~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
/* Copyright (C) 2000-2006 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */

/**
  @file

  @brief
  select_query and join optimization

  @defgroup Query_Optimizer  Query Optimizer
  @{
*/
#include <config.h>

#include <string>
#include <iostream>
#include <algorithm>
#include <vector>

#include <drizzled/sql_select.h> /* include join.h */

#include <drizzled/error.h>
#include <drizzled/gettext.h>
#include <drizzled/util/test.h>
#include <drizzled/name_resolution_context_state.h>
#include <drizzled/nested_join.h>
#include <drizzled/probes.h>
#include <drizzled/show.h>
#include <drizzled/item/cache.h>
#include <drizzled/item/cmpfunc.h>
#include <drizzled/item/copy_string.h>
#include <drizzled/item/uint.h>
#include <drizzled/cached_item.h>
#include <drizzled/sql_base.h>
#include <drizzled/field/blob.h>
#include <drizzled/check_stack_overrun.h>
#include <drizzled/lock.h>
#include <drizzled/item/outer_ref.h>
#include <drizzled/index_hint.h>
#include <drizzled/records.h>
#include <drizzled/internal/iocache.h>
#include <drizzled/drizzled.h>
#include <drizzled/plugin/storage_engine.h>
#include <drizzled/sql_union.h>
#include <drizzled/optimizer/key_field.h>
#include <drizzled/optimizer/position.h>
#include <drizzled/optimizer/sargable_param.h>
#include <drizzled/optimizer/key_use.h>
#include <drizzled/optimizer/range.h>
#include <drizzled/optimizer/quick_range_select.h>
#include <drizzled/optimizer/quick_ror_intersect_select.h>
#include <drizzled/filesort.h>
#include <drizzled/sql_lex.h>
#include <drizzled/session.h>
#include <drizzled/sort_field.h>
#include <drizzled/select_result.h>
#include <drizzled/key.h>
#include <drizzled/my_hash.h>

using namespace std;

namespace drizzled {

static int sort_keyuse(optimizer::KeyUse *a, optimizer::KeyUse *b);
static COND *build_equal_items(Session *session, COND *cond,
                               COND_EQUAL *inherited,
                               List<TableList> *join_list,
                               COND_EQUAL **cond_equal_ref);

static Item* part_of_refkey(Table *form,Field *field);
static bool cmp_buffer_with_ref(JoinTable *tab);
static void change_cond_ref_to_const(Session *session,
                                     list<COND_CMP>& save_list,
                                     Item *and_father,
                                     Item *cond,
                                     Item *field,
                                     Item *value);
static void copy_blobs(Field **ptr);

static bool eval_const_cond(COND *cond)
{
    return ((Item_func*) cond)->val_int() ? true : false;
}

/*
  This is used to mark equalities that were made from i-th IN-equality.
  We limit semi-join InsideOut optimization to handling max 64 inequalities,
  The following variable occupies 64 addresses.
*/
const char *subq_sj_cond_name=
  "0123456789ABCDEF0123456789abcdef0123456789ABCDEF0123456789abcdef-sj-cond";

static void copy_blobs(Field **ptr)
{
  for (; *ptr ; ptr++)
  {
    if ((*ptr)->flags & BLOB_FLAG)
      ((Field_blob *) (*ptr))->copy();
  }
}

/**
  This handles SELECT with and without UNION.
*/
bool handle_select(Session *session, LEX *lex, select_result *result,
                   uint64_t setup_tables_done_option)
{
  bool res;
  Select_Lex *select_lex= &lex->select_lex;
  DRIZZLE_SELECT_START(session->getQueryString()->c_str());

  if (select_lex->master_unit()->is_union() ||
      select_lex->master_unit()->fake_select_lex)
  {
    res= drizzle_union(session, lex, result, &lex->unit,
		       setup_tables_done_option);
  }
  else
  {
    Select_Lex_Unit *unit= &lex->unit;
    unit->set_limit(unit->global_parameters);
    session->session_marker= 0;
    /*
      'options' of select_query will be set in JOIN, as far as JOIN for
      every PS/SP execution new, we will not need reset this flag if
      setup_tables_done_option changed for next rexecution
    */
    res= select_query(session,
                      &select_lex->ref_pointer_array,
		      (TableList*) select_lex->table_list.first,
		      select_lex->with_wild,
                      select_lex->item_list,
		      select_lex->where,
		      select_lex->order_list.size() +
		      select_lex->group_list.size(),
		      (Order*) select_lex->order_list.first,
		      (Order*) select_lex->group_list.first,
		      select_lex->having,
		      select_lex->options | session->options |
                      setup_tables_done_option,
		      result, unit, select_lex);
  }
  res|= session->is_error();
  if (unlikely(res))
    result->abort();

  DRIZZLE_SELECT_DONE(res, session->limit_found_rows);
  return res;
}

/*
  Fix fields referenced from inner selects.

  SYNOPSIS
    fix_inner_refs()
    session               Thread handle
    all_fields        List of all fields used in select
    select            Current select
    ref_pointer_array Array of references to Items used in current select

  DESCRIPTION
    The function serves 3 purposes - adds fields referenced from inner
    selects to the current select list, resolves which class to use
    to access referenced item (Item_ref of Item_direct_ref) and fixes
    references (Item_ref objects) to these fields.

    If a field isn't already in the select list and the ref_pointer_array
    is provided then it is added to the all_fields list and the pointer to
    it is saved in the ref_pointer_array.

    The class to access the outer field is determined by the following rules:
    1. If the outer field isn't used under an aggregate function
      then the Item_ref class should be used.
    2. If the outer field is used under an aggregate function and this
      function is aggregated in the select where the outer field was
      resolved or in some more inner select then the Item_direct_ref
      class should be used.
    The resolution is done here and not at the fix_fields() stage as
    it can be done only after sum functions are fixed and pulled up to
    selects where they are have to be aggregated.
    When the class is chosen it substitutes the original field in the
    Item_outer_ref object.

    After this we proceed with fixing references (Item_outer_ref objects) to
    this field from inner subqueries.

  RETURN
    true  an error occured
    false ok
*/
bool fix_inner_refs(Session *session,
                    List<Item> &all_fields,
                    Select_Lex *select,
                    Item **ref_pointer_array)
{
  Item_outer_ref *ref;
  bool res= false;
  bool direct_ref= false;

  List<Item_outer_ref>::iterator ref_it(select->inner_refs_list.begin());
  while ((ref= ref_it++))
  {
    Item *item= ref->outer_ref;
    Item **item_ref= ref->ref;
    Item_ref *new_ref;
    /*
      @todo this field item already might be present in the select list.
      In this case instead of adding new field item we could use an
      existing one. The change will lead to less operations for copying fields,
      smaller temporary tables and less data passed through filesort.
    */
    if (ref_pointer_array && !ref->found_in_select_list)
    {
      int el= all_fields.size();
      ref_pointer_array[el]= item;
      /* Add the field item to the select list of the current select. */
      all_fields.push_front(item);
      /*
        If it's needed reset each Item_ref item that refers this field with
        a new reference taken from ref_pointer_array.
      */
      item_ref= ref_pointer_array + el;
    }

    if (ref->in_sum_func)
    {
      Item_sum *sum_func;
      if (ref->in_sum_func->nest_level > select->nest_level)
        direct_ref= true;
      else
      {
        for (sum_func= ref->in_sum_func; sum_func &&
             sum_func->aggr_level >= select->nest_level;
             sum_func= sum_func->in_sum_func)
        {
          if (sum_func->aggr_level == select->nest_level)
          {
            direct_ref= true;
            break;
          }
        }
      }
    }
    new_ref= direct_ref ?
              new Item_direct_ref(ref->context, item_ref, ref->table_name,
                          ref->field_name, ref->alias_name_used) :
              new Item_ref(ref->context, item_ref, ref->table_name,
                          ref->field_name, ref->alias_name_used);
    ref->outer_ref= new_ref;
    ref->ref= &ref->outer_ref;

    if (!ref->fixed && ref->fix_fields(session, 0))
      return true;
    session->used_tables|= item->used_tables();
  }
  return res;
}

/*****************************************************************************
  Check fields, find best join, do the select and output fields.
  select_query assumes that all tables are already opened
*****************************************************************************/

/*
  Index lookup-based subquery: save some flags for EXPLAIN output

  SYNOPSIS
    save_index_subquery_explain_info()
      join_tab  Subquery's join tab (there is only one as index lookup is
                only used for subqueries that are single-table SELECTs)
      where     Subquery's WHERE clause

  DESCRIPTION
    For index lookup-based subquery (i.e. one executed with
    subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
    check its EXPLAIN output row should contain
      "Using index" (TAB_INFO_FULL_SCAN_ON_NULL)
      "Using Where" (TAB_INFO_USING_WHERE)
      "Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
    and set appropriate flags in join_tab->packed_info.
*/
void save_index_subquery_explain_info(JoinTable *join_tab, Item* where)
{
  join_tab->packed_info= TAB_INFO_HAVE_VALUE;
  if (join_tab->table->covering_keys.test(join_tab->ref.key))
    join_tab->packed_info |= TAB_INFO_USING_INDEX;
  if (where)
    join_tab->packed_info |= TAB_INFO_USING_WHERE;
  for (uint32_t i = 0; i < join_tab->ref.key_parts; i++)
  {
    if (join_tab->ref.cond_guards[i])
    {
      join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
      break;
    }
  }
}

/**
  An entry point to single-unit select (a select without UNION).

  @param session                  thread Cursor
  @param rref_pointer_array   a reference to ref_pointer_array of
                              the top-level select_lex for this query
  @param tables               list of all tables used in this query.
                              The tables have been pre-opened.
  @param wild_num             number of wildcards used in the top level
                              select of this query.
                              For example statement
                              SELECT *, t1.*, catalog.t2.* FROM t0, t1, t2;
                              has 3 wildcards.
  @param fields               list of items in SELECT list of the top-level
                              select
                              e.g. SELECT a, b, c FROM t1 will have Item_field
                              for a, b and c in this list.
  @param conds                top level item of an expression representing
                              WHERE clause of the top level select
  @param og_num               total number of ORDER BY and GROUP BY clauses
                              arguments
  @param order                linked list of ORDER BY agruments
  @param group                linked list of GROUP BY arguments
  @param having               top level item of HAVING expression
  @param select_options       select options (BIG_RESULT, etc)
  @param result               an instance of result set handling class.
                              This object is responsible for send result
                              set rows to the client or inserting them
                              into a table.
  @param select_lex           the only Select_Lex of this query
  @param unit                 top-level UNIT of this query
                              UNIT is an artificial object created by the
                              parser for every SELECT clause.
                              e.g.
                              SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2)
                              has 2 unions.

  @retval
    false  success
  @retval
    true   an error
*/
bool select_query(Session *session,
                  Item ***rref_pointer_array,
                  TableList *tables,
                  uint32_t wild_num,
                  List<Item> &fields,
                  COND *conds,
                  uint32_t og_num,
                  Order *order,
                  Order *group,
                  Item *having,
                  uint64_t select_options,
                  select_result *result,
                  Select_Lex_Unit *unit,
                  Select_Lex *select_lex)
{
  bool err;
  bool free_join= 1;

  select_lex->context.resolve_in_select_list= true;
  Join *join;
  if (select_lex->join != 0)
  {
    join= select_lex->join;
    /*
      is it single SELECT in derived table, called in derived table
      creation
    */
    if (select_lex->linkage != DERIVED_TABLE_TYPE ||
        (select_options & SELECT_DESCRIBE))
    {
      if (select_lex->linkage != GLOBAL_OPTIONS_TYPE)
      {
        //here is EXPLAIN of subselect or derived table
        if (join->change_result(result))
        {
          return true;
        }
      }
      else
      {
        if ((err= join->prepare(rref_pointer_array, tables, wild_num,
                               conds, og_num, order, group, having, select_lex, unit)))
        {
          goto err;
        }
      }
    }
    free_join= 0;
    join->select_options= select_options;
  }
  else
  {
    join= new Join(session, fields, select_options, result);
    session->set_proc_info("init");
    session->used_tables=0;                         // Updated by setup_fields
    if ((err= join->prepare(rref_pointer_array, tables, wild_num, conds, og_num, order, group, having, select_lex, unit)))
      goto err;
  }

  err= join->optimize();
  if (err)
  {
    goto err; // 1
  }

  if (session->lex().describe & DESCRIBE_EXTENDED)
  {
    join->conds_history= join->conds;
    join->having_history= (join->having?join->having:join->tmp_having);
  }

  if (session->is_error())
    goto err;

  join->exec();

  if (session->lex().describe & DESCRIBE_EXTENDED)
  {
    select_lex->where= join->conds_history;
    select_lex->having= join->having_history;
  }

err:
  if (free_join)
  {
    session->set_proc_info("end");
    err|= select_lex->cleanup();
    return(err || session->is_error());
  }
  return(join->error);
}

inline Item *and_items(Item* cond, Item *item)
{
  return (cond? (new Item_cond_and(cond, item)) : item);
}

/*****************************************************************************
  Create JoinTableS, make a guess about the table types,
  Approximate how many records will be used in each table
*****************************************************************************/
ha_rows get_quick_record_count(Session *session, optimizer::SqlSelect *select, Table *table, const key_map *keys,ha_rows limit)
{
  int error;
  if (check_stack_overrun(session, STACK_MIN_SIZE, NULL))
    return 0;                           // Fatal error flag is set
  if (select)
  {
    select->head=table;
    table->reginfo.impossible_range=0;
    if ((error= select->test_quick_select(session, *(key_map *)keys,(table_map) 0,
                                          limit, 0, false)) == 1)
      return(select->quick->records);
    if (error == -1)
    {
      table->reginfo.impossible_range=1;
      return 0;
    }
  }
  return(HA_POS_ERROR);			/* This shouldn't happend */
}

/*****************************************************************************
  Check with keys are used and with tables references with tables
  Updates in stat:
	  keys	     Bitmap of all used keys
	  const_keys Bitmap of all keys with may be used with quick_select
	  keyuse     Pointer to possible keys
*****************************************************************************/


/**
  Add all keys with uses 'field' for some keypart.

  If field->and_level != and_level then only mark key_part as const_part.
*/
uint32_t max_part_bit(key_part_map bits)
{
  uint32_t found;
  for (found=0; bits & 1 ; found++,bits>>=1) ;
  return found;
}

static int sort_keyuse(optimizer::KeyUse *a, optimizer::KeyUse *b)
{
  int res;
  if (a->getTable()->tablenr != b->getTable()->tablenr)
    return static_cast<int>((a->getTable()->tablenr - b->getTable()->tablenr));
  if (a->getKey() != b->getKey())
    return static_cast<int>((a->getKey() - b->getKey()));
  if (a->getKeypart() != b->getKeypart())
    return static_cast<int>((a->getKeypart() - b->getKeypart()));
  // Place const values before other ones
  if ((res= test((a->getUsedTables() & ~OUTER_REF_TABLE_BIT)) -
       test((b->getUsedTables() & ~OUTER_REF_TABLE_BIT))))
    return res;
  /* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
  return static_cast<int>(((a->getOptimizeFlags() & KEY_OPTIMIZE_REF_OR_NULL) -
		          (b->getOptimizeFlags() & KEY_OPTIMIZE_REF_OR_NULL)));
}


/**
  Update keyuse array with all possible keys we can use to fetch rows.

