISION - 8*2)
#define DECIMAL_MAX_SCALE 30
#define DECIMAL_NOT_SPECIFIED 31

/**
  maximum length of string representation (number of maximum decimal
  digits + 1 position for sign + 1 position for decimal point)
*/
#define DECIMAL_MAX_STR_LENGTH (DECIMAL_MAX_POSSIBLE_PRECISION + 2)

/**
  maximum size of packet length.
*/
#define DECIMAL_MAX_FIELD_SIZE DECIMAL_MAX_PRECISION

inline int my_decimal_int_part(uint32_t precision, uint32_t decimals)
{
  return precision - ((decimals == DECIMAL_NOT_SPECIFIED) ? 0 : decimals);
}


/**
  my_decimal class limits 'decimal_t' type to what we need in MySQL.

  It contains internally all necessary space needed by the instance so
  no extra memory is needed. One should call fix_buffer_pointer() function
  when he moves my_decimal objects in memory.
*/

class my_decimal :public decimal_t
{
  decimal_digit_t buffer[DECIMAL_BUFF_LENGTH];

public:

  void init()
  {
    len= DECIMAL_BUFF_LENGTH;
    buf= buffer;
	#if !defined (HAVE_VALGRIND)
		/* Set buffer to 'random' value to find wrong buffer usage */
		for (uint32_t i= 0; i < DECIMAL_BUFF_LENGTH; i++)
		  buffer[i]= i;
	#endif
  }
  my_decimal()
  {
    init();
  }
  void fix_buffer_pointer() { buf= buffer; }
  bool sign() const { return decimal_t::sign; }
  void sign(bool s) { decimal_t::sign= s; }
  uint32_t precision() const { return intg + frac; }
};

int decimal_operation_results(int result);

inline void max_my_decimal(my_decimal *to, int precision, int frac)
{
  assert((precision <= DECIMAL_MAX_PRECISION)&&
              (frac <= DECIMAL_MAX_SCALE));
  max_decimal(precision, frac, (decimal_t*) to);
}

inline void max_internal_decimal(my_decimal *to)
{
  max_my_decimal(to, DECIMAL_MAX_PRECISION, 0);
}

inline int check_result(uint32_t mask, int result)
{
  if (result & mask)
    decimal_operation_results(result);
  return result;
}

inline int check_result_and_overflow(uint32_t mask, int result, my_decimal *val)
{
  if (check_result(mask, result) & E_DEC_OVERFLOW)
  {
    bool sign= val->sign();
    val->fix_buffer_pointer();
    max_internal_decimal(val);
    val->sign(sign);
  }
  return result;
}

inline uint32_t my_decimal_length_to_precision(uint32_t length, uint32_t scale,
                                           bool unsigned_flag)
{
  return (uint32_t) (length - (scale>0 ? 1:0) - (unsigned_flag ? 0:1));
}

inline uint32_t my_decimal_precision_to_length(uint32_t precision, uint8_t scale,
                                             bool unsigned_flag)
{
  set_if_smaller(precision, (uint32_t)DECIMAL_MAX_PRECISION);
  return static_cast<uint32_t>(precision + (scale>0 ? 1:0) + (unsigned_flag ? 0:1));
}

inline
int my_decimal_string_length(const my_decimal *d)
{
  return decimal_string_size(d);
}


inline
int my_decimal_max_length(const my_decimal *d)
{
  /* -1 because we do not count \0 */
  return decimal_string_size(d) - 1;
}


inline
int my_decimal_get_binary_size(uint32_t precision, uint32_t scale)
{
  return decimal_bin_size(static_cast<int>(precision), static_cast<int>(scale));
}


inline
void my_decimal2decimal(const my_decimal *from, my_decimal *to)
{
  *to= *from;
  to->fix_buffer_pointer();
}


int my_decimal2binary(uint32_t mask, const my_decimal *d, unsigned char *bin, int prec,
		      int scale);


inline
int binary2my_decimal(uint32_t mask, const unsigned char *bin, my_decimal *d, int prec,
		      int scale)
{
  return check_result(mask, bin2decimal(bin, static_cast<decimal_t*>(d), prec, scale));
}


inline
int my_decimal_set_zero(my_decimal *d)
{
  decimal_make_zero(static_cast<decimal_t*> (d));
  return 0;
}


inline
bool my_decimal_is_zero(const my_decimal *decimal_value)
{
  return decimal_is_zero(static_cast<const decimal_t*>(decimal_value));
}


inline
int my_decimal_round(uint32_t mask, const my_decimal *from, int scale,
                     bool truncate, my_decimal *to)
{
  return check_result(mask, decimal_round(static_cast<const decimal_t*>(from), to, scale,
                                          (truncate ? TRUNCATE : HALF_UP)));
}


