~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/* Copyright (C) 2000 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */

/*
  Code for handling red-black (balanced) binary trees.
  key in tree is allocated accrding to following:

  1) If size < 0 then tree will not allocate keys and only a pointer to
     each key is saved in tree.
     compare and search functions uses and returns key-pointer

  2) If size == 0 then there are two options:
       - key_size != 0 to tree_insert: The key will be stored in the tree.
       - key_size == 0 to tree_insert:  A pointer to the key is stored.
     compare and search functions uses and returns key-pointer.

  3) if key_size is given to init_tree then each node will continue the
     key and calls to insert_key may increase length of key.
     if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
     allign) then key will be put on a 8 alligned adress. Else
     the key will be on adress (element+1). This is transparent for user
     compare and search functions uses a pointer to given key-argument.

  - If you use a free function for tree-elements and you are freeing
    the element itself, you should use key_size = 0 to init_tree and
    tree_search

  The actual key in TREE_ELEMENT is saved as a pointer or after the
  TREE_ELEMENT struct.
  If one uses only pointers in tree one can use tree_set_pointer() to
  change address of data.

  Implemented by monty.
*/

/*
  NOTE:
  tree->compare function should be ALWAYS called as
    (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
  and not other way around, as
    (*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
*/

#include "config.h"

#include "drizzled/tree.h"
#include "drizzled/internal/my_sys.h"
#include "drizzled/internal/m_string.h"
#include "drizzled/memory/root.h"

#define BLACK		1
#define RED		0
#define DEFAULT_ALLOC_SIZE 8192
#define DEFAULT_ALIGN_SIZE 8192

#define ELEMENT_KEY(tree,element)\
(tree->offset_to_key ? (void*)((unsigned char*) element+tree->offset_to_key) :\
			*((void**) (element+1)))
#define ELEMENT_CHILD(element, offs) (*(TREE_ELEMENT**)((char*)element + offs))

namespace drizzled
{


static void delete_tree_element(TREE *,TREE_ELEMENT *);
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
				     tree_walk_action,void *);
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
				     tree_walk_action,void *);
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
		      TREE_ELEMENT *leaf);
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);


void init_tree(TREE *tree, size_t default_alloc_size, uint32_t memory_limit,
               uint32_t size, qsort_cmp2 compare, bool with_delete,
	       tree_element_free free_element, void *custom_arg)
{
  if (default_alloc_size < DEFAULT_ALLOC_SIZE)
    default_alloc_size= DEFAULT_ALLOC_SIZE;
  default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
  memset(&tree->null_element, 0, sizeof(tree->null_element));
  tree->root= &tree->null_element;
  tree->compare= compare;
  tree->size_of_element= size > 0 ? (uint32_t) size : 0;
  tree->memory_limit= memory_limit;
  tree->free= free_element;
  tree->allocated= 0;
  tree->elements_in_tree= 0;
  tree->custom_arg = custom_arg;
  tree->null_element.colour= BLACK;
  tree->null_element.left=tree->null_element.right= 0;
  tree->flag= 0;
  if (!free_element &&
      (size <= sizeof(void*) || ((uint32_t) size & (sizeof(void*)-1))))
  {
    /*
      We know that the data doesn't have to be aligned (like if the key
      contains a double), so we can store the data combined with the
      TREE_ELEMENT.
    */
    tree->offset_to_key= sizeof(TREE_ELEMENT); /* Put key after element */
    /* Fix allocation size so that we don't lose any memory */
    default_alloc_size/= (sizeof(TREE_ELEMENT)+size);
    if (!default_alloc_size)
      default_alloc_size= 1;
    default_alloc_size*= (sizeof(TREE_ELEMENT)+size);
  }
  else
  {
    tree->offset_to_key= 0;		/* use key through pointer */
    tree->size_of_element+= sizeof(void*);
  }
  if (! (tree->with_delete= with_delete))
  {
    tree->mem_root.init_alloc_root(default_alloc_size);
    tree->mem_root.min_malloc= (sizeof(TREE_ELEMENT)+tree->size_of_element);
  }
}