  @param       session
  @param[out]  keyuse         Put here ordered array of KeyUse structures
  @param       join_tab       Array in tablenr_order
  @param       tables         Number of tables in join
  @param       cond           WHERE condition (note that the function analyzes
                              join_tab[i]->on_expr too)
  @param       normal_tables  Tables not inner w.r.t some outer join (ones
                              for which we can make ref access based the WHERE
                              clause)
  @param       select_lex     current SELECT
  @param[out]  sargables      std::vector of found sargable candidates

   @retval
     0  OK
   @retval
     1  Out of memory.
*/
void update_ref_and_keys(Session *session,
                         DYNAMIC_ARRAY *keyuse,
                         JoinTable *join_tab,
                         uint32_t tables,
                         COND *cond,
                         COND_EQUAL *,
                         table_map normal_tables,
                         Select_Lex *select_lex,
                         vector<optimizer::SargableParam> &sargables)
{
  uint32_t m= max(select_lex->max_equal_elems,(uint32_t)1);

  /*
    All predicates that are used to fill arrays of KeyField
    and SargableParam classes have at most 2 arguments
    except BETWEEN predicates that have 3 arguments and
    IN predicates.
    This any predicate if it's not BETWEEN/IN can be used
    directly to fill at most 2 array elements, either of KeyField
    or SargableParam type. For a BETWEEN predicate 3 elements
    can be filled as this predicate is considered as
    saragable with respect to each of its argument.
    An IN predicate can require at most 1 element as currently
    it is considered as sargable only for its first argument.
    Multiple equality can add  elements that are filled after
    substitution of field arguments by equal fields. There
    can be not more than select_lex->max_equal_elems such
    substitutions.
  */
  optimizer::KeyField* key_fields= new (session->mem) optimizer::KeyField[((session->lex().current_select->cond_count+1)*2 + session->lex().current_select->between_count)*m+1];
  uint and_level= 0;
  optimizer::KeyField* end, *field;
  field= end= key_fields;

  my_init_dynamic_array(keyuse, sizeof(optimizer::KeyUse), 20, 64);
  if (cond)
  {
    add_key_fields(join_tab->join, &end, &and_level, cond, normal_tables,
                   sargables);
    for (; field != end; field++)
    {
      add_key_part(keyuse, field);
      /* Mark that we can optimize LEFT JOIN */
      if (field->getValue()->type() == Item::NULL_ITEM &&
	  ! field->getField()->real_maybe_null())
      {
	field->getField()->getTable()->reginfo.not_exists_optimize= 1;
      }
    }
  }
  for (uint32_t i= 0; i < tables; i++)
  {
    /*
      Block the creation of keys for inner tables of outer joins.
      Here only the outer joins that can not be converted to
      inner joins are left and all nests that can be eliminated
      are flattened.
      In the future when we introduce conditional accesses
      for inner tables in outer joins these keys will be taken
      into account as well.
    */
    if (*join_tab[i].on_expr_ref)
      add_key_fields(join_tab->join, &end, &and_level,
                     *join_tab[i].on_expr_ref,
                     join_tab[i].table->map, sargables);
  }

  /* Process ON conditions for the nested joins */
  {
    List<TableList>::iterator li(join_tab->join->join_list->begin());
    TableList *table;
    while ((table= li++))
    {
      if (table->getNestedJoin())
        add_key_fields_for_nj(join_tab->join, table, &end, &and_level,
                              sargables);
    }
  }

  /* fill keyuse with found key parts */
  for ( ; field != end ; field++)
    add_key_part(keyuse,field);

  /*
    Sort the array of possible keys and remove the following key parts:
    - ref if there is a keypart which is a ref and a const.
      (e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
      then we skip the key part corresponding to b=t2.d)
    - keyparts without previous keyparts
      (e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
      used in the query, we drop the partial key parts from consideration).
  */
  if (keyuse->size())
  {
    optimizer::KeyUse key_end,*prev,*save_pos,*use;

    internal::my_qsort(keyuse->buffer,keyuse->size(),sizeof(optimizer::KeyUse),
                       (qsort_cmp) sort_keyuse);

    memset(&key_end, 0, sizeof(key_end)); /* Add for easy testing */
    keyuse->push_back(&key_end);

    use= save_pos= (optimizer::KeyUse*)keyuse->buffer;
    prev= &key_end;
    uint found_eq_constant= 0;
    {
      uint32_t i;

      for (i= 0; i < keyuse->size()-1; i++, use++)
      {
        if (! use->getUsedTables() && use->getOptimizeFlags() != KEY_OPTIMIZE_REF_OR_NULL)
          use->getTable()->const_key_parts[use->getKey()]|= use->getKeypartMap();
        if (use->getKey() == prev->getKey() && use->getTable() == prev->getTable())
        {
          if (prev->getKeypart() + 1 < use->getKeypart() ||
              ((prev->getKeypart() == use->getKeypart()) && found_eq_constant))
            continue;				/* remove */
        }
        else if (use->getKeypart() != 0)		// First found must be 0
          continue;

#ifdef HAVE_VALGRIND
        /* Valgrind complains about overlapped memcpy when save_pos==use. */
        if (save_pos != use)
#endif
          *save_pos= *use;
        prev=use;
        found_eq_constant= ! use->getUsedTables();
        /* Save ptr to first use */
        if (! use->getTable()->reginfo.join_tab->keyuse)
          use->getTable()->reginfo.join_tab->keyuse= save_pos;
        use->getTable()->reginfo.join_tab->checked_keys.set(use->getKey());
        save_pos++;
      }
      i= (uint32_t) (save_pos - (optimizer::KeyUse*) keyuse->buffer);
      reinterpret_cast<optimizer::KeyUse*>(keyuse->buffer)[i] = key_end;
      keyuse->set_size(i);
    }
  }
}

/**
  Update some values in keyuse for faster choose_plan() loop.
*/
void optimize_keyuse(Join *join, DYNAMIC_ARRAY *keyuse_array)
{
  optimizer::KeyUse* keyuse= (optimizer::KeyUse*)keyuse_array->buffer;
  for (optimizer::KeyUse* end= keyuse+ keyuse_array->size() ; keyuse < end ; keyuse++)
  {
    table_map map;
    /*
      If we find a ref, assume this table matches a proportional
      part of this table.
      For example 100 records matching a table with 5000 records
      gives 5000/100 = 50 records per key
      Constant tables are ignored.
      To avoid bad matches, we don't make ref_table_rows less than 100.
    */
    keyuse->setTableRows(~(ha_rows) 0); // If no ref
    if (keyuse->getUsedTables() & (map= (keyuse->getUsedTables() & ~join->const_table_map & ~OUTER_REF_TABLE_BIT)))
    {
      uint32_t tablenr;
      for (tablenr=0 ; ! (map & 1) ; map>>=1, tablenr++) ;
      if (map == 1)			// Only one table
      {
        Table *tmp_table=join->all_tables[tablenr];
        keyuse->setTableRows(max(tmp_table->cursor->stats.records, (ha_rows)100));
      }
    }
    /*
      Outer reference (external field) is constant for single executing
      of subquery
    */
    if (keyuse->getUsedTables() == OUTER_REF_TABLE_BIT)
      keyuse->setTableRows(1);
  }
}


/**
  Discover the indexes that can be used for GROUP BY or DISTINCT queries.

  If the query has a GROUP BY clause, find all indexes that contain all
  GROUP BY fields, and add those indexes to join->const_keys.

  If the query has a DISTINCT clause, find all indexes that contain all
  SELECT fields, and add those indexes to join->const_keys.
  This allows later on such queries to be processed by a
  QUICK_GROUP_MIN_MAX_SELECT.

  @param join
  @param join_tab

  @return
    None
*/
void add_group_and_distinct_keys(Join *join, JoinTable *join_tab)
{
  List<Item_field> indexed_fields;
  List<Item_field>::iterator indexed_fields_it(indexed_fields.begin());
  Order      *cur_group;
  Item_field *cur_item;
  key_map possible_keys(0);

  if (join->group_list)
  { /* Collect all query fields referenced in the GROUP clause. */
    for (cur_group= join->group_list; cur_group; cur_group= cur_group->next)
      (*cur_group->item)->walk(&Item::collect_item_field_processor, 0,
                               (unsigned char*) &indexed_fields);
  }
  else if (join->select_distinct)
  { /* Collect all query fields referenced in the SELECT clause. */
    List<Item> &select_items= join->fields_list;
    List<Item>::iterator select_items_it(select_items.begin());
    Item *item;
    while ((item= select_items_it++))
      item->walk(&Item::collect_item_field_processor, 0,
                 (unsigned char*) &indexed_fields);
  }
  else
    return;

  if (indexed_fields.size() == 0)
    return;

  /* Intersect the keys of all group fields. */
  cur_item= indexed_fields_it++;
  possible_keys|= cur_item->field->part_of_key;
  while ((cur_item= indexed_fields_it++))
  {
    possible_keys&= cur_item->field->part_of_key;
  }

  if (possible_keys.any())
    join_tab->const_keys|= possible_keys;
}

/**
  Compare two JoinTable objects based on the number of accessed records.

  @param ptr1 pointer to first JoinTable object
  @param ptr2 pointer to second JoinTable object

  NOTES
    The order relation implemented by join_tab_cmp() is not transitive,
    i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
    but (c < a). This implies that result of a sort using the relation
    implemented by join_tab_cmp() depends on the order in which
    elements are compared, i.e. the result is implementation-specific.
    Example:
      a: dependent = 0x0 table->map = 0x1 found_records = 3 ptr = 0x907e6b0
      b: dependent = 0x0 table->map = 0x2 found_records = 3 ptr = 0x907e838
      c: dependent = 0x6 table->map = 0x10 found_records = 2 ptr = 0x907ecd0

  @retval
    1  if first is bigger
  @retval
    -1  if second is bigger
  @retval
    0  if equal
*/
int join_tab_cmp(const void* ptr1, const void* ptr2)
{
  JoinTable *jt1= *(JoinTable**) ptr1;
  JoinTable *jt2= *(JoinTable**) ptr2;

  if (jt1->dependent & jt2->table->map)
    return 1;
  if (jt2->dependent & jt1->table->map)
    return -1;
  if (jt1->found_records > jt2->found_records)
    return 1;
  if (jt1->found_records < jt2->found_records)
    return -1;
  return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}

/**
  Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN.
*/
int join_tab_cmp_straight(const void* ptr1, const void* ptr2)
{
  JoinTable *jt1= *(JoinTable**) ptr1;
  JoinTable *jt2= *(JoinTable**) ptr2;

  if (jt1->dependent & jt2->table->map)
    return 1;
  if (jt2->dependent & jt1->table->map)
    return -1;
  return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
}

/**
  Find how much space the prevous read not const tables takes in cache.
*/
void calc_used_field_length(Session *, JoinTable *join_tab)
{
  uint32_t null_fields,blobs,fields,rec_length;
  Field **f_ptr,*field;

  null_fields= blobs= fields= rec_length=0;
  for (f_ptr=join_tab->table->getFields() ; (field= *f_ptr) ; f_ptr++)
  {
    if (field->isReadSet())
    {
      uint32_t flags=field->flags;
      fields++;
      rec_length+=field->pack_length();
      if (flags & BLOB_FLAG)
        blobs++;
      if (!(flags & NOT_NULL_FLAG))
        null_fields++;
    }
  }
  if (null_fields)
    rec_length+=(join_tab->table->getNullFields() + 7)/8;
  if (join_tab->table->maybe_null)
    rec_length+=sizeof(bool);
  if (blobs)
  {
    uint32_t blob_length=(uint32_t) (join_tab->table->cursor->stats.mean_rec_length-
                                     (join_tab->table->getRecordLength()- rec_length));
    rec_length+= max((uint32_t)4,blob_length);
  }
  join_tab->used_fields= fields;
  join_tab->used_fieldlength= rec_length;
  join_tab->used_blobs= blobs;
}

StoredKey *get_store_key(Session *session,
                         optimizer::KeyUse *keyuse,
                         table_map used_tables,
	                 KeyPartInfo *key_part,
                         unsigned char *key_buff,
                         uint32_t maybe_null)
{
  Item_ref *key_use_val= static_cast<Item_ref *>(keyuse->getVal());
  if (! ((~used_tables) & keyuse->getUsedTables())) // if const item
  {
    return new store_key_const_item(session,
				    key_part->field,
				    key_buff + maybe_null,
				    maybe_null ? key_buff : 0,
				    key_part->length,
				    key_use_val);
  }
  else if (key_use_val->type() == Item::FIELD_ITEM ||
           (key_use_val->type() == Item::REF_ITEM &&
            key_use_val->ref_type() == Item_ref::OUTER_REF &&
            (*(Item_ref**)((Item_ref*)key_use_val)->ref)->ref_type() == Item_ref::DIRECT_REF &&
            key_use_val->real_item()->type() == Item::FIELD_ITEM))
  {
    return new store_key_field(session,
			       key_part->field,
			       key_buff + maybe_null,
			       maybe_null ? key_buff : 0,
			       key_part->length,
			       ((Item_field*) key_use_val->real_item())->field,
			       key_use_val->full_name());
  }
  return new store_key_item(session,
			    key_part->field,
			    key_buff + maybe_null,
			    maybe_null ? key_buff : 0,
			    key_part->length,
			    key_use_val);
}

/**
  This function is only called for const items on fields which are keys.

  @return
    returns 1 if there was some conversion made when the field was stored.
*/
bool store_val_in_field(Field *field, Item *item, enum_check_fields check_flag)
{
  bool error;
  Table *table= field->getTable();
  Session *session= table->in_use;
  ha_rows cuted_fields=session->cuted_fields;

  /*
    we should restore old value of count_cuted_fields because
    store_val_in_field can be called from insert_query
    with select_insert, which make count_cuted_fields= 1
   */
  enum_check_fields old_count_cuted_fields= session->count_cuted_fields;
  session->count_cuted_fields= check_flag;
  error= item->save_in_field(field, 1);
  session->count_cuted_fields= old_count_cuted_fields;
  return error || cuted_fields != session->cuted_fields;
}

inline void add_cond_and_fix(Item **e1, Item *e2)
{
  if (*e1)
  {
    Item* res= new Item_cond_and(*e1, e2);
    *e1= res;
    res->quick_fix_field();
  }
  else
    *e1= e2;
}

bool create_ref_for_key(Join *join,
                        JoinTable *j,
                        optimizer::KeyUse *org_keyuse,
                        table_map used_tables)
{
  optimizer::KeyUse *keyuse= org_keyuse;
  Session  *session= join->session;
  uint32_t keyparts;
  uint32_t length;
  uint32_t key;
  Table *table= NULL;
  KeyInfo *keyinfo= NULL;

  /*  Use best key from find_best */
  table= j->table;
  key= keyuse->getKey();
  keyinfo= table->key_info + key;

  {
    keyparts= length= 0;
    uint32_t found_part_ref_or_null= 0;
    /*
      Calculate length for the used key
      Stop if there is a missing key part or when we find second key_part
      with KEY_OPTIMIZE_REF_OR_NULL
    */
    do
    {
      if (! (~used_tables & keyuse->getUsedTables()))
      {
        if (keyparts == keyuse->getKeypart() &&
            ! (found_part_ref_or_null & keyuse->getOptimizeFlags()))
        {
          keyparts++;
          length+= keyinfo->key_part[keyuse->getKeypart()].store_length;
          found_part_ref_or_null|= keyuse->getOptimizeFlags();
        }
      }
      keyuse++;
    } while (keyuse->getTable() == table && keyuse->getKey() == key);
  }

  /* set up fieldref */
  keyinfo=table->key_info+key;
  j->ref.key_parts=keyparts;
  j->ref.key_length=length;
  j->ref.key=(int) key;
  j->ref.key_buff= (unsigned char*) session->mem.calloc(ALIGN_SIZE(length)*2);
  j->ref.key_copy= new (session->mem) StoredKey*[keyparts + 1];
  j->ref.items= new (session->mem) Item*[keyparts];
  j->ref.cond_guards= new (session->mem) bool*[keyparts];
  j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length);
  j->ref.key_err=1;
  j->ref.null_rejecting= 0;
  j->ref.disable_cache= false;
  keyuse=org_keyuse;

  StoredKey **ref_key= j->ref.key_copy;
  unsigned char *key_buff= j->ref.key_buff, *null_ref_key= 0;
  bool keyuse_uses_no_tables= true;
  {
    for (uint32_t i= 0; i < keyparts; keyuse++, i++)
    {
      while (keyuse->getKeypart() != i ||
             ((~used_tables) & keyuse->getUsedTables()))
        keyuse++;       /* Skip other parts */

      uint32_t maybe_null= test(keyinfo->key_part[i].null_bit);
      j->ref.items[i]= keyuse->getVal();    // Save for cond removal
      j->ref.cond_guards[i]= keyuse->getConditionalGuard();
      if (keyuse->isNullRejected())
        j->ref.null_rejecting |= 1 << i;
      keyuse_uses_no_tables= keyuse_uses_no_tables && ! keyuse->getUsedTables();
      if (! keyuse->getUsedTables() &&  !(join->select_options & SELECT_DESCRIBE))
      {         // Compare against constant
        store_key_item tmp(session, keyinfo->key_part[i].field,
                           key_buff + maybe_null,
                           maybe_null ?  key_buff : 0,
                           keyinfo->key_part[i].length, keyuse->getVal());
        if (session->is_fatal_error)
          return true;
        tmp.copy();
      }
      else
        *ref_key++= get_store_key(session,
          keyuse,join->const_table_map,
          &keyinfo->key_part[i],
          key_buff, maybe_null);
      /*
        Remember if we are going to use REF_OR_NULL
        But only if field _really_ can be null i.e. we force AM_REF
        instead of AM_REF_OR_NULL in case if field can't be null
      */
      if ((keyuse->getOptimizeFlags() & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null)
        null_ref_key= key_buff;
      key_buff+=keyinfo->key_part[i].store_length;
    }
  }
  *ref_key= 0;       // end_marker
  if (j->type == AM_CONST)
    j->table->const_table= 1;
  else if (((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) != HA_NOSAME) ||
           keyparts != keyinfo->key_parts || null_ref_key)
  {
    /* Must read with repeat */
    j->type= null_ref_key ? AM_REF_OR_NULL : AM_REF;
    j->ref.null_ref_key= null_ref_key;
  }
  else if (keyuse_uses_no_tables)
  {
    /*
      This happen if we are using a constant expression in the ON part
      of an LEFT JOIN.
      SELECT * FROM a LEFT JOIN b ON b.key=30
      Here we should not mark the table as a 'const' as a field may
      have a 'normal' value or a NULL value.
    */
    j->type= AM_CONST;
  }
  else
    j->type= AM_EQ_REF;
  return 0;
}

/**
  Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions
  we've inferred from ref/eq_ref access performed.