inline
int my_decimal_floor(uint32_t mask, const my_decimal *from, my_decimal *to)
{
  return check_result(mask, decimal_round(static_cast<const decimal_t*>(from), to, 0, FLOOR));
}


inline
int my_decimal_ceiling(uint32_t mask, const my_decimal *from, my_decimal *to)
{
  return check_result(mask, decimal_round(static_cast<const decimal_t*>(from), to, 0, CEILING));
}


int my_decimal2string(uint32_t mask, const my_decimal *d, uint32_t fixed_prec,
                      uint32_t fixed_dec, char filler, String *str);

inline
int my_decimal2int(uint32_t mask, const my_decimal *d, bool unsigned_flag,
                   int64_t *l)
{
  my_decimal rounded;
  /* decimal_round can return only E_DEC_TRUNCATED */
  decimal_round(static_cast<const decimal_t*>(d), &rounded, 0, HALF_UP);
  return check_result(mask, (unsigned_flag ?
			     decimal2uint64_t(&rounded, reinterpret_cast<uint64_t *>(l)) :
			     decimal2int64_t(&rounded, l)));
}


inline
int my_decimal2double(uint32_t, const my_decimal *d, double *result)
{
  /* No need to call check_result as this will always succeed */
  return decimal2double(static_cast<const decimal_t*>(d), result);
}


inline
int str2my_decimal(uint32_t mask, char *str, my_decimal *d, char **end)
{
  return check_result_and_overflow(mask, string2decimal(str, static_cast<decimal_t*>(d),end),
                                   d);
}


int str2my_decimal(uint32_t mask, const char *from, uint32_t length,
                   const CHARSET_INFO * charset, my_decimal *decimal_value);

inline
int string2my_decimal(uint32_t mask, const String *str, my_decimal *d)
{
  return str2my_decimal(mask, str->ptr(), str->length(), str->charset(), d);
}


my_decimal *date2my_decimal(DRIZZLE_TIME *ltime, my_decimal *dec);


inline
int double2my_decimal(uint32_t mask, double val, my_decimal *d)
{
  return check_result_and_overflow(mask, double2decimal(val, static_cast<decimal_t*>(d)), d);
}


inline
int int2my_decimal(uint32_t mask, int64_t i, bool unsigned_flag, my_decimal *d)
{
  return check_result(mask, (unsigned_flag ?
			     uint64_t2decimal(static_cast<uint64_t>(i), d) :
			     int64_t2decimal(i, d)));
}


inline
void my_decimal_neg(decimal_t *arg)
{
  if (decimal_is_zero(arg))
  {
    arg->sign= 0;
    return;
  }
  decimal_neg(arg);
}


inline
int my_decimal_add(uint32_t mask, my_decimal *res, const my_decimal *a,
		   const my_decimal *b)
{
  return check_result_and_overflow(mask,
                                   decimal_add(static_cast<const decimal_t*>(a),
                                               static_cast<const decimal_t*>(b), res),
                                   res);
}


inline
int my_decimal_sub(uint32_t mask, my_decimal *res, const my_decimal *a,
		   const my_decimal *b)
{
  return check_result_and_overflow(mask,
                                   decimal_sub(static_cast<const decimal_t*>(a),
                                               static_cast<const decimal_t*>(b), res),
                                   res);
}


inline
int my_decimal_mul(uint32_t mask, my_decimal *res, const my_decimal *a,
		   const my_decimal *b)
{
  return check_result_and_overflow(mask,
                                   decimal_mul(static_cast<const decimal_t*>(a),
                                               static_cast<const decimal_t*>(b),res),
                                   res);
}


inline
int my_decimal_div(uint32_t mask, my_decimal *res, const my_decimal *a,
		   const my_decimal *b, int div_scale_inc)
{
  return check_result_and_overflow(mask,
                                   decimal_div(static_cast<const decimal_t*>(a),
                                               static_cast<const decimal_t*>(b),res,
                                               div_scale_inc),
                                   res);
}


inline
int my_decimal_mod(uint32_t mask, my_decimal *res, const my_decimal *a,
		   const my_decimal *b)
{
  return check_result_and_overflow(mask,
                                   decimal_mod(static_cast<const decimal_t*>(a),
                                               static_cast<const decimal_t*>(b),res),
                                   res);
}


/**
  @return
    -1 if a<b, 1 if a>b and 0 if a==b
*/
inline
int my_decimal_cmp(const my_decimal *a, const my_decimal *b)
{
  return decimal_cmp(static_cast<const decimal_t*>(a),
                     static_cast<const decimal_t*>(b));
}


inline
int my_decimal_intg(const my_decimal *a)
{
  return decimal_intg(static_cast<const decimal_t*>(a));
}


void my_decimal_trim(uint32_t *precision, uint32_t *scale);

} /* namespace drizzled */

#endif /* DRIZZLED_DECIMAL_H */