static void free_tree(TREE *tree, myf free_flags)
{
  if (tree->root)				/* If initialized */
  {
    if (tree->with_delete)
      delete_tree_element(tree,tree->root);
    else
    {
      if (tree->free)
      {
        if (tree->memory_limit)
          (*tree->free)(NULL, free_init, tree->custom_arg);
	delete_tree_element(tree,tree->root);
        if (tree->memory_limit)
          (*tree->free)(NULL, free_end, tree->custom_arg);
      }
      tree->mem_root.free_root(free_flags);
    }
  }
  tree->root= &tree->null_element;
  tree->elements_in_tree= 0;
  tree->allocated= 0;
}

void delete_tree(TREE* tree)
{
  free_tree(tree, MYF(0)); /* free() mem_root if applicable */
}

void reset_tree(TREE* tree)
{
  /* do not free mem_root, just mark blocks as free */
  free_tree(tree, MYF(memory::MARK_BLOCKS_FREE));
}


static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
{
  if (element != &tree->null_element)
  {
    delete_tree_element(tree,element->left);
    if (tree->free)
      (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
    delete_tree_element(tree,element->right);
    if (tree->with_delete)
      free((char*) element);
  }
}


/*
  insert, search and delete of elements

  The following should be true:
    parent[0] = & parent[-1][0]->left ||
    parent[0] = & parent[-1][0]->right
*/

TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint32_t key_size,
                          void* custom_arg)
{
  int cmp;
  TREE_ELEMENT *element,***parent;

  parent= tree->parents;
  *parent = &tree->root; element= tree->root;
  for (;;)
  {
    if (element == &tree->null_element ||
	(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
                                key)) == 0)
      break;
    if (cmp < 0)
    {
      *++parent= &element->right; element= element->right;
    }
    else
    {
      *++parent = &element->left; element= element->left;
    }
  }
  if (element == &tree->null_element)
  {
    size_t alloc_size= sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
    tree->allocated+= alloc_size;

    if (tree->memory_limit && tree->elements_in_tree
                           && tree->allocated > tree->memory_limit)
    {
      reset_tree(tree);
      return tree_insert(tree, key, key_size, custom_arg);
    }

    key_size+= tree->size_of_element;
    if (tree->with_delete)
      element= (TREE_ELEMENT *) malloc(alloc_size);
    else
      element= (TREE_ELEMENT *) tree->mem_root.alloc_root(alloc_size);
    if (!element)
      return(NULL);
    **parent= element;
    element->left= element->right= &tree->null_element;
    if (!tree->offset_to_key)
    {
      if (key_size == sizeof(void*))		 /* no length, save pointer */
	*((void**) (element+1))= key;
      else
      {
	*((void**) (element+1))= (void*) ((void **) (element+1)+1);
	memcpy(*((void **) (element+1)),key, key_size - sizeof(void*));
      }
    }
    else
      memcpy((unsigned char*) element + tree->offset_to_key, key, key_size);
    element->count= 1;			/* May give warning in purify */
    tree->elements_in_tree++;
    rb_insert(tree,parent,element);	/* rebalance tree */
  }
  else
  {
    if (tree->flag & TREE_NO_DUPS)
      return(NULL);
    element->count++;
    /* Avoid a wrap over of the count. */
    if (! element->count)
      element->count--;
  }

  return element;
}

int tree_delete(TREE *tree, void *key, uint32_t key_size, void *custom_arg)
{
  int remove_colour;
  TREE_ELEMENT *element,***parent, ***org_parent, *nod;
  if (!tree->with_delete)
    return 1;					/* not allowed */

  parent= tree->parents;
  *parent= &tree->root; element= tree->root;
  for (;;)
  {
    int cmp;

    if (element == &tree->null_element)
      return 1;				/* Was not in tree */
    if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
                                key)) == 0)
      break;
    if (cmp < 0)
    {
      *++parent= &element->right; element= element->right;
    }
    else
    {
      *++parent = &element->left; element= element->left;
    }
  }
  if (element->left == &tree->null_element)
  {
    (**parent)= element->right;
    remove_colour= element->colour;
  }
  else if (element->right == &tree->null_element)
  {
    (**parent)= element->left;
    remove_colour= element->colour;
  }
  else
  {
    org_parent= parent;
    *++parent= &element->right; nod= element->right;
    while (nod->left != &tree->null_element)
    {
      *++parent= &nod->left; nod= nod->left;
    }
    (**parent)= nod->right;		/* unlink nod from tree */
    remove_colour= nod->colour;
    org_parent[0][0]= nod;		/* put y in place of element */
    org_parent[1]= &nod->right;
    nod->left= element->left;
    nod->right= element->right;
    nod->colour= element->colour;
  }
  if (remove_colour == BLACK)
    rb_delete_fixup(tree,parent);
  if (tree->free)
    (*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
  tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
  free((unsigned char*) element);
  tree->elements_in_tree--;