    This function is a part of "Early NULL-values filtering for ref access"
    optimization.

    Example of this optimization:
    For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
    and plan " any-access(t1), ref(t2.key=t1.field) " @n
    add "t1.field IS NOT NULL" to t1's table condition. @n

    Description of the optimization:

      We look through equalities choosen to perform ref/eq_ref access,
      pick equalities that have form "tbl.part_of_key = othertbl.field"
      (where othertbl is a non-const table and othertbl.field may be NULL)
      and add them to conditions on correspoding tables (othertbl in this
      example).

      Exception from that is the case when referred_tab->join != join.
      I.e. don't add NOT NULL constraints from any embedded subquery.
      Consider this query:
      @code
      SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
      WHERE A.f3=(SELECT MIN(f3) FROM  t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
      @endocde
      Here condition A.f3 IS NOT NULL is going to be added to the WHERE
      condition of the embedding query.
      Another example:
      SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
      AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
      WHERE t12.b = t10.a ));
      Here condition t10.a IS NOT NULL is going to be added.
      In both cases addition of NOT NULL condition will erroneously reject
      some rows of the result set.
      referred_tab->join != join constraint would disallow such additions.

      This optimization doesn't affect the choices that ref, range, or join
      optimizer make. This was intentional because this was added after 4.1
      was GA.

    Implementation overview
      1. update_ref_and_keys() accumulates info about null-rejecting
         predicates in in KeyField::null_rejecting
      1.1 add_key_part saves these to KeyUse.
      2. create_ref_for_key copies them to table_reference_st.
      3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of
         appropiate JoinTable members.
*/
void add_not_null_conds(Join *join)
{
  for (uint32_t i= join->const_tables; i < join->tables; i++)
  {
    JoinTable *tab=join->join_tab+i;
    if ((tab->type == AM_REF || tab->type == AM_EQ_REF ||
         tab->type == AM_REF_OR_NULL) &&
        !tab->table->maybe_null)
    {
      for (uint32_t keypart= 0; keypart < tab->ref.key_parts; keypart++)
      {
        if (tab->ref.null_rejecting & (1 << keypart))
        {
          Item *item= tab->ref.items[keypart];
          Item *notnull;
          assert(item->type() == Item::FIELD_ITEM);
          Item_field *not_null_item= (Item_field*)item;
          JoinTable *referred_tab= not_null_item->field->getTable()->reginfo.join_tab;
          /*
            For UPDATE queries such as:
            UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
            not_null_item is the t1.f1, but it's referred_tab is 0.
          */
          if (!referred_tab || referred_tab->join != join)
            continue;
          notnull= new Item_func_isnotnull(not_null_item);
          /*
            We need to do full fix_fields() call here in order to have correct
            notnull->const_item(). This is needed e.g. by test_quick_select
            when it is called from make_join_select after this function is
            called.
          */
          if (notnull->fix_fields(join->session, &notnull))
            return;
          add_cond_and_fix(&referred_tab->select_cond, notnull);
        }
      }
    }
  }
  return;
}

/**
  Build a predicate guarded by match variables for embedding outer joins.
  The function recursively adds guards for predicate cond
  assending from tab to the first inner table  next embedding
  nested outer join and so on until it reaches root_tab
  (root_tab can be 0).

  @param tab       the first inner table for most nested outer join
  @param cond      the predicate to be guarded (must be set)
  @param root_tab  the first inner table to stop

  @return
    -  pointer to the guarded predicate, if success
    -  0, otherwise
*/
COND *add_found_match_trig_cond(JoinTable *tab, COND *cond, JoinTable *root_tab)
{
  COND *tmp;
  assert(cond != 0);
  if (tab == root_tab)
    return cond;
  if ((tmp= add_found_match_trig_cond(tab->first_upper, cond, root_tab)))
    tmp= new Item_func_trig_cond(tmp, &tab->found);
  if (tmp)
  {
    tmp->quick_fix_field();
    tmp->update_used_tables();
  }
  return tmp;
}

/**
  cleanup JoinTable.
*/
void JoinTable::cleanup()
{
  safe_delete(select);
  safe_delete(quick);

  if (cache.buff)
  {
    size_t size= cache.end - cache.buff;
    global_join_buffer.sub(size);
    free(cache.buff);
  }
  cache.buff= 0;
  limit= 0;
  if (table)
  {
    if (table->key_read)
    {
      table->key_read= 0;
      table->cursor->extra(HA_EXTRA_NO_KEYREAD);
    }
    table->cursor->ha_index_or_rnd_end();
    /*
      We need to reset this for next select
      (Tested in part_of_refkey)
    */
    table->reginfo.join_tab= 0;
  }
  read_record.end_read_record();
}

bool only_eq_ref_tables(Join *join,Order *order,table_map tables)
{
  for (JoinTable **tab=join->map2table ; tables ; tab++, tables>>=1)
  {
    if (tables & 1 && !eq_ref_table(join, order, *tab))
      return 0;
  }
  return 1;
}

/**
  Remove the following expressions from ORDER BY and GROUP BY:
  Constant expressions @n
  Expression that only uses tables that are of type EQ_REF and the reference
  is in the order_st list or if all refereed tables are of the above type.

  In the following, the X field can be removed:
  @code
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X
  SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X
  @endcode

  These can't be optimized:
  @code
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a
  SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c
  SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a
  @endcode
*/
bool eq_ref_table(Join *join, Order *start_order, JoinTable *tab)
{
  if (tab->cached_eq_ref_table)			// If cached
    return tab->eq_ref_table;
  tab->cached_eq_ref_table=1;
  /* We can skip const tables only if not an outer table */
  if (tab->type == AM_CONST && !tab->first_inner)
    return (tab->eq_ref_table=1);
  if (tab->type != AM_EQ_REF || tab->table->maybe_null)
    return (tab->eq_ref_table=0);		// We must use this
  Item **ref_item=tab->ref.items;
  Item **end=ref_item+tab->ref.key_parts;
  uint32_t found=0;
  table_map map=tab->table->map;

  for (; ref_item != end ; ref_item++)
  {
    if (! (*ref_item)->const_item())
    {						// Not a const ref
      Order *order;
      for (order=start_order ; order ; order=order->next)
      {
        if ((*ref_item)->eq(order->item[0],0))
          break;
      }
      if (order)
      {
        found++;
        assert(!(order->used & map));
        order->used|=map;
        continue;				// Used in order_st BY
      }
      if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables()))
        return (tab->eq_ref_table= 0);
    }
  }
  /* Check that there was no reference to table before sort order */
  for (; found && start_order ; start_order=start_order->next)
  {
    if (start_order->used & map)
    {
      found--;
      continue;
    }
    if (start_order->depend_map & map)
      return (tab->eq_ref_table= 0);
  }
  return tab->eq_ref_table= 1;
}

/**
  Find the multiple equality predicate containing a field.

  The function retrieves the multiple equalities accessed through
  the con_equal structure from current level and up looking for
  an equality containing field. It stops retrieval as soon as the equality
  is found and set up inherited_fl to true if it's found on upper levels.

  @param cond_equal          multiple equalities to search in
  @param field               field to look for
  @param[out] inherited_fl   set up to true if multiple equality is found
                             on upper levels (not on current level of
                             cond_equal)

  @return
    - Item_equal for the found multiple equality predicate if a success;
    - NULL otherwise.
*/
static Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field, bool *inherited_fl)
{
  Item_equal *item= 0;
  bool in_upper_level= false;
  while (cond_equal)
  {
    List<Item_equal>::iterator li(cond_equal->current_level.begin());
    while ((item= li++))
    {
      if (item->contains(field))
        goto finish;
    }
    in_upper_level= true;
    cond_equal= cond_equal->upper_levels;
  }
  in_upper_level= false;
finish:
  *inherited_fl= in_upper_level;
  return item;
}

/**
  Check whether an equality can be used to build multiple equalities.

    This function first checks whether the equality (left_item=right_item)
    is a simple equality i.e. the one that equates a field with another field
    or a constant (field=field_item or field=const_item).
    If this is the case the function looks for a multiple equality
    in the lists referenced directly or indirectly by cond_equal inferring
    the given simple equality. If it doesn't find any, it builds a multiple
    equality that covers the predicate, i.e. the predicate can be inferred
    from this multiple equality.
    The built multiple equality could be obtained in such a way:
    create a binary  multiple equality equivalent to the predicate, then
    merge it, if possible, with one of old multiple equalities.
    This guarantees that the set of multiple equalities covering equality
    predicates will be minimal.

  EXAMPLE:
    For the where condition
    @code
      WHERE a=b AND b=c AND
            (b=2 OR f=e)
    @endcode
    the check_equality will be called for the following equality
    predicates a=b, b=c, b=2 and f=e.
    - For a=b it will be called with *cond_equal=(0,[]) and will transform
      *cond_equal into (0,[Item_equal(a,b)]).
    - For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
      and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
    - For b=2 it will be called with *cond_equal=(ptr(CE),[])
      and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
    - For f=e it will be called with *cond_equal=(ptr(CE), [])
      and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).

  @note
    Now only fields that have the same type definitions (verified by
    the Field::eq_def method) are placed to the same multiple equalities.
    Because of this some equality predicates are not eliminated and
    can be used in the constant propagation procedure.
    We could weeken the equlity test as soon as at least one of the
    equal fields is to be equal to a constant. It would require a
    more complicated implementation: we would have to store, in
    general case, its own constant for each fields from the multiple
    equality. But at the same time it would allow us to get rid
    of constant propagation completely: it would be done by the call
    to build_equal_items_for_cond.


    The implementation does not follow exactly the above rules to
    build a new multiple equality for the equality predicate.
    If it processes the equality of the form field1=field2, it
    looks for multiple equalities me1 containig field1 and me2 containing
    field2. If only one of them is found the fuction expands it with
    the lacking field. If multiple equalities for both fields are
    found they are merged. If both searches fail a new multiple equality
    containing just field1 and field2 is added to the existing
    multiple equalities.
    If the function processes the predicate of the form field1=const,
    it looks for a multiple equality containing field1. If found, the
    function checks the constant of the multiple equality. If the value
    is unknown, it is setup to const. Otherwise the value is compared with
    const and the evaluation of the equality predicate is performed.
    When expanding/merging equality predicates from the upper levels
    the function first copies them for the current level. It looks
    acceptable, as this happens rarely. The implementation without
    copying would be much more complicated.

  @param left_item   left term of the quality to be checked
  @param right_item  right term of the equality to be checked
  @param item        equality item if the equality originates from a condition
                     predicate, 0 if the equality is the result of row
                     elimination
  @param cond_equal  multiple equalities that must hold together with the
                     equality

  @retval
    true    if the predicate is a simple equality predicate to be used
    for building multiple equalities
  @retval
    false   otherwise
*/
static bool check_simple_equality(Item *left_item,
                                  Item *right_item,
                                  Item *item,
                                  COND_EQUAL *cond_equal)
{
  if (left_item->type() == Item::FIELD_ITEM &&
      right_item->type() == Item::FIELD_ITEM &&
      !((Item_field*)left_item)->depended_from &&
      !((Item_field*)right_item)->depended_from)
  {
    /* The predicate the form field1=field2 is processed */

    Field *left_field= ((Item_field*) left_item)->field;
    Field *right_field= ((Item_field*) right_item)->field;

    if (!left_field->eq_def(right_field))
      return false;

    /* Search for multiple equalities containing field1 and/or field2 */
    bool left_copyfl, right_copyfl;
    Item_equal *left_item_equal=
               find_item_equal(cond_equal, left_field, &left_copyfl);
    Item_equal *right_item_equal=
               find_item_equal(cond_equal, right_field, &right_copyfl);

    /* As (NULL=NULL) != true we can't just remove the predicate f=f */
    if (left_field->eq(right_field)) /* f = f */
      return (!(left_field->maybe_null() && !left_item_equal));

    if (left_item_equal && left_item_equal == right_item_equal)
    {
      /*
        The equality predicate is inference of one of the existing
        multiple equalities, i.e the condition is already covered
        by upper level equalities
      */
       return true;
    }

    bool copy_item_name= test(item && item->name >= subq_sj_cond_name &&
                              item->name < subq_sj_cond_name + 64);
    /* Copy the found multiple equalities at the current level if needed */
    if (left_copyfl)
    {
      /* left_item_equal of an upper level contains left_item */
      left_item_equal= new Item_equal(left_item_equal);
      cond_equal->current_level.push_back(left_item_equal);
      if (copy_item_name)
        left_item_equal->name = item->name;
    }
    if (right_copyfl)
    {
      /* right_item_equal of an upper level contains right_item */
      right_item_equal= new Item_equal(right_item_equal);
      cond_equal->current_level.push_back(right_item_equal);
      if (copy_item_name)
        right_item_equal->name = item->name;
    }

    if (left_item_equal)
    {
      /* left item was found in the current or one of the upper levels */
      if (! right_item_equal)
        left_item_equal->add((Item_field *) right_item);
      else
      {
        /* Merge two multiple equalities forming a new one */
        left_item_equal->merge(right_item_equal);
        /* Remove the merged multiple equality from the list */
        List<Item_equal>::iterator li(cond_equal->current_level.begin());
        while ((li++) != right_item_equal) {};
        li.remove();
      }
    }
    else
    {
      /* left item was not found neither the current nor in upper levels  */
      if (right_item_equal)
      {
        right_item_equal->add((Item_field *) left_item);
        if (copy_item_name)
          right_item_equal->name = item->name;
      }
      else
      {
        /* None of the fields was found in multiple equalities */
        Item_equal *item_equal= new Item_equal((Item_field *) left_item,
                                               (Item_field *) right_item);
        cond_equal->current_level.push_back(item_equal);
        if (copy_item_name)
          item_equal->name = item->name;
      }
    }
    return true;
  }

  {
    /* The predicate of the form field=const/const=field is processed */
    Item *const_item= 0;
    Item_field *field_item= 0;
    if (left_item->type() == Item::FIELD_ITEM &&
        !((Item_field*)left_item)->depended_from &&
        right_item->const_item())
    {
      field_item= (Item_field*) left_item;
      const_item= right_item;
    }
    else if (right_item->type() == Item::FIELD_ITEM &&
             !((Item_field*)right_item)->depended_from &&
             left_item->const_item())
    {
      field_item= (Item_field*) right_item;
      const_item= left_item;
    }

    if (const_item &&
        field_item->result_type() == const_item->result_type())
    {
      bool copyfl;

      if (field_item->result_type() == STRING_RESULT)
      {
        const charset_info_st * const cs= ((Field_str*) field_item->field)->charset();
        if (!item)
        {
          Item_func_eq *eq_item;
          eq_item= new Item_func_eq(left_item, right_item);
          eq_item->set_cmp_func();
          eq_item->quick_fix_field();
          item= eq_item;
        }
        if ((cs != ((Item_func *) item)->compare_collation()) ||
            !cs->coll->propagate(cs, 0, 0))
          return false;
      }

      Item_equal *item_equal = find_item_equal(cond_equal,
                                               field_item->field, &copyfl);
      if (copyfl)
      {
        item_equal= new Item_equal(item_equal);
        cond_equal->current_level.push_back(item_equal);
      }
      if (item_equal)
      {
        /*
          The flag cond_false will be set to 1 after this, if item_equal
          already contains a constant and its value is  not equal to
          the value of const_item.
        */
        item_equal->add(const_item);
      }
      else
      {
        item_equal= new Item_equal(const_item, field_item);
        cond_equal->current_level.push_back(item_equal);
      }
      return true;
    }
  }
  return false;
}

/**
  Convert row equalities into a conjunction of regular equalities.

    The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
    into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
    Ei=E'i the function checks whether it is a simple equality or a row
    equality. If it is a simple equality it is used to expand multiple
    equalities of cond_equal. If it is a row equality it converted to a
    sequence of equalities between row elements. If Ei=E'i is neither a
    simple equality nor a row equality the item for this predicate is added
    to eq_list.

  @param session        thread handle
  @param left_row   left term of the row equality to be processed
  @param right_row  right term of the row equality to be processed
  @param cond_equal multiple equalities that must hold together with the
                    predicate
  @param eq_list    results of conversions of row equalities that are not
                    simple enough to form multiple equalities

  @retval
    true    if conversion has succeeded (no fatal error)
  @retval
    false   otherwise
*/
static bool check_row_equality(Session *session,
                               Item *left_row,
                               Item_row *right_row,
                               COND_EQUAL *cond_equal,
                               List<Item>* eq_list)
{
  uint32_t n= left_row->cols();
  for (uint32_t i= 0 ; i < n; i++)
  {
    bool is_converted;
    Item *left_item= left_row->element_index(i);
    Item *right_item= right_row->element_index(i);
    if (left_item->type() == Item::ROW_ITEM &&
        right_item->type() == Item::ROW_ITEM)
    {
      is_converted= check_row_equality(session,
                                       (Item_row *) left_item,
                                       (Item_row *) right_item,
			               cond_equal, eq_list);
      if (!is_converted)
        session->lex().current_select->cond_count++;
    }
    else
    {
      is_converted= check_simple_equality(left_item, right_item, 0, cond_equal);
      session->lex().current_select->cond_count++;
    }

    if (!is_converted)
    {
      Item_func_eq *eq_item;
      eq_item= new Item_func_eq(left_item, right_item);
      eq_item->set_cmp_func();
      eq_item->quick_fix_field();
      eq_list->push_back(eq_item);
    }
  }
  return true;
}

/**
  Eliminate row equalities and form multiple equalities predicates.

    This function checks whether the item is a simple equality
    i.e. the one that equates a field with another field or a constant
    (field=field_item or field=constant_item), or, a row equality.
    For a simple equality the function looks for a multiple equality
    in the lists referenced directly or indirectly by cond_equal inferring
    the given simple equality. If it doesn't find any, it builds/expands
    multiple equality that covers the predicate.
    Row equalities are eliminated substituted for conjunctive regular
    equalities which are treated in the same way as original equality
    predicates.

  @param session        thread handle
  @param item       predicate to process
  @param cond_equal multiple equalities that must hold together with the
                    predicate
  @param eq_list    results of conversions of row equalities that are not
                    simple enough to form multiple equalities

  @retval
    true   if re-writing rules have been applied
  @retval
    false  otherwise, i.e.
           if the predicate is not an equality,
           or, if the equality is neither a simple one nor a row equality,
           or, if the procedure fails by a fatal error.
*/
static bool check_equality(Session *session, Item *item, COND_EQUAL *cond_equal, List<Item> *eq_list)
{
  if (item->type() == Item::FUNC_ITEM &&
         ((Item_func*) item)->functype() == Item_func::EQ_FUNC)
  {
    Item *left_item= ((Item_func*) item)->arguments()[0];
    Item *right_item= ((Item_func*) item)->arguments()[1];

    if (left_item->type() == Item::ROW_ITEM &&
        right_item->type() == Item::ROW_ITEM)
    {
      session->lex().current_select->cond_count--;
      return check_row_equality(session,
                                (Item_row *) left_item,
                                (Item_row *) right_item,
                                cond_equal, eq_list);
    }
    else
      return check_simple_equality(left_item, right_item, item, cond_equal);
  }
  return false;
}

/**
  Replace all equality predicates in a condition by multiple equality items.

    At each 'and' level the function detects items for equality predicates
    and replaced them by a set of multiple equality items of class Item_equal,
    taking into account inherited equalities from upper levels.
    If an equality predicate is used not in a conjunction it's just
    replaced by a multiple equality predicate.
    For each 'and' level the function set a pointer to the inherited
    multiple equalities in the cond_equal field of the associated
    object of the type Item_cond_and.
    The function also traverses the cond tree and and for each field reference
    sets a pointer to the multiple equality item containing the field, if there
    is any. If this multiple equality equates fields to a constant the
    function replaces the field reference by the constant in the cases
    when the field is not of a string type or when the field reference is
    just an argument of a comparison predicate.
    The function also determines the maximum number of members in
    equality lists of each Item_cond_and object assigning it to
    session->lex().current_select->max_equal_elems.

  @note
    Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of
    f1=f2, .., fn-1=fn. It substitutes any inference from these
    equality predicates that is equivalent to the conjunction.
    Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
    it is equivalent to ((a1=a2) AND (a2=a3)).
    The function always makes a substitution of all equality predicates occured
    in a conjuction for a minimal set of multiple equality predicates.
    This set can be considered as a canonical representation of the
    sub-conjunction of the equality predicates.
    E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by
    (=(t1.a,t2.b,t3.c) AND t2.b>5), not by
    (=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
    while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
    (=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
    but if additionally =(t4.d,t2.b) is inherited, it
    will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)

    The function performs the substitution in a recursive descent by
    the condtion tree, passing to the next AND level a chain of multiple
    equality predicates which have been built at the upper levels.
    The Item_equal items built at the level are attached to other
    non-equality conjucts as a sublist. The pointer to the inherited
    multiple equalities is saved in the and condition object (Item_cond_and).
    This chain allows us for any field reference occurence easyly to find a
    multiple equality that must be held for this occurence.
    For each AND level we do the following:
    - scan it for all equality predicate (=) items
    - join them into disjoint Item_equal() groups
    - process the included OR conditions recursively to do the same for
      lower AND levels.

    We need to do things in this order as lower AND levels need to know about
    all possible Item_equal objects in upper levels.

  @param session        thread handle
  @param cond       condition(expression) where to make replacement
  @param inherited  path to all inherited multiple equality items

  @return
    pointer to the transformed condition
*/
static COND *build_equal_items_for_cond(Session *session, COND *cond, COND_EQUAL *inherited)
{
  Item_equal *item_equal;
  COND_EQUAL cond_equal;
  cond_equal.upper_levels= inherited;

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> eq_list;
    bool and_level= ((Item_cond*) cond)->functype() ==
      Item_func::COND_AND_FUNC;
    List<Item> *args= ((Item_cond*) cond)->argument_list();

    List<Item>::iterator li(args->begin());
    Item *item;

    if (and_level)
    {
      /*
         Retrieve all conjucts of this level detecting the equality
         that are subject to substitution by multiple equality items and
         removing each such predicate from the conjunction after having
         found/created a multiple equality whose inference the predicate is.
     */
      while ((item= li++))
      {
        /*
          PS/SP note: we can safely remove a node from AND-OR
          structure here because it's restored before each
          re-execution of any prepared statement/stored procedure.
        */
        if (check_equality(session, item, &cond_equal, &eq_list))
          li.remove();
      }

      List<Item_equal>::iterator it(cond_equal.current_level.begin());
      while ((item_equal= it++))
      {
        item_equal->fix_length_and_dec();
        item_equal->update_used_tables();
        set_if_bigger(session->lex().current_select->max_equal_elems,
                      item_equal->members());
      }

      ((Item_cond_and*)cond)->cond_equal= cond_equal;
      inherited= &(((Item_cond_and*)cond)->cond_equal);
    }
    /*
       Make replacement of equality predicates for lower levels
       of the condition expression.
    */
    li= args->begin();
    while ((item= li++))
    {
      Item *new_item;
      if ((new_item= build_equal_items_for_cond(session, item, inherited)) != item)
      {
        /* This replacement happens only for standalone equalities */
        /*
          This is ok with PS/SP as the replacement is done for
          arguments of an AND/OR item, which are restored for each
          execution of PS/SP.
        */
        li.replace(new_item);
      }
    }
    if (and_level)
    {
      args->concat(&eq_list);
      args->concat((List<Item> *)&cond_equal.current_level);
    }
  }
  else if (cond->type() == Item::FUNC_ITEM)
  {
    List<Item> eq_list;
    /*
      If an equality predicate forms the whole and level,
      we call it standalone equality and it's processed here.
      E.g. in the following where condition
      WHERE a=5 AND (b=5 or a=c)
      (b=5) and (a=c) are standalone equalities.
      In general we can't leave alone standalone eqalities:
      for WHERE a=b AND c=d AND (b=c OR d=5)
      b=c is replaced by =(a,b,c,d).
     */
    if (check_equality(session, cond, &cond_equal, &eq_list))
    {
      int n= cond_equal.current_level.size() + eq_list.size();
      if (n == 0)
        return new Item_int((int64_t) 1,1);
      else if (n == 1)
      {
        if ((item_equal= cond_equal.current_level.pop()))
        {
          item_equal->fix_length_and_dec();
          item_equal->update_used_tables();
        }
        else
          item_equal= (Item_equal *) eq_list.pop();
        set_if_bigger(session->lex().current_select->max_equal_elems,
                      item_equal->members());
        return item_equal;
      }
      else
      {
        /*
          Here a new AND level must be created. It can happen only
          when a row equality is processed as a standalone predicate.
        */
        Item_cond_and *and_cond= new Item_cond_and(eq_list);
        and_cond->quick_fix_field();
        List<Item> *args= and_cond->argument_list();
        List<Item_equal>::iterator it(cond_equal.current_level.begin());
        while ((item_equal= it++))
        {
          item_equal->fix_length_and_dec();
          item_equal->update_used_tables();
          set_if_bigger(session->lex().current_select->max_equal_elems,
                        item_equal->members());
        }
        and_cond->cond_equal= cond_equal;
        args->concat((List<Item> *)&cond_equal.current_level);

        return and_cond;
      }
    }
    /*
      For each field reference in cond, not from equal item predicates,
      set a pointer to the multiple equality it belongs to (if there is any)
      as soon the field is not of a string type or the field reference is
      an argument of a comparison predicate.
    */
    unsigned char *is_subst_valid= (unsigned char *) 1;
    cond= cond->compile(&Item::subst_argument_checker,
                        &is_subst_valid,
                        &Item::equal_fields_propagator,
                        (unsigned char *) inherited);
    cond->update_used_tables();
  }
  return cond;
}

/**
  Build multiple equalities for a condition and all on expressions that
  inherit these multiple equalities.

    The function first applies the build_equal_items_for_cond function
    to build all multiple equalities for condition cond utilizing equalities
    referred through the parameter inherited. The extended set of
    equalities is returned in the structure referred by the cond_equal_ref
    parameter. After this the function calls itself recursively for
    all on expressions whose direct references can be found in join_list
    and who inherit directly the multiple equalities just having built.

  @note
    The on expression used in an outer join operation inherits all equalities
    from the on expression of the embedding join, if there is any, or
    otherwise - from the where condition.
    This fact is not obvious, but presumably can be proved.
    Consider the following query:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
        WHERE t1.a=t2.a;
    @endcode
    If the on expression in the query inherits =(t1.a,t2.a), then we
    can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
    the equality t3.a=t4.a. Although the on expression
    t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
    in the query the latter can be replaced by the former: the new query
    will return the same result set as the original one.

    Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
    to use t1.a=t3.a AND t3.a=t4.a under the on condition:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
        WHERE t1.a=t2.a
    @endcode
    This query equivalent to:
    @code
      SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
        WHERE t1.a=t2.a
    @endcode
    Similarly the original query can be rewritten to the query:
    @code
      SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
        WHERE t1.a=t2.a
    @endcode
    that is equivalent to:
    @code
      SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
        WHERE t1.a=t2.a
    @endcode
    Thus, applying equalities from the where condition we basically
    can get more freedom in performing join operations.
    Althogh we don't use this property now, it probably makes sense to use
    it in the future.
  @param session		      Thread Cursor
  @param cond                condition to build the multiple equalities for
  @param inherited           path to all inherited multiple equality items
  @param join_list           list of join tables to which the condition
                             refers to
  @param[out] cond_equal_ref pointer to the structure to place built
                             equalities in

  @return
    pointer to the transformed condition containing multiple equalities
*/
static COND *build_equal_items(Session *session, COND *cond,
                               COND_EQUAL *inherited,
                               List<TableList> *join_list,
                               COND_EQUAL **cond_equal_ref)
{
  COND_EQUAL *cond_equal= 0;

  if (cond)
  {
    cond= build_equal_items_for_cond(session, cond, inherited);
    cond->update_used_tables();
    if (cond->type() == Item::COND_ITEM &&
        ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
      cond_equal= &((Item_cond_and*) cond)->cond_equal;
    else if (cond->type() == Item::FUNC_ITEM &&
             ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
    {
      cond_equal= new COND_EQUAL;
      cond_equal->current_level.push_back((Item_equal *) cond);
    }
  }
  if (cond_equal)
  {
    cond_equal->upper_levels= inherited;
    inherited= cond_equal;
  }
  *cond_equal_ref= cond_equal;

  if (join_list)
  {
    TableList *table;
    List<TableList>::iterator li(join_list->begin());

    while ((table= li++))
    {
      if (table->on_expr)
      {
        List<TableList> *nested_join_list= table->getNestedJoin() ?
          &table->getNestedJoin()->join_list : NULL;
        /*
          We can modify table->on_expr because its old value will
          be restored before re-execution of PS/SP.
        */
        table->on_expr= build_equal_items(session, table->on_expr, inherited,
                                          nested_join_list,
                                          &table->cond_equal);
      }
    }
  }

  return cond;
}

/**
  Compare field items by table order in the execution plan.

    field1 considered as better than field2 if the table containing
    field1 is accessed earlier than the table containing field2.
    The function finds out what of two fields is better according
    this criteria.

  @param field1          first field item to compare
  @param field2          second field item to compare
  @param table_join_idx  index to tables determining table order

  @retval
    1  if field1 is better than field2
  @retval
    -1  if field2 is better than field1
  @retval
    0  otherwise
*/
static int compare_fields_by_table_order(Item_field *field1,
                                         Item_field *field2,
                                         void *table_join_idx)
{
  int cmp= 0;
  bool outer_ref= 0;
  if (field2->used_tables() & OUTER_REF_TABLE_BIT)
  {
    outer_ref= 1;
    cmp= -1;
  }
  if (field2->used_tables() & OUTER_REF_TABLE_BIT)
  {
    outer_ref= 1;
    cmp++;
  }
  if (outer_ref)
    return cmp;
  JoinTable **idx= (JoinTable **) table_join_idx;
  cmp= idx[field2->field->getTable()->tablenr]-idx[field1->field->getTable()->tablenr];
  return cmp < 0 ? -1 : (cmp ? 1 : 0);
}

/**
  Generate minimal set of simple equalities equivalent to a multiple equality.

    The function retrieves the fields of the multiple equality item
    item_equal and  for each field f:
    - if item_equal contains const it generates the equality f=const_item;
    - otherwise, if f is not the first field, generates the equality
      f=item_equal->get_first().
    All generated equality are added to the cond conjunction.

  @param cond            condition to add the generated equality to
  @param upper_levels    structure to access multiple equality of upper levels
  @param item_equal      multiple equality to generate simple equality from

  @note
    Before generating an equality function checks that it has not
    been generated for multiple equalities of the upper levels.
    E.g. for the following where condition
    WHERE a=5 AND ((a=b AND b=c) OR  c>4)
    the upper level AND condition will contain =(5,a),
    while the lower level AND condition will contain =(5,a,b,c).
    When splitting =(5,a,b,c) into a separate equality predicates
    we should omit 5=a, as we have it already in the upper level.
    The following where condition gives us a more complicated case:
    WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
    Given the tables are accessed in the order t1->t2->t3->t4 for
    the selected query execution plan the lower level multiple
    equality =(t1.a,t2.b,t3.c,t4.d) formally  should be converted to
    t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
    generated for the upper level. Also t3.c=t4.d will be generated there.
    So only t1.a=t3.c should be left in the lower level.
    If cond is equal to 0, then not more then one equality is generated
    and a pointer to it is returned as the result of the function.

  @return
    - The condition with generated simple equalities or
    a pointer to the simple generated equality, if success.
    - 0, otherwise.
*/
static Item *eliminate_item_equal(COND *cond, COND_EQUAL *upper_levels, Item_equal *item_equal)
{
  List<Item> eq_list;
  Item_func_eq *eq_item= 0;
  if (((Item *) item_equal)->const_item() && !item_equal->val_int())
    return new Item_int((int64_t) 0,1);
  Item *item_const= item_equal->get_const();
  Item_equal_iterator it(item_equal->begin());
  Item *head;
  if (item_const)
    head= item_const;
  else
  {
    head= item_equal->get_first();
    it++;
  }
  Item_field *item_field;
  while ((item_field= it++))
  {
    Item_equal *upper= item_field->find_item_equal(upper_levels);
    Item_field *item= item_field;
    if (upper)
    {
      if (item_const && upper->get_const())
        item= 0;
      else
      {
        Item_equal_iterator li(item_equal->begin());
        while ((item= li++) != item_field)
        {
          if (item->find_item_equal(upper_levels) == upper)
            break;
        }
      }
    }
    if (item == item_field)
    {
      if (eq_item)
        eq_list.push_back(eq_item);
      eq_item= new Item_func_eq(item_field, head);
      if (!eq_item)
        return 0;
      eq_item->set_cmp_func();
      eq_item->quick_fix_field();
   }
  }

  if (!cond && !&eq_list.front())
  {
    if (!eq_item)
      return new Item_int((int64_t) 1,1);
    return eq_item;
  }

  if (eq_item)
    eq_list.push_back(eq_item);
  if (!cond)
    cond= new Item_cond_and(eq_list);
  else
  {
    assert(cond->type() == Item::COND_ITEM);
    ((Item_cond *) cond)->add_at_head(&eq_list);
  }

  cond->quick_fix_field();
  cond->update_used_tables();

  return cond;
}

/**
  Substitute every field reference in a condition by the best equal field
  and eliminate all multiple equality predicates.