  return 0;
}

void *tree_search_key(TREE *tree, const void *key,
                      TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
                      enum ha_rkey_function flag, void *custom_arg)
{
  TREE_ELEMENT *element= tree->root;
  TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
  TREE_ELEMENT **last_equal_element= NULL;

/*
  TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
*/

  *parents = &tree->null_element;
  while (element != &tree->null_element)
  {
    int cmp;

    *++parents= element;

    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
			       key)) == 0)
    {
      switch (flag) {
      case HA_READ_KEY_EXACT:
      case HA_READ_KEY_OR_NEXT:
      case HA_READ_BEFORE_KEY:
	last_equal_element= parents;
	cmp= 1;
	break;
      case HA_READ_AFTER_KEY:
	cmp= -1;
	break;
      case HA_READ_PREFIX_LAST:
      case HA_READ_PREFIX_LAST_OR_PREV:
	last_equal_element= parents;
	cmp= -1;
	break;
      default:
	return NULL;
      }
    }
    if (cmp < 0) /* element < key */
    {
      last_right_step_parent= parents;
      element= element->right;
    }
    else
    {
      last_left_step_parent= parents;
      element= element->left;
    }
  }
  switch (flag) {
  case HA_READ_KEY_EXACT:
  case HA_READ_PREFIX_LAST:
    *last_pos= last_equal_element;
    break;
  case HA_READ_KEY_OR_NEXT:
    *last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
    break;
  case HA_READ_AFTER_KEY:
    *last_pos= last_left_step_parent;
    break;
  case HA_READ_PREFIX_LAST_OR_PREV:
    *last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
    break;
  case HA_READ_BEFORE_KEY:
    *last_pos= last_right_step_parent;
    break;
  default:
    return NULL;
  }

  return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
}

/*
  Search first (the most left) or last (the most right) tree element
*/
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
		       TREE_ELEMENT ***last_pos, int child_offs)
{
  TREE_ELEMENT *element= tree->root;

  *parents= &tree->null_element;
  while (element != &tree->null_element)
  {
    *++parents= element;
    element= ELEMENT_CHILD(element, child_offs);
  }
  *last_pos= parents;
  return **last_pos != &tree->null_element ?
    ELEMENT_KEY(tree, **last_pos) : NULL;
}

void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
                       int r_offs)
{
  TREE_ELEMENT *x= **last_pos;

  if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
  {
    x= ELEMENT_CHILD(x, r_offs);
    *++*last_pos= x;
    while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
    {
      x= ELEMENT_CHILD(x, l_offs);
      *++*last_pos= x;
    }
    return ELEMENT_KEY(tree, x);
  }
  else
  {
    TREE_ELEMENT *y= *--*last_pos;
    while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
    {
      x= y;
      y= *--*last_pos;
    }
    return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
  }
}

/*
  Expected that tree is fully balanced
  (each path from root to leaf has the same length)
*/
ha_rows tree_record_pos(TREE *tree, const void *key,
			enum ha_rkey_function flag, void *custom_arg)
{
  TREE_ELEMENT *element= tree->root;
  double left= 1;
  double right= tree->elements_in_tree;

  while (element != &tree->null_element)
  {
    int cmp;

    if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
			       key)) == 0)
    {
      switch (flag) {
      case HA_READ_KEY_EXACT:
      case HA_READ_BEFORE_KEY:
        cmp= 1;
        break;
      case HA_READ_AFTER_KEY:
        cmp= -1;
        break;
      default:
        return HA_POS_ERROR;
      }
    }
    if (cmp < 0) /* element < key */
    {
      element= element->right;
      left= (left + right) / 2;
    }
    else
    {
      element= element->left;
      right= (left + right) / 2;
    }
  }