    The function retrieves the cond condition and for each encountered
    multiple equality predicate it sorts the field references in it
    according to the order of tables specified by the table_join_idx
    parameter. Then it eliminates the multiple equality predicate it
    replacing it by the conjunction of simple equality predicates
    equating every field from the multiple equality to the first
    field in it, or to the constant, if there is any.
    After this the function retrieves all other conjuncted
    predicates substitute every field reference by the field reference
    to the first equal field or equal constant if there are any.
  @param cond            condition to process
  @param cond_equal      multiple equalities to take into consideration
  @param table_join_idx  index to tables determining field preference

  @note
    At the first glance full sort of fields in multiple equality
    seems to be an overkill. Yet it's not the case due to possible
    new fields in multiple equality item of lower levels. We want
    the order in them to comply with the order of upper levels.

  @return
    The transformed condition
*/
COND* substitute_for_best_equal_field(COND *cond, COND_EQUAL *cond_equal, void *table_join_idx)
{
  Item_equal *item_equal;

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> *cond_list= ((Item_cond*) cond)->argument_list();

    bool and_level= ((Item_cond*) cond)->functype() ==
                      Item_func::COND_AND_FUNC;
    if (and_level)
    {
      cond_equal= &((Item_cond_and *) cond)->cond_equal;
      cond_list->disjoin((List<Item> *) &cond_equal->current_level);

      List<Item_equal>::iterator it(cond_equal->current_level.begin());
      while ((item_equal= it++))
      {
        item_equal->sort(&compare_fields_by_table_order, table_join_idx);
      }
    }

    List<Item>::iterator li(cond_list->begin());
    Item *item;
    while ((item= li++))
    {
      Item *new_item =substitute_for_best_equal_field(item, cond_equal,
                                                      table_join_idx);
      /*
        This works OK with PS/SP re-execution as changes are made to
        the arguments of AND/OR items only
      */
      if (new_item != item)
        li.replace(new_item);
    }

    if (and_level)
    {
      List<Item_equal>::iterator it(cond_equal->current_level.begin());
      while ((item_equal= it++))
      {
        cond= eliminate_item_equal(cond, cond_equal->upper_levels, item_equal);
        // This occurs when eliminate_item_equal() founds that cond is
        // always false and substitutes it with Item_int 0.
        // Due to this, value of item_equal will be 0, so just return it.
        if (cond->type() != Item::COND_ITEM)
          break;
      }
    }
    if (cond->type() == Item::COND_ITEM &&
        !((Item_cond*)cond)->argument_list()->size())
      cond= new Item_int((int32_t)cond->val_bool());

  }
  else if (cond->type() == Item::FUNC_ITEM &&
           ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
  {
    item_equal= (Item_equal *) cond;
    item_equal->sort(&compare_fields_by_table_order, table_join_idx);
    if (cond_equal && &cond_equal->current_level.front() == item_equal)
      cond_equal= 0;
    return eliminate_item_equal(0, cond_equal, item_equal);
  }
  else
    cond->transform(&Item::replace_equal_field, 0);
  return cond;
}

/**
  Check appearance of new constant items in multiple equalities
  of a condition after reading a constant table.

    The function retrieves the cond condition and for each encountered
    multiple equality checks whether new constants have appeared after
    reading the constant (single row) table tab. If so it adjusts
    the multiple equality appropriately.

  @param cond       condition whose multiple equalities are to be checked
  @param table      constant table that has been read
*/
void update_const_equal_items(COND *cond, JoinTable *tab)
{
  if (!(cond->used_tables() & tab->table->map))
    return;

  if (cond->type() == Item::COND_ITEM)
  {
    List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
    List<Item>::iterator li(cond_list->begin());
    Item *item;
    while ((item= li++))
      update_const_equal_items(item, tab);
  }
  else if (cond->type() == Item::FUNC_ITEM &&
           ((Item_cond*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
  {
    Item_equal *item_equal= (Item_equal *) cond;
    bool contained_const= item_equal->get_const() != NULL;
    item_equal->update_const();
    if (!contained_const && item_equal->get_const())
    {
      /* Update keys for range analysis */
      Item_equal_iterator it(item_equal->begin());
      Item_field *item_field;
      while ((item_field= it++))
      {
        Field *field= item_field->field;
        JoinTable *stat= field->getTable()->reginfo.join_tab;
        key_map possible_keys= field->key_start;
        possible_keys&= field->getTable()->keys_in_use_for_query;
        stat[0].const_keys|= possible_keys;

        /*
          For each field in the multiple equality (for which we know that it
          is a constant) we have to find its corresponding key part, and set
          that key part in const_key_parts.
        */
        if (possible_keys.any())
        {
          Table *field_tab= field->getTable();
          optimizer::KeyUse *use;
          for (use= stat->keyuse; use && use->getTable() == field_tab; use++)
            if (possible_keys.test(use->getKey()) &&
                field_tab->key_info[use->getKey()].key_part[use->getKeypart()].field ==
                field)
              field_tab->const_key_parts[use->getKey()]|= use->getKeypartMap();
        }
      }
    }
  }
}

/*
  change field = field to field = const for each found field = const in the
  and_level
*/
static void change_cond_ref_to_const(Session *session,
                                     list<COND_CMP>& save_list,
                                     Item *and_father,
                                     Item *cond,
                                     Item *field,
                                     Item *value)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC;
    List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
    Item *item;
    while ((item=li++))
      change_cond_ref_to_const(session, save_list, and_level ? cond : item, item, field, value);

    return;
  }
  if (cond->eq_cmp_result() == Item::COND_OK)
    return;					// Not a boolean function

  Item_bool_func2 *func=  (Item_bool_func2*) cond;
  Item **args= func->arguments();
  Item *left_item=  args[0];
  Item *right_item= args[1];
  Item_func::Functype functype=  func->functype();

  if (right_item->eq(field,0) && left_item != value &&
      right_item->cmp_context == field->cmp_context &&
      (left_item->result_type() != STRING_RESULT ||
       value->result_type() != STRING_RESULT ||
       left_item->collation.collation == value->collation.collation))
  {
    Item *tmp=value->clone_item();
    if (tmp)
    {
      tmp->collation.set(right_item->collation);
      args[1]= tmp;
      func->update_used_tables();
      if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) &&
	        and_father != cond &&
          ! left_item->const_item())
      {
        cond->marker=1;
        save_list.push_back( COND_CMP(and_father, func) );
      }
      func->set_cmp_func();
    }
  }
  else if (left_item->eq(field,0) && right_item != value &&
           left_item->cmp_context == field->cmp_context &&
           (right_item->result_type() != STRING_RESULT ||
            value->result_type() != STRING_RESULT ||
            right_item->collation.collation == value->collation.collation))
  {
    Item *tmp= value->clone_item();
    if (tmp)
    {
      tmp->collation.set(left_item->collation);
      *args= tmp;
      value= tmp;
      func->update_used_tables();
      if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) &&
          and_father != cond &&
          ! right_item->const_item())
      {
        args[0]= args[1];                       // For easy check
        args[1]= value;
        cond->marker=1;
        save_list.push_back( COND_CMP(and_father, func) );
      }
      func->set_cmp_func();
    }
  }
}

/**
  Remove additional condition inserted by IN/ALL/ANY transformation.

  @param conds   condition for processing

  @return
    new conditions
*/
Item *remove_additional_cond(Item* conds)
{
  if (conds->name == in_additional_cond)
    return 0;
  if (conds->type() == Item::COND_ITEM)
  {
    Item_cond *cnd= (Item_cond*) conds;
    List<Item>::iterator li(cnd->argument_list()->begin());
    Item *item;
    while ((item= li++))
    {
      if (item->name == in_additional_cond)
      {
	li.remove();
	if (cnd->argument_list()->size() == 1)
	  return &cnd->argument_list()->front();
	return conds;
      }
    }
  }
  return conds;
}

static void propagate_cond_constants(Session *session,
                                     list<COND_CMP>& save_list,
                                     COND *and_father,
                                     COND *cond)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC;
    List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
    Item *item;
    list<COND_CMP> save;
    while ((item=li++))
    {
      propagate_cond_constants(session, save, and_level ? cond : item, item);
    }
    if (and_level)
    {
      // Handle other found items
      for (list<COND_CMP>::iterator iter= save.begin(); iter != save.end(); ++iter)
      {
        Item **args= iter->second->arguments();
        if (not args[0]->const_item())
        {
          change_cond_ref_to_const(session, save, iter->first,
                                   iter->first, args[0], args[1] );
        }
      }
    }
  }
  else if (and_father != cond && !cond->marker)		// In a AND group
  {
    if (cond->type() == Item::FUNC_ITEM &&
        (((Item_func*) cond)->functype() == Item_func::EQ_FUNC ||
        ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC))
    {
      Item_func_eq *func=(Item_func_eq*) cond;
      Item **args= func->arguments();
      bool left_const= args[0]->const_item();
      bool right_const= args[1]->const_item();
      if (!(left_const && right_const) &&
          args[0]->result_type() == args[1]->result_type())
      {
        if (right_const)
        {
                resolve_const_item(session, &args[1], args[0]);
          func->update_used_tables();
                change_cond_ref_to_const(session, save_list, and_father, and_father,
                                        args[0], args[1]);
        }
        else if (left_const)
        {
                resolve_const_item(session, &args[0], args[1]);
          func->update_used_tables();
                change_cond_ref_to_const(session, save_list, and_father, and_father,
                                        args[1], args[0]);
        }
      }
    }
  }
}

/**
  Check interleaving with an inner tables of an outer join for
  extension table.

    Check if table next_tab can be added to current partial join order, and
    if yes, record that it has been added.

    The function assumes that both current partial join order and its
    extension with next_tab are valid wrt table dependencies.

  @verbatim
     IMPLEMENTATION
       LIMITATIONS ON JOIN order_st
         The nested [outer] joins executioner algorithm imposes these limitations
         on join order:
         1. "Outer tables first" -  any "outer" table must be before any
             corresponding "inner" table.
         2. "No interleaving" - tables inside a nested join must form a continuous
            sequence in join order (i.e. the sequence must not be interrupted by
            tables that are outside of this nested join).

         #1 is checked elsewhere, this function checks #2 provided that #1 has
         been already checked.

       WHY NEED NON-INTERLEAVING
         Consider an example:

           select * from t0 join t1 left join (t2 join t3) on cond1

         The join order "t1 t2 t0 t3" is invalid:

         table t0 is outside of the nested join, so WHERE condition for t0 is
         attached directly to t0 (without triggers, and it may be used to access
         t0). Applying WHERE(t0) to (t2,t0,t3) record is invalid as we may miss
         combinations of (t1, t2, t3) that satisfy condition cond1, and produce a
         null-complemented (t1, t2.NULLs, t3.NULLs) row, which should not have
         been produced.

         If table t0 is not between t2 and t3, the problem doesn't exist:
          If t0 is located after (t2,t3), WHERE(t0) is applied after nested join
           processing has finished.
          If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2) are
           wrapped into condition triggers, which takes care of correct nested
           join processing.

       HOW IT IS IMPLEMENTED
         The limitations on join order can be rephrased as follows: for valid
         join order one must be able to:
           1. write down the used tables in the join order on one line.
           2. for each nested join, put one '(' and one ')' on the said line
           3. write "LEFT JOIN" and "ON (...)" where appropriate
           4. get a query equivalent to the query we're trying to execute.

         Calls to check_interleaving_with_nj() are equivalent to writing the
         above described line from left to right.
         A single check_interleaving_with_nj(A,B) call is equivalent to writing
         table B and appropriate brackets on condition that table A and
         appropriate brackets is the last what was written. Graphically the
         transition is as follows:

                              +---- current position
                              |
             ... last_tab ))) | ( next_tab )  )..) | ...
                                X          Y   Z   |
                                                   +- need to move to this
                                                      position.

         Notes about the position:
           The caller guarantees that there is no more then one X-bracket by
           checking "!(remaining_tables & s->dependent)" before calling this
           function. X-bracket may have a pair in Y-bracket.

         When "writing" we store/update this auxilary info about the current
         position:
          1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested
             joins) we've opened but didn't close.
          2. {each NestedJoin class not simplified away}->counter - number
             of this nested join's children that have already been added to to
             the partial join order.
  @endverbatim

  @param join       Join being processed
  @param next_tab   Table we're going to extend the current partial join with

  @retval
    false  Join order extended, nested joins info about current join
    order (see NOTE section) updated.
  @retval
    true   Requested join order extension not allowed.
*/
bool check_interleaving_with_nj(JoinTable *next_tab)
{
  TableList *next_emb= next_tab->table->pos_in_table_list->getEmbedding();
  Join *join= next_tab->join;

  if ((join->cur_embedding_map & ~next_tab->embedding_map).any())
  {
    /*
      next_tab is outside of the "pair of brackets" we're currently in.
      Cannot add it.
    */
    return true;
  }

  /*
    Do update counters for "pairs of brackets" that we've left (marked as
    X,Y,Z in the above picture)
  */
  for (;next_emb; next_emb= next_emb->getEmbedding())
  {
    next_emb->getNestedJoin()->counter_++;
    if (next_emb->getNestedJoin()->counter_ == 1)
    {
      /*
        next_emb is the first table inside a nested join we've "entered". In
        the picture above, we're looking at the 'X' bracket. Don't exit yet as
        X bracket might have Y pair bracket.
      */
      join->cur_embedding_map |= next_emb->getNestedJoin()->nj_map;
    }

    if (next_emb->getNestedJoin()->join_list.size() !=
        next_emb->getNestedJoin()->counter_)
      break;

    /*
      We're currently at Y or Z-bracket as depicted in the above picture.
      Mark that we've left it and continue walking up the brackets hierarchy.
    */
    join->cur_embedding_map &= ~next_emb->getNestedJoin()->nj_map;
  }
  return false;
}

COND *optimize_cond(Join *join, COND *conds, List<TableList> *join_list, Item::cond_result *cond_value)
{
  Session *session= join->session;

  if (!conds)
    *cond_value= Item::COND_TRUE;
  else
  {
    /*
      Build all multiple equality predicates and eliminate equality
      predicates that can be inferred from these multiple equalities.
      For each reference of a field included into a multiple equality
      that occurs in a function set a pointer to the multiple equality
      predicate. Substitute a constant instead of this field if the
      multiple equality contains a constant.
    */
    conds= build_equal_items(join->session, conds, NULL, join_list,
                             &join->cond_equal);

    /* change field = field to field = const for each found field = const */
    list<COND_CMP> temp;
    propagate_cond_constants(session, temp, conds, conds);
    /*
      Remove all instances of item == item
      Remove all and-levels where CONST item != CONST item
    */
    conds= remove_eq_conds(session, conds, cond_value) ;
  }
  return(conds);
}

/**
  Remove const and eq items.