  switch (flag) {
  case HA_READ_KEY_EXACT:
  case HA_READ_BEFORE_KEY:
    return (ha_rows) right;
  case HA_READ_AFTER_KEY:
    return (ha_rows) left;
  default:
    return HA_POS_ERROR;
  }
}

int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
{
  switch (visit) {
  case left_root_right:
    return tree_walk_left_root_right(tree,tree->root,action,argument);
  case right_root_left:
    return tree_walk_right_root_left(tree,tree->root,action,argument);
  }

  return 0;			/* Keep gcc happy */
}

static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
  int error;
  if (element->left)				/* Not null_element */
  {
    if ((error=tree_walk_left_root_right(tree,element->left,action,
					  argument)) == 0 &&
	(error=(*action)(ELEMENT_KEY(tree,element),
			  element->count,
			  argument)) == 0)
      error=tree_walk_left_root_right(tree,element->right,action,argument);
    return error;
  }

  return 0;
}

static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
  int error;
  if (element->right)				/* Not null_element */
  {
    if ((error=tree_walk_right_root_left(tree,element->right,action,
					  argument)) == 0 &&
	(error=(*action)(ELEMENT_KEY(tree,element),
			  element->count,
			  argument)) == 0)
     error=tree_walk_right_root_left(tree,element->left,action,argument);
    return error;
  }

  return 0;
}


/* Functions to fix up the tree after insert and delete */

static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
  TREE_ELEMENT *y;

  y= leaf->right;
  leaf->right= y->left;
  parent[0]= y;
  y->left= leaf;
}

static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
  TREE_ELEMENT *x;

  x= leaf->left;
  leaf->left= x->right;
  parent[0]= x;
  x->right= leaf;
}

static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
{
  TREE_ELEMENT *y,*par,*par2;

  leaf->colour=RED;
  while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
  {
    if (par == (par2=parent[-2][0])->left)
    {
      y= par2->right;
      if (y->colour == RED)
      {
	par->colour= BLACK;
	y->colour= BLACK;
	leaf= par2;
	parent-= 2;
	leaf->colour= RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(parent[-1],par);
	  par= leaf;			/* leaf is now parent to old leaf */
	}
	par->colour= BLACK;
	par2->colour= RED;
	right_rotate(parent[-2],par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->colour == RED)
      {
	par->colour= BLACK;
	y->colour= BLACK;
	leaf= par2;
	parent-= 2;
	leaf->colour= RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(parent[-1],par);
	  par= leaf;
	}
	par->colour= BLACK;
	par2->colour= RED;
	left_rotate(parent[-2],par2);
	break;
      }
    }
  }
  tree->root->colour=BLACK;
}

static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
{
  TREE_ELEMENT *x,*w,*par;

  x= **parent;
  while (x != tree->root && x->colour == BLACK)
  {
    if (x == (par=parent[-1][0])->left)
    {
      w= par->right;
      if (w->colour == RED)
      {
	w->colour= BLACK;
	par->colour= RED;
	left_rotate(parent[-1],par);
	parent[0]= &w->left;
	*++parent= &par->left;
	w= par->right;
      }
      if (w->left->colour == BLACK && w->right->colour == BLACK)
      {
	w->colour= RED;
	x= par;
	parent--;
      }
      else
      {
	if (w->right->colour == BLACK)
	{
	  w->left->colour= BLACK;
	  w->colour= RED;
	  right_rotate(&par->right,w);
	  w= par->right;
	}
	w->colour= par->colour;
	par->colour= BLACK;
	w->right->colour= BLACK;
	left_rotate(parent[-1],par);
	x= tree->root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->colour == RED)
      {
	w->colour= BLACK;
	par->colour= RED;
	right_rotate(parent[-1],par);
	parent[0]= &w->right;
	*++parent= &par->right;
	w= par->left;
      }
      if (w->right->colour == BLACK && w->left->colour == BLACK)
      {
	w->colour= RED;
	x= par;
	parent--;
      }
      else
      {
	if (w->left->colour == BLACK)
	{
	  w->right->colour= BLACK;
	  w->colour= RED;
	  left_rotate(&par->left,w);
	  w= par->left;
	}
	w->colour= par->colour;
	par->colour= BLACK;
	w->left->colour= BLACK;
	right_rotate(parent[-1],par);
	x= tree->root;
	break;
      }
    }
  }
  x->colour= BLACK;
}

} /* namespace drizzled */