  @return
    Return new item, or NULL if no condition @n
    cond_value is set to according:
    - COND_OK     : query is possible (field = constant)
    - COND_TRUE   : always true	( 1 = 1 )
    - COND_FALSE  : always false	( 1 = 2 )
*/
COND *remove_eq_conds(Session *session, COND *cond, Item::cond_result *cond_value)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC);

    List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
    Item::cond_result tmp_cond_value;
    bool should_fix_fields= false;

    *cond_value= Item::COND_UNDEF;
    Item *item;
    while ((item= li++))
    {
      Item *new_item= remove_eq_conds(session, item, &tmp_cond_value);
      if (! new_item)
	      li.remove();
      else if (item != new_item)
      {
        li.replace(new_item);
        should_fix_fields= true;
      }
      if (*cond_value == Item::COND_UNDEF)
	      *cond_value= tmp_cond_value;

      switch (tmp_cond_value)
      {
        case Item::COND_OK:			/* Not true or false */
          if (and_level || (*cond_value == Item::COND_FALSE))
            *cond_value= tmp_cond_value;
          break;
        case Item::COND_FALSE:
          if (and_level)
          {
            *cond_value= tmp_cond_value;
            return (COND *) NULL;			/* Always false */
          }
          break;
        case Item::COND_TRUE:
          if (! and_level)
          {
            *cond_value= tmp_cond_value;
            return (COND *) NULL;			/* Always true */
          }
          break;
        case Item::COND_UNDEF:			/* Impossible */
          break;
      }
    }

    if (should_fix_fields)
      cond->update_used_tables();

    if (! ((Item_cond*) cond)->argument_list()->size() || *cond_value != Item::COND_OK)
      return (COND*) NULL;

    if (((Item_cond*) cond)->argument_list()->size() == 1)
    {
      /* Argument list contains only one element, so reduce it so a single item, then remove list */
      item= &((Item_cond*) cond)->argument_list()->front();
      ((Item_cond*) cond)->argument_list()->clear();
      return item;
    }
  }
  else if (cond->type() == Item::FUNC_ITEM && ((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC)
  {
    /*
      Handles this special case for some ODBC applications:
      The are requesting the row that was just updated with a auto_increment
      value with this construct:

      SELECT * from table_name where auto_increment_column IS NULL
      This will be changed to:
      SELECT * from table_name where auto_increment_column = LAST_INSERT_ID
    */

    Item_func_isnull *func= (Item_func_isnull*) cond;
    Item **args= func->arguments();
    if (args[0]->type() == Item::FIELD_ITEM)
    {
      Field *field= ((Item_field*) args[0])->field;
      if (field->flags & AUTO_INCREMENT_FLAG
          && ! field->getTable()->maybe_null
          && session->options & OPTION_AUTO_IS_NULL
          && (
            session->first_successful_insert_id_in_prev_stmt > 0
            && session->substitute_null_with_insert_id
            )
          )
      {
        COND *new_cond= new Item_func_eq(args[0], new Item_int("last_insert_id()", 
          session->read_first_successful_insert_id_in_prev_stmt(), MY_INT64_NUM_DECIMAL_DIGITS));
        cond= new_cond;
        /*
        Item_func_eq can't be fixed after creation so we do not check
        cond->fixed, also it do not need tables so we use 0 as second
        argument.
        */
        cond->fix_fields(session, &cond);
        /*
          IS NULL should be mapped to LAST_INSERT_ID only for first row, so
          clear for next row
        */
        session->substitute_null_with_insert_id= false;
      }
#ifdef NOTDEFINED
      /* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */
      else if (
          ((field->type() == DRIZZLE_TYPE_DATE) || (field->type() == DRIZZLE_TYPE_DATETIME))
          && (field->flags & NOT_NULL_FLAG)
          && ! field->table->maybe_null)
      {
        COND* new_cond= new Item_func_eq(args[0],new Item_int("0", 0, 2));
        cond= new_cond;
        /*
        Item_func_eq can't be fixed after creation so we do not check
        cond->fixed, also it do not need tables so we use 0 as second
        argument.
        */
        cond->fix_fields(session, &cond);
      }
#endif /* NOTDEFINED */
    }
    if (cond->const_item())
    {
      *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
      return (COND *) NULL;
    }
  }
  else if (cond->const_item() && !cond->is_expensive())
  /*
    @todo
    Excluding all expensive functions is too restritive we should exclude only
    materialized IN subquery predicates because they can't yet be evaluated
    here (they need additional initialization that is done later on).

    The proper way to exclude the subqueries would be to walk the cond tree and
    check for materialized subqueries there.

  */
  {
    *cond_value= eval_const_cond(cond) ? Item::COND_TRUE : Item::COND_FALSE;
    return (COND *) NULL;
  }
  else if ((*cond_value= cond->eq_cmp_result()) != Item::COND_OK)
  {
    /* boolan compare function */
    Item *left_item=	((Item_func*) cond)->arguments()[0];
    Item *right_item= ((Item_func*) cond)->arguments()[1];
    if (left_item->eq(right_item,1))
    {
      if (!left_item->maybe_null || ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC)
	      return (COND*) NULL;			/* Comparison of identical items */
    }
  }
  *cond_value= Item::COND_OK;
  return cond;					/* Point at next and return into recursion */
}

/*
  Check if equality can be used in removing components of GROUP BY/DISTINCT

  SYNOPSIS
    test_if_equality_guarantees_uniqueness()
      l          the left comparison argument (a field if any)
      r          the right comparison argument (a const of any)

  DESCRIPTION
    Checks if an equality predicate can be used to take away
    DISTINCT/GROUP BY because it is known to be true for exactly one
    distinct value (e.g. <expr> == <const>).
    Arguments must be of the same type because e.g.
    <string_field> = <int_const> may match more than 1 distinct value from
    the column.
    We must take into consideration and the optimization done for various
    string constants when compared to dates etc (see Item_int_with_ref) as
    well as the collation of the arguments.

  RETURN VALUE
    true    can be used
    false   cannot be used
*/
static bool test_if_equality_guarantees_uniqueness(Item *l, Item *r)
{
  return r->const_item() &&
    /* elements must be compared as dates */
     (Arg_comparator::can_compare_as_dates(l, r, 0) ||
      /* or of the same result type */
      (r->result_type() == l->result_type() &&
       /* and must have the same collation if compared as strings */
       (l->result_type() != STRING_RESULT ||
        l->collation.collation == r->collation.collation)));
}

/**
  Return true if the item is a const value in all the WHERE clause.
*/
bool const_expression_in_where(COND *cond, Item *comp_item, Item **const_item)
{
  if (cond->type() == Item::COND_ITEM)
  {
    bool and_level= (((Item_cond*) cond)->functype()
		     == Item_func::COND_AND_FUNC);
    List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
    Item *item;
    while ((item=li++))
    {
      bool res=const_expression_in_where(item, comp_item, const_item);
      if (res)					// Is a const value
      {
        if (and_level)
          return 1;
      }
      else if (!and_level)
        return 0;
    }
    return and_level ? 0 : 1;
  }
  else if (cond->eq_cmp_result() != Item::COND_OK)
  {						// boolan compare function
    Item_func* func= (Item_func*) cond;
    if (func->functype() != Item_func::EQUAL_FUNC &&
	      func->functype() != Item_func::EQ_FUNC)
      return 0;
    Item *left_item=	((Item_func*) cond)->arguments()[0];
    Item *right_item= ((Item_func*) cond)->arguments()[1];
    if (left_item->eq(comp_item,1))
    {
      if (test_if_equality_guarantees_uniqueness (left_item, right_item))
      {
        if (*const_item)
          return right_item->eq(*const_item, 1);
        *const_item=right_item;
        return 1;
      }
    }
    else if (right_item->eq(comp_item,1))
    {
      if (test_if_equality_guarantees_uniqueness (right_item, left_item))
      {
        if (*const_item)
          return left_item->eq(*const_item, 1);
        *const_item=left_item;
        return 1;
      }
    }
  }
  return 0;
}

/**
  @details
  Rows produced by a join sweep may end up in a temporary table or be sent
  to a client. Setup the function of the nested loop join algorithm which
  handles final fully constructed and matched records.

  @param join   join to setup the function for.

  @return
    end_select function to use. This function can't fail.
*/
Next_select_func setup_end_select_func(Join *join)
{
  Table *table= join->tmp_table;
  Tmp_Table_Param *tmp_tbl= &join->tmp_table_param;
  Next_select_func end_select;

  /* Set up select_end */
  if (table)
  {
    if (table->group && tmp_tbl->sum_func_count &&
        !tmp_tbl->precomputed_group_by)
    {
      if (table->getShare()->sizeKeys())
      {
        end_select= end_update;
      }
      else
      {
        end_select= end_unique_update;
      }
    }
    else if (join->sort_and_group && !tmp_tbl->precomputed_group_by)
    {
      end_select= end_write_group;
    }
    else
    {
      end_select= end_write;
      if (tmp_tbl->precomputed_group_by)
      {
        /*
          A preceding call to create_tmp_table in the case when loose
          index scan is used guarantees that
          Tmp_Table_Param::items_to_copy has enough space for the group
          by functions. It is OK here to use memcpy since we copy
          Item_sum pointers into an array of Item pointers.
        */
        memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count,
               join->sum_funcs,
               sizeof(Item*)*tmp_tbl->sum_func_count);
        tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0;
      }
    }
  }
  else
  {
    if ((join->sort_and_group) &&
        !tmp_tbl->precomputed_group_by)
      end_select= end_send_group;
    else
      end_select= end_send;
  }
  return end_select;
}

/**
  Make a join of all tables and write it on socket or to table.

  @retval
    0  if ok
  @retval
    1  if error is sent
  @retval
    -1  if error should be sent
*/
int do_select(Join *join, List<Item> *fields, Table *table)
{
  int rc= 0;
  enum_nested_loop_state error= NESTED_LOOP_OK;
  JoinTable *join_tab= NULL;

  join->tmp_table= table;			/* Save for easy recursion */
  join->fields= fields;

  if (table)
  {
    table->cursor->extra(HA_EXTRA_WRITE_CACHE);
    table->emptyRecord();
    if (table->group && join->tmp_table_param.sum_func_count &&
        table->getShare()->sizeKeys() && !table->cursor->inited)
    {
      int tmp_error;
      tmp_error= table->cursor->startIndexScan(0, 0);
      if (tmp_error != 0)
      {
        table->print_error(tmp_error, MYF(0));
        return -1;
      }
    }
  }
  /* Set up select_end */
  Next_select_func end_select= setup_end_select_func(join);
  if (join->tables)
  {
    join->join_tab[join->tables-1].next_select= end_select;

    join_tab=join->join_tab+join->const_tables;
  }
  join->send_records=0;
  if (join->tables == join->const_tables)
  {
    /*
      HAVING will be checked after processing aggregate functions,
      But WHERE should checkd here (we alredy have read tables)
    */
    if (!join->conds || join->conds->val_int())
    {
      error= (*end_select)(join, 0, 0);
      if (error == NESTED_LOOP_OK || error == NESTED_LOOP_QUERY_LIMIT)
	      error= (*end_select)(join, 0, 1);

      /*
        If we don't go through evaluate_join_record(), do the counting
        here.  join->send_records is increased on success in end_send(),
        so we don't touch it here.
      */
      join->examined_rows++;
      join->session->row_count++;
      assert(join->examined_rows <= 1);
    }
    else if (join->send_row_on_empty_set())
    {
      List<Item> *columns_list= fields;
      rc= join->result->send_data(*columns_list);
    }
  }
  else
  {
    assert(join->tables);
    error= sub_select(join,join_tab,0);
    if (error == NESTED_LOOP_OK || error == NESTED_LOOP_NO_MORE_ROWS)
      error= sub_select(join,join_tab,1);
    if (error == NESTED_LOOP_QUERY_LIMIT)
      error= NESTED_LOOP_OK;                    /* select_limit used */
  }
  if (error == NESTED_LOOP_NO_MORE_ROWS)
    error= NESTED_LOOP_OK;

  if (error == NESTED_LOOP_OK)
  {
    /*
      Sic: this branch works even if rc != 0, e.g. when
      send_data above returns an error.
    */
    if (!table)					// If sending data to client
    {
      /*
        The following will unlock all cursors if the command wasn't an
        update command
      */
      join->join_free();			// Unlock all cursors
      if (join->result->send_eof())
        rc= 1;                                  // Don't send error
    }
  }
  else
    rc= -1;
  if (table)
  {
    int tmp, new_errno= 0;
    if ((tmp=table->cursor->extra(HA_EXTRA_NO_CACHE)))
    {
      new_errno= tmp;
    }
    if ((tmp=table->cursor->ha_index_or_rnd_end()))
    {
      new_errno= tmp;
    }
    if (new_errno)
      table->print_error(new_errno,MYF(0));
  }
  return(join->session->is_error() ? -1 : rc);
}

enum_nested_loop_state sub_select_cache(Join *join, JoinTable *join_tab, bool end_of_records)
{
  enum_nested_loop_state rc;

  if (end_of_records)
  {
    rc= flush_cached_records(join,join_tab,false);
    if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
      rc= sub_select(join,join_tab,end_of_records);
    return rc;
  }
  if (join->session->getKilled())		// If aborted by user
  {
    join->session->send_kill_message();
    return NESTED_LOOP_KILLED;
  }
  if (join_tab->use_quick != 2 || test_if_quick_select(join_tab) <= 0)
  {
    if (! join_tab->cache.store_record_in_cache())
      return NESTED_LOOP_OK;                     // There is more room in cache
    return flush_cached_records(join,join_tab,false);
  }
  rc= flush_cached_records(join, join_tab, true);
  if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS)
    rc= sub_select(join, join_tab, end_of_records);
  return rc;
}

/**
  Retrieve records ends with a given beginning from the result of a join.

    For a given partial join record consisting of records from the tables
    preceding the table join_tab in the execution plan, the function
    retrieves all matching full records from the result set and
    send them to the result set stream.

  @note
    The function effectively implements the  final (n-k) nested loops
    of nested loops join algorithm, where k is the ordinal number of
    the join_tab table and n is the total number of tables in the join query.
    It performs nested loops joins with all conjunctive predicates from
    the where condition pushed as low to the tables as possible.
    E.g. for the query
    @code
      SELECT * FROM t1,t2,t3
      WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9
    @endcode
    the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1,
    given the selected plan prescribes to nest retrievals of the
    joined tables in the following order: t1,t2,t3.
    A pushed down predicate are attached to the table which it pushed to,
    at the field join_tab->select_cond.
    When executing a nested loop of level k the function runs through
    the rows of 'join_tab' and for each row checks the pushed condition
    attached to the table.
    If it is false the function moves to the next row of the
    table. If the condition is true the function recursively executes (n-k-1)
    remaining embedded nested loops.
    The situation becomes more complicated if outer joins are involved in
    the execution plan. In this case the pushed down predicates can be
    checked only at certain conditions.
    Suppose for the query
    @code
      SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a
      WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL)
    @endcode
    the optimizer has chosen a plan with the table order t1,t2,t3.
    The predicate P1=t1>2 will be pushed down to the table t1, while the
    predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table
    t2. But the second predicate can not be unconditionally tested right
    after a row from t2 has been read. This can be done only after the
    first row with t3.a=t1.a has been encountered.
    Thus, the second predicate P2 is supplied with a guarded value that are
    stored in the field 'found' of the first inner table for the outer join
    (table t2). When the first row with t3.a=t1.a for the  current row
    of table t1  appears, the value becomes true. For now on the predicate
    is evaluated immediately after the row of table t2 has been read.
    When the first row with t3.a=t1.a has been encountered all
    conditions attached to the inner tables t2,t3 must be evaluated.
    Only when all of them are true the row is sent to the output stream.
    If not, the function returns to the lowest nest level that has a false
    attached condition.
    The predicates from on expressions are also pushed down. If in the
    the above example the on expression were (t3.a=t1.a AND t2.a=t1.a),
    then t1.a=t2.a would be pushed down to table t2, and without any
    guard.
    If after the run through all rows of table t2, the first inner table
    for the outer join operation, it turns out that no matches are
    found for the current row of t1, then current row from table t1
    is complemented by nulls  for t2 and t3. Then the pushed down predicates
    are checked for the composed row almost in the same way as it had
    been done for the first row with a match. The only difference is
    the predicates from on expressions are not checked.

  @par
  @b IMPLEMENTATION
  @par
    The function forms output rows for a current partial join of k
    tables tables recursively.
    For each partial join record ending with a certain row from
    join_tab it calls sub_select that builds all possible matching
    tails from the result set.
    To be able  check predicates conditionally items of the class
    Item_func_trig_cond are employed.
    An object of  this class is constructed from an item of class COND
    and a pointer to a guarding boolean variable.
    When the value of the guard variable is true the value of the object
    is the same as the value of the predicate, otherwise it's just returns
    true.
    To carry out a return to a nested loop level of join table t the pointer
    to t is remembered in the field 'return_tab' of the join structure.
    Consider the following query:
    @code
        SELECT * FROM t1,
                      LEFT JOIN
                      (t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a)
                      ON t4.a=t2.a
           WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL)
    @endcode
    Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5
    and suppose for a given joined rows from tables t1,t2,t3 there are
    no rows in the result set yet.
    When first row from t5 that satisfies the on condition
    t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL
    becomes 'activated', as well the predicate t4.a=t2.a. But
    the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until
    t4.a=t2.a becomes true.
    In order not to re-evaluate the predicates that were already evaluated
    as attached pushed down predicates, a pointer to the the first
    most inner unmatched table is maintained in join_tab->first_unmatched.
    Thus, when the first row from t5 with t5.a=t3.a is found
    this pointer for t5 is changed from t4 to t2.

    @par
    @b STRUCTURE @b NOTES
    @par
    join_tab->first_unmatched points always backwards to the first inner
    table of the embedding nested join, if any.

  @param join      pointer to the structure providing all context info for
                   the query
  @param join_tab  the first next table of the execution plan to be retrieved
  @param end_records  true when we need to perform final steps of retrival

  @return
    return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
*/
enum_nested_loop_state sub_select(Join *join, JoinTable *join_tab, bool end_of_records)
{
  join_tab->table->null_row=0;
  if (end_of_records)
    return (*join_tab->next_select)(join,join_tab+1,end_of_records);

  int error;
  enum_nested_loop_state rc;
  ReadRecord *info= &join_tab->read_record;

  if (join->resume_nested_loop)
  {
    /* If not the last table, plunge down the nested loop */
    if (join_tab < join->join_tab + join->tables - 1)
      rc= (*join_tab->next_select)(join, join_tab + 1, 0);
    else
    {
      join->resume_nested_loop= false;
      rc= NESTED_LOOP_OK;
    }
  }
  else
  {
    join->return_tab= join_tab;

    if (join_tab->last_inner)
    {
      /* join_tab is the first inner table for an outer join operation. */

      /* Set initial state of guard variables for this table.*/
      join_tab->found=0;
      join_tab->not_null_compl= 1;

      /* Set first_unmatched for the last inner table of this group */
      join_tab->last_inner->first_unmatched= join_tab;
    }
    join->session->row_count= 0;

    error= (*join_tab->read_first_record)(join_tab);
    rc= evaluate_join_record(join, join_tab, error);
  }

  /*
    Note: psergey has added the 2nd part of the following condition; the
    change should probably be made in 5.1, too.
  */
  while (rc == NESTED_LOOP_OK && join->return_tab >= join_tab)
  {
    error= info->read_record(info);
    rc= evaluate_join_record(join, join_tab, error);
  }

  if (rc == NESTED_LOOP_NO_MORE_ROWS &&
      join_tab->last_inner && !join_tab->found)
    rc= evaluate_null_complemented_join_record(join, join_tab);

  if (rc == NESTED_LOOP_NO_MORE_ROWS)
    rc= NESTED_LOOP_OK;
  return rc;
}

int safe_index_read(JoinTable *tab)
{
  int error;
  Table *table= tab->table;
  if ((error=table->cursor->index_read_map(table->getInsertRecord(),
                                         tab->ref.key_buff,
                                         make_prev_keypart_map(tab->ref.key_parts),
                                         HA_READ_KEY_EXACT)))
    return table->report_error(error);
  return 0;
}

/**
  Read a (constant) table when there is at most one matching row.

  @param tab			Table to read

  @retval
    0	Row was found
  @retval
    -1   Row was not found
  @retval
    1   Got an error (other than row not found) during read
*/
int join_read_const(JoinTable *tab)
{
  int error;
  Table *table= tab->table;
  if (table->status & STATUS_GARBAGE)		// If first read
  {
    table->status= 0;
    if (cp_buffer_from_ref(tab->join->session, &tab->ref))
      error= HA_ERR_KEY_NOT_FOUND;
    else
    {
      error=table->cursor->index_read_idx_map(table->getInsertRecord(),tab->ref.key,
                                            (unsigned char*) tab->ref.key_buff,
                                            make_prev_keypart_map(tab->ref.key_parts),
                                            HA_READ_KEY_EXACT);
    }
    if (error)
    {
      table->status= STATUS_NOT_FOUND;
      tab->table->mark_as_null_row();
      table->emptyRecord();
      if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
        return table->report_error(error);
      return -1;
    }
    table->storeRecord();
  }
  else if (!(table->status & ~STATUS_NULL_ROW))	// Only happens with left join
  {
    table->status=0;
    table->restoreRecord();			// restore old record
  }
  table->null_row=0;
  return table->status ? -1 : 0;
}

/*
  eq_ref access method implementation: "read_first" function

  SYNOPSIS
    join_read_key()
      tab  JoinTable of the accessed table

  DESCRIPTION
    This is "read_fist" function for the "ref" access method. The difference
    from "ref" is that it has a one-element "cache" (see cmp_buffer_with_ref)

  RETURN
    0  - Ok
   -1  - Row not found
    1  - Error
*/
int join_read_key(JoinTable *tab)
{
  int error;
  Table *table= tab->table;

  if (!table->cursor->inited)
  {
    error= table->cursor->startIndexScan(tab->ref.key, tab->sorted);
    if (error != 0)
    {
      table->print_error(error, MYF(0));
    }
  }

  /* @todo Why don't we do "Late NULLs Filtering" here? */
  if (cmp_buffer_with_ref(tab) ||
      (table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW)))
  {
    if (tab->ref.key_err)
    {
      table->status=STATUS_NOT_FOUND;
      return -1;
    }
    error=table->cursor->index_read_map(table->getInsertRecord(),
                                      tab->ref.key_buff,
                                      make_prev_keypart_map(tab->ref.key_parts),
                                      HA_READ_KEY_EXACT);
    if (error && error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return table->report_error(error);
  }
  table->null_row=0;
  return table->status ? -1 : 0;
}

/*
  ref access method implementation: "read_first" function

  SYNOPSIS
    join_read_always_key()
      tab  JoinTable of the accessed table

  DESCRIPTION
    This is "read_first" function for the "ref" access method.

    The functon must leave the index initialized when it returns.
    ref_or_null access implementation depends on that.

  RETURN
    0  - Ok
   -1  - Row not found
    1  - Error
*/
int join_read_always_key(JoinTable *tab)
{
  int error;
  Table *table= tab->table;

  /* Initialize the index first */
  if (!table->cursor->inited)
  {
    error= table->cursor->startIndexScan(tab->ref.key, tab->sorted);
    if (error != 0)
      return table->report_error(error);
  }

  /* Perform "Late NULLs Filtering" (see internals manual for explanations) */
  for (uint32_t i= 0 ; i < tab->ref.key_parts ; i++)
  {
    if ((tab->ref.null_rejecting & 1 << i) && tab->ref.items[i]->is_null())
        return -1;
  }

  if (cp_buffer_from_ref(tab->join->session, &tab->ref))
    return -1;
  if ((error=table->cursor->index_read_map(table->getInsertRecord(),
                                         tab->ref.key_buff,
                                         make_prev_keypart_map(tab->ref.key_parts),
                                         HA_READ_KEY_EXACT)))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return table->report_error(error);
    return -1;
  }

  return 0;
}

/**
  This function is used when optimizing away ORDER BY in
  SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC.
*/
int join_read_last_key(JoinTable *tab)
{
  int error;
  Table *table= tab->table;

  if (!table->cursor->inited)
  {
    error= table->cursor->startIndexScan(tab->ref.key, tab->sorted);
    if (error != 0)
      return table->report_error(error);
  }
  if (cp_buffer_from_ref(tab->join->session, &tab->ref))
    return -1;
  if ((error=table->cursor->index_read_last_map(table->getInsertRecord(),
                                              tab->ref.key_buff,
                                              make_prev_keypart_map(tab->ref.key_parts))))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      return table->report_error(error);
    return -1;
  }
  return 0;
}

int join_no_more_records(ReadRecord *)
{
  return -1;
}

int join_read_next_same_diff(ReadRecord *info)
{
  Table *table= info->table;
  JoinTable *tab=table->reginfo.join_tab;
  if (tab->insideout_match_tab->found_match)
  {
    KeyInfo *key= tab->table->key_info + tab->index;
    do
    {
      int error;
      /* Save index tuple from record to the buffer */
      key_copy(tab->insideout_buf, info->record, key, 0);

      if ((error=table->cursor->index_next_same(table->getInsertRecord(),
                                              tab->ref.key_buff,
                                              tab->ref.key_length)))
      {
        if (error != HA_ERR_END_OF_FILE)
          return table->report_error(error);
        table->status= STATUS_GARBAGE;
        return -1;
      }
    } while (!key_cmp(tab->table->key_info[tab->index].key_part,
                      tab->insideout_buf, key->key_length));
    tab->insideout_match_tab->found_match= 0;
    return 0;
  }
  else
    return join_read_next_same(info);
}

int join_read_next_same(ReadRecord *info)
{
  int error;
  Table *table= info->table;
  JoinTable *tab=table->reginfo.join_tab;

  if ((error=table->cursor->index_next_same(table->getInsertRecord(),
					  tab->ref.key_buff,
					  tab->ref.key_length)))
  {
    if (error != HA_ERR_END_OF_FILE)
      return table->report_error(error);
    table->status= STATUS_GARBAGE;
    return -1;
  }

  return 0;
}

int join_read_prev_same(ReadRecord *info)
{
  int error;
  Table *table= info->table;
  JoinTable *tab=table->reginfo.join_tab;

  if ((error=table->cursor->index_prev(table->getInsertRecord())))
    return table->report_error(error);
  if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key,
                      tab->ref.key_length))
  {
    table->status=STATUS_NOT_FOUND;
    error= -1;
  }
  return error;
}

int join_init_quick_read_record(JoinTable *tab)
{
  if (test_if_quick_select(tab) == -1)
    return -1;					/* No possible records */
  return join_init_read_record(tab);
}

int init_read_record_seq(JoinTable *tab)
{
  tab->read_record.init_reard_record_sequential();

  if (tab->read_record.cursor->startTableScan(1))
    return 1;
  return (*tab->read_record.read_record)(&tab->read_record);
}

int test_if_quick_select(JoinTable *tab)
{
  safe_delete(tab->select->quick);

  return tab->select->test_quick_select(tab->join->session, tab->keys,
					(table_map) 0, HA_POS_ERROR, 0, false);
}

int join_init_read_record(JoinTable *tab)
{
  if (tab->select && tab->select->quick && tab->select->quick->reset())
    return 1;

  if (tab->read_record.init_read_record(tab->join->session, tab->table, tab->select, 1, true))
    return 1;

  return (*tab->read_record.read_record)(&tab->read_record);
}

int join_read_first(JoinTable *tab)
{
  int error;
  Table *table=tab->table;
  if (!table->key_read && table->covering_keys.test(tab->index) &&
      !table->no_keyread)
  {
    table->key_read= 1;
    table->cursor->extra(HA_EXTRA_KEYREAD);
  }
  tab->table->status= 0;
  tab->read_record.table=table;
  tab->read_record.cursor=table->cursor;
  tab->read_record.index=tab->index;
  tab->read_record.record=table->getInsertRecord();
  if (tab->insideout_match_tab)
  {
    tab->read_record.do_insideout_scan= tab;
    tab->read_record.read_record=join_read_next_different;
    tab->insideout_match_tab->found_match= 0;
  }
  else
  {
    tab->read_record.read_record=join_read_next;
    tab->read_record.do_insideout_scan= 0;
  }

  if (!table->cursor->inited)
  {
    error= table->cursor->startIndexScan(tab->index, tab->sorted);
    if (error != 0)
    {
      table->report_error(error);
      return -1;
    }
  }
  if ((error=tab->table->cursor->index_first(tab->table->getInsertRecord())))
  {
    if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
      table->report_error(error);
    return -1;
  }

  return 0;
}

int join_read_next_different(ReadRecord *info)
{
  JoinTable *tab= info->do_insideout_scan;
  if (tab->insideout_match_tab->found_match)
  {
    KeyInfo *key= tab->table->key_info + tab->index;
    do
    {
      int error;
      /* Save index tuple from record to the buffer */
      key_copy(tab->insideout_buf, info->record, key, 0);

      if ((error=info->cursor->index_next(info->record)))
        return info->table->report_error(error);
    } while (!key_cmp(tab->table->key_info[tab->index].key_part,
                      tab->insideout_buf, key->key_length));
    tab->insideout_match_tab->found_match= 0;
    return 0;
  }
  else
    return join_read_next(info);
}

int join_read_next(ReadRecord *info)
{
  int error;
  if ((error=info->cursor->index_next(info->record)))
    return info->table->report_error(error);
  return 0;
}

int join_read_last(JoinTable *tab)
{
  Table *table=tab->table;
  int error;
  if (!table->key_read && table->covering_keys.test(tab->index) &&
      !table->no_keyread)
  {
    table->key_read=1;
    table->cursor->extra(HA_EXTRA_KEYREAD);
  }
  tab->table->status=0;
  tab->read_record.read_record=join_read_prev;
  tab->read_record.table=table;
  tab->read_record.cursor=table->cursor;
  tab->read_record.index=tab->index;
  tab->read_record.record=table->getInsertRecord();
  if (!table->cursor->inited)
  {
    error= table->cursor->startIndexScan(tab->index, 1);
    if (error != 0)
      return table->report_error(error);
  }
  if ((error= tab->table->cursor->index_last(tab->table->getInsertRecord())))
    return table->report_error(error);

  return 0;
}

int join_read_prev(ReadRecord *info)
{
  int error;
  if ((error= info->cursor->index_prev(info->record)))
    return info->table->report_error(error);

  return 0;
}

/**
  Reading of key with key reference and one part that may be NULL.
*/
int join_read_always_key_or_null(JoinTable *tab)
{
  int res;

  /* First read according to key which is NOT NULL */
  *tab->ref.null_ref_key= 0;			// Clear null byte
  if ((res= join_read_always_key(tab)) >= 0)
    return res;

  /* Then read key with null value */
  *tab->ref.null_ref_key= 1;			// Set null byte
  return safe_index_read(tab);
}

int join_read_next_same_or_null(ReadRecord *info)
{
  int error;
  if ((error= join_read_next_same(info)) >= 0)
    return error;
  JoinTable *tab= info->table->reginfo.join_tab;

  /* Test if we have already done a read after null key */
  if (*tab->ref.null_ref_key)
    return -1;					// All keys read
  *tab->ref.null_ref_key= 1;			// Set null byte
  return safe_index_read(tab);			// then read null keys
}

enum_nested_loop_state end_send_group(Join *join, JoinTable *, bool end_of_records)
{
  int idx= -1;
  enum_nested_loop_state ok_code= NESTED_LOOP_OK;

  if (!join->first_record || end_of_records ||
      (idx=test_if_item_cache_changed(join->group_fields)) >= 0)
  {
    if (join->first_record ||
        (end_of_records && !join->group && !join->group_optimized_away))
    {
      if (idx < (int) join->send_group_parts)
      {
        int error=0;
        {
          if (!join->first_record)
          {
                  List<Item>::iterator it(join->fields->begin());
                  Item *item;
            /* No matching rows for group function */
            join->clear();

            while ((item= it++))
              item->no_rows_in_result();
          }
          if (join->having && join->having->val_int() == 0)
            error= -1;				// Didn't satisfy having
          else
          {
            if (join->do_send_rows)
              error=join->result->send_data(*join->fields) ? 1 : 0;
            join->send_records++;
          }
          if (join->rollup.getState() != Rollup::STATE_NONE && error <= 0)
          {
            if (join->rollup_send_data((uint32_t) (idx+1)))
              error= 1;
          }
        }
        if (error > 0)
          return(NESTED_LOOP_ERROR);
        if (end_of_records)
          return(NESTED_LOOP_OK);
        if (join->send_records >= join->unit->select_limit_cnt &&
            join->do_send_rows)
        {
          if (!(join->select_options & OPTION_FOUND_ROWS))
            return(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
          join->do_send_rows=0;
          join->unit->select_limit_cnt = HA_POS_ERROR;
        }
        else if (join->send_records >= join->fetch_limit)
        {
          /*
            There is a server side cursor and all rows
            for this fetch request are sent.
          */
          /*
            Preventing code duplication. When finished with the group reset
            the group functions and copy_fields. We fall through. bug #11904
          */
          ok_code= NESTED_LOOP_CURSOR_LIMIT;
        }
      }
    }
    else
    {
      if (end_of_records)
        return(NESTED_LOOP_OK);
      join->first_record=1;
      test_if_item_cache_changed(join->group_fields);
    }
    if (idx < (int) join->send_group_parts)
    {
      /*
        This branch is executed also for cursors which have finished their
        fetch limit - the reason for ok_code.
      */
      copy_fields(&join->tmp_table_param);
      if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
        return(NESTED_LOOP_ERROR);
      return(ok_code);
    }
  }
  if (update_sum_func(join->sum_funcs))
    return(NESTED_LOOP_ERROR);
  return(NESTED_LOOP_OK);
}

enum_nested_loop_state end_write_group(Join *join, JoinTable *, bool end_of_records)
{
  Table *table=join->tmp_table;
  int	  idx= -1;

  if (join->session->getKilled())
  {						// Aborted by user
    join->session->send_kill_message();
    return NESTED_LOOP_KILLED;
  }
  if (!join->first_record || end_of_records ||
      (idx=test_if_item_cache_changed(join->group_fields)) >= 0)
  {
    if (join->first_record || (end_of_records && !join->group))
    {
      int send_group_parts= join->send_group_parts;
      if (idx < send_group_parts)
      {
        if (!join->first_record)
        {
          /* No matching rows for group function */
          join->clear();
        }
        copy_sum_funcs(join->sum_funcs, join->sum_funcs_end[send_group_parts]);
        if (!join->having || join->having->val_int())
        {
          int error= table->cursor->insertRecord(table->getInsertRecord());

          if (error)
          {
            my_error(ER_USE_SQL_BIG_RESULT, MYF(0));
            return NESTED_LOOP_ERROR;
          }
        }
        if (join->rollup.getState() != Rollup::STATE_NONE)
        {
          if (join->rollup_write_data((uint32_t) (idx+1), table))
            return NESTED_LOOP_ERROR;
        }
        if (end_of_records)
          return NESTED_LOOP_OK;
      }
    }
    else
    {
      if (end_of_records)
        return NESTED_LOOP_OK;
      join->first_record=1;
      test_if_item_cache_changed(join->group_fields);
    }
    if (idx < (int) join->send_group_parts)
    {
      copy_fields(&join->tmp_table_param);
      if (copy_funcs(join->tmp_table_param.items_to_copy, join->session))
        return NESTED_LOOP_ERROR;
      if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
        return NESTED_LOOP_ERROR;
      return NESTED_LOOP_OK;
    }
  }
  if (update_sum_func(join->sum_funcs))
    return NESTED_LOOP_ERROR;
  return NESTED_LOOP_OK;
}

/*****************************************************************************
  Remove calculation with tables that aren't yet read. Remove also tests
  against fields that are read through key where the table is not a
  outer join table.
  We can't remove tests that are made against columns which are stored
  in sorted order.
  @return
    1 if right_item used is a removable reference key on left_item
    0 otherwise.
****************************************************************************/
bool test_if_ref(Item_field *left_item,Item *right_item)
{
  Field *field=left_item->field;
  // No need to change const test. We also have to keep tests on LEFT JOIN
  if (not field->getTable()->const_table && !field->getTable()->maybe_null)
  {
    Item *ref_item=part_of_refkey(field->getTable(),field);
    if (ref_item && ref_item->eq(right_item,1))
    {
      right_item= right_item->real_item();
      if (right_item->type() == Item::FIELD_ITEM)
        return (field->eq_def(((Item_field *) right_item)->field));
      /* remove equalities injected by IN->EXISTS transformation */
      else if (right_item->type() == Item::CACHE_ITEM)
        return ((Item_cache *)right_item)->eq_def (field);
      if (right_item->const_item() && !(right_item->is_null()))
      {
        /*
          We can remove binary fields and numerical fields except float,
          as float comparison isn't 100 % secure
          We have to keep normal strings to be able to check for end spaces

                sergefp: the above seems to be too restrictive. Counterexample:
                  create table t100 (v varchar(10), key(v)) default charset=latin1;
                  insert into t100 values ('a'),('a ');
                  explain select * from t100 where v='a';
                The EXPLAIN shows 'using Where'. Running the query returns both
                rows, so it seems there are no problems with endspace in the most
                frequent case?
        */
        if (field->binary() &&
            field->real_type() != DRIZZLE_TYPE_VARCHAR &&
            field->decimals() == 0)
        {
          return ! store_val_in_field(field, right_item, CHECK_FIELD_WARN);
        }
      }
    }
  }
  return 0;
}

/*
  Extract a condition that can be checked after reading given table

  SYNOPSIS
    make_cond_for_table()
      cond         Condition to analyze
      tables       Tables for which "current field values" are available
      used_table   Table that we're extracting the condition for (may
                   also include PSEUDO_TABLE_BITS

  DESCRIPTION
    Extract the condition that can be checked after reading the table
    specified in 'used_table', given that current-field values for tables
    specified in 'tables' bitmap are available.

    The function assumes that
      - Constant parts of the condition has already been checked.
      - Condition that could be checked for tables in 'tables' has already
        been checked.

    The function takes into account that some parts of the condition are
    guaranteed to be true by employed 'ref' access methods (the code that
    does this is located at the end, search down for "EQ_FUNC").


  SEE ALSO
    make_cond_for_info_schema uses similar algorithm

  RETURN
    Extracted condition
*/
COND *make_cond_for_table(COND *cond, table_map tables, table_map used_table, bool exclude_expensive_cond)
{
  if (used_table && !(cond->used_tables() & used_table) &&
    /*
      Exclude constant conditions not checked at optimization time if
      the table we are pushing conditions to is the first one.
      As a result, such conditions are not considered as already checked
      and will be checked at execution time, attached to the first table.
    */
    !((used_table & 1) && cond->is_expensive()))
    return (COND*) 0;				// Already checked
  if (cond->type() == Item::COND_ITEM)
  {
    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      /* Create new top level AND item */
      Item_cond_and *new_cond=new Item_cond_and;
      if (!new_cond)
        return (COND*) 0;
      List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
      Item *item;
      while ((item=li++))
      {
        Item *fix= make_cond_for_table(item,tables,used_table,
                                            exclude_expensive_cond);
        if (fix)
          new_cond->argument_list()->push_back(fix);
      }
      switch (new_cond->argument_list()->size())
      {
        case 0:
          return (COND*) 0;			// Always true
        case 1:
          return &new_cond->argument_list()->front();
        default:
          /*
            Item_cond_and do not need fix_fields for execution, its parameters
            are fixed or do not need fix_fields, too
          */
          new_cond->quick_fix_field();
          new_cond->used_tables_cache= ((Item_cond_and*) cond)->used_tables_cache & tables;
          return new_cond;
      }
    }
    else
    {						// Or list
      Item_cond_or *new_cond=new Item_cond_or;
      if (!new_cond)
        return (COND*) 0;
      List<Item>::iterator li(((Item_cond*) cond)->argument_list()->begin());
      Item *item;
      while ((item=li++))
      {
        Item *fix= make_cond_for_table(item,tables,0L, exclude_expensive_cond);
        if (!fix)
          return (COND*) 0;			// Always true
        new_cond->argument_list()->push_back(fix);
      }
      /*
        Item_cond_and do not need fix_fields for execution, its parameters
        are fixed or do not need fix_fields, too
      */
      new_cond->quick_fix_field();
      new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
      new_cond->top_level_item();
      return new_cond;
    }
  }

  /*
    Because the following test takes a while and it can be done
    table_count times, we mark each item that we have examined with the result
    of the test
  */

  if (cond->marker == 3 || (cond->used_tables() & ~tables) ||
      /*
        When extracting constant conditions, treat expensive conditions as
        non-constant, so that they are not evaluated at optimization time.
      */
      (!used_table && exclude_expensive_cond && cond->is_expensive()))
    return (COND*) 0;				// Can't check this yet
  if (cond->marker == 2 || cond->eq_cmp_result() == Item::COND_OK)
    return cond;				// Not boolean op

  /*
    Remove equalities that are guaranteed to be true by use of 'ref' access
    method
  */
  if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
  {
    Item *left_item=	((Item_func*) cond)->arguments()[0];
    Item *right_item= ((Item_func*) cond)->arguments()[1];
    if (left_item->type() == Item::FIELD_ITEM && test_if_ref((Item_field*) left_item,right_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
    if (right_item->type() == Item::FIELD_ITEM &&	test_if_ref((Item_field*) right_item,left_item))
    {
      cond->marker=3;			// Checked when read
      return (COND*) 0;
    }
  }
  cond->marker=2;
  return cond;
}

static Item *part_of_refkey(Table *table,Field *field)
{
  if (!table->reginfo.join_tab)
    return (Item*) 0;             // field from outer non-select (UPDATE,...)

  uint32_t ref_parts=table->reginfo.join_tab->ref.key_parts;
  if (ref_parts)
  {
    KeyPartInfo *key_part=
      table->key_info[table->reginfo.join_tab->ref.key].key_part;
    uint32_t part;

    for (part=0 ; part < ref_parts ; part++)
    {
      if (table->reginfo.join_tab->ref.cond_guards[part])
        return 0;
    }

    for (part=0 ; part < ref_parts ; part++,key_part++)
    {
      if (field->eq(key_part->field) &&
	  !(key_part->key_part_flag & HA_PART_KEY_SEG) &&
          //If field can be NULL, we should not remove this predicate, as
          //it may lead to non-rejection of NULL values.
          !(field->real_maybe_null()))
      {
	return table->reginfo.join_tab->ref.items[part];
      }
    }
  }
  return (Item*) 0;
}

/**
  Test if one can use the key to resolve order_st BY.

  @param order                 Sort order
  @param table                 Table to sort
  @param idx                   Index to check
  @param used_key_parts        Return value for used key parts.


  @note
    used_key_parts is set to correct key parts used if return value != 0
    (On other cases, used_key_part may be changed)

  @retval
    1   key is ok.
  @retval
    0   Key can't be used
  @retval
    -1   Reverse key can be used
*/
static int test_if_order_by_key(Order *order, Table *table, uint32_t idx, uint32_t *used_key_parts)
{
  KeyPartInfo *key_part= NULL;
  KeyPartInfo *key_part_end= NULL;
  key_part= table->key_info[idx].key_part;
  key_part_end= key_part + table->key_info[idx].key_parts;
  key_part_map const_key_parts=table->const_key_parts[idx];
  int reverse= 0;
  bool on_primary_key= false;

  for (; order ; order=order->next, const_key_parts>>=1)
  {
    Field *field=((Item_field*) (*order->item)->real_item())->field;
    int flag;

    /*
      Skip key parts that are constants in the WHERE clause.
      These are already skipped in the ORDER BY by const_expression_in_where()
    */
    for (; const_key_parts & 1 ; const_key_parts>>= 1)
      key_part++;

    if (key_part == key_part_end)
    {
      /*
        We are at the end of the key. Check if the engine has the primary
        key as a suffix to the secondary keys. If it has continue to check
        the primary key as a suffix.
      */
      if (!on_primary_key &&
          (table->cursor->getEngine()->check_flag(HTON_BIT_PRIMARY_KEY_IN_READ_INDEX)) &&
          table->getShare()->hasPrimaryKey())
      {
        on_primary_key= true;
        key_part= table->key_info[table->getShare()->getPrimaryKey()].key_part;
        key_part_end=key_part+table->key_info[table->getShare()->getPrimaryKey()].key_parts;
        const_key_parts=table->const_key_parts[table->getShare()->getPrimaryKey()];

        for (; const_key_parts & 1 ; const_key_parts>>= 1)
          key_part++;
        /*
         The primary and secondary key parts were all const (i.e. there's
         one row).  The sorting doesn't matter.
        */
        if (key_part == key_part_end && reverse == 0)
          return 1;
      }
      else
        return 0;
    }

    if (key_part->field != field)
      return 0;

    /* set flag to 1 if we can use read-next on key, else to -1 */
    flag= ((order->asc == !(key_part->key_part_flag & HA_REVERSE_SORT)) ?
           1 : -1);
    if (reverse && flag != reverse)
      return 0;
    reverse=flag;				// Remember if reverse
    key_part++;
  }
  *used_key_parts= on_primary_key ? table->key_info[idx].key_parts :
    (uint32_t) (key_part - table->key_info[idx].key_part);
  if (reverse == -1 && !(table->index_flags(idx) &
                         HA_READ_PREV))
    reverse= 0;                                 // Index can't be used
  return(reverse);
}

/**
  Test if a second key is the subkey of the first one.

  @param key_part              First key parts
  @param ref_key_part          Second key parts
  @param ref_key_part_end      Last+1 part of the second key

  @note
    Second key MUST be shorter than the first one.

  @retval
    1	is a subkey
  @retval
    0	no sub key
*/
inline bool is_subkey(KeyPartInfo *key_part,
                      KeyPartInfo *ref_key_part,
	              KeyPartInfo *ref_key_part_end)
{
  for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
    if (! key_part->field->eq(ref_key_part->field))
      return 0;
  return 1;
}

/**
  Test if we can use one of the 'usable_keys' instead of 'ref' key
  for sorting.

  @param ref			Number of key, used for WHERE clause
  @param usable_keys		Keys for testing

  @return
    - MAX_KEY			If we can't use other key
    - the number of found key	Otherwise
*/
static uint32_t test_if_subkey(Order *order,
                               Table *table,
                               uint32_t ref,
                               uint32_t ref_key_parts,
	                       const key_map *usable_keys)
{
  uint32_t nr;
  uint32_t min_length= UINT32_MAX;
  uint32_t best= MAX_KEY;
  uint32_t not_used;
  KeyPartInfo *ref_key_part= table->key_info[ref].key_part;
  KeyPartInfo *ref_key_part_end= ref_key_part + ref_key_parts;

  for (nr= 0 ; nr < table->getShare()->sizeKeys() ; nr++)
  {
    if (usable_keys->test(nr) &&
	table->key_info[nr].key_length < min_length &&
	table->key_info[nr].key_parts >= ref_key_parts &&
	is_subkey(table->key_info[nr].key_part, ref_key_part,
		  ref_key_part_end) &&
	test_if_order_by_key(order, table, nr, &not_used))
    {
      min_length= table->key_info[nr].key_length;
      best= nr;
    }
  }
  return best;
}

/**
  Check if GROUP BY/DISTINCT can be optimized away because the set is
  already known to be distinct.

  Used in removing the GROUP BY/DISTINCT of the following types of
  statements:
  @code
    SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
      [GROUP BY <unique_key_cols>,...]
  @endcode

    If (a,b,c is distinct)
    then <any combination of a,b,c>,{whatever} is also distinct

    This function checks if all the key parts of any of the unique keys
    of the table are referenced by a list : either the select list
    through find_field_in_item_list or GROUP BY list through
    find_field_in_order_list.
    If the above holds and the key parts cannot contain NULLs then we
    can safely remove the GROUP BY/DISTINCT,
    as no result set can be more distinct than an unique key.

  @param table                The table to operate on.
  @param find_func            function to iterate over the list and search
                              for a field

  @retval
    1                    found
  @retval
    0                    not found.
*/
bool list_contains_unique_index(Table *table, bool (*find_func) (Field *, void *), void *data)
{
  for (uint32_t keynr= 0; keynr < table->getShare()->sizeKeys(); keynr++)
  {
    if (keynr == table->getShare()->getPrimaryKey() ||
         (table->key_info[keynr].flags & HA_NOSAME))
    {
      KeyInfo *keyinfo= table->key_info + keynr;
      KeyPartInfo *key_part= NULL;
      KeyPartInfo *key_part_end= NULL;

      for (key_part=keyinfo->key_part,
           key_part_end=key_part+ keyinfo->key_parts;
           key_part < key_part_end;
           key_part++)
      {
        if (key_part->field->maybe_null() ||
            ! find_func(key_part->field, data))
          break;
      }
      if (key_part == key_part_end)
        return 1;
    }
  }
  return 0;
}

/**
  Helper function for list_contains_unique_index.
  Find a field reference in a list of order_st structures.
  Finds a direct reference of the Field in the list.

  @param field                The field to search for.
  @param data                 order_st *.The list to search in

  @retval
    1                    found
  @retval
    0                    not found.
*/
bool find_field_in_order_list (Field *field, void *data)
{
  Order *group= (Order *) data;
  bool part_found= 0;
  for (Order *tmp_group= group; tmp_group; tmp_group=tmp_group->next)
  {
    Item *item= (*tmp_group->item)->real_item();
    if (item->type() == Item::FIELD_ITEM &&
        ((Item_field*) item)->field->eq(field))
    {
      part_found= 1;
      break;
    }
  }
  return part_found;
}

/**
  Helper function for list_contains_unique_index.
  Find a field reference in a dynamic list of Items.
  Finds a direct reference of the Field in the list.

  @param[in] field             The field to search for.
  @param[in] data              List<Item> *.The list to search in

  @retval
    1                    found
  @retval
    0                    not found.
*/
bool find_field_in_item_list (Field *field, void *data)
{
  List<Item> *fields= (List<Item> *) data;
  bool part_found= 0;
  List<Item>::iterator li(fields->begin());
  Item *item;

  while ((item= li++))
  {
    if (item->type() == Item::FIELD_ITEM &&
        ((Item_field*) item)->field->eq(field))
    {
      part_found= 1;
      break;
    }
  }
  return part_found;
}

/**
  Test if we can skip the ORDER BY by using an index.

  SYNOPSIS
    test_if_skip_sort_order()
      tab
      order
      select_limit
      no_changes
      map

  If we can use an index, the JoinTable / tab->select struct
  is changed to use the index.

  The index must cover all fields in <order>, or it will not be considered.

  @todo
    - sergeyp: Results of all index merge selects actually are ordered
    by clustered PK values.

  @retval
    0    We have to use filesort to do the sorting
  @retval
    1    We can use an index.
*/
bool test_if_skip_sort_order(JoinTable *tab, Order *order, ha_rows select_limit, bool no_changes, const key_map *map)
{
  int32_t ref_key;
  uint32_t ref_key_parts;
  int order_direction;
  uint32_t used_key_parts;
  Table *table=tab->table;
  optimizer::SqlSelect *select= tab->select;
  key_map usable_keys;
  optimizer::QuickSelectInterface *save_quick= NULL;

  /*
    Keys disabled by ALTER Table ... DISABLE KEYS should have already
    been taken into account.
  */
  usable_keys= *map;

  for (Order *tmp_order=order; tmp_order ; tmp_order=tmp_order->next)
  {
    Item *item= (*tmp_order->item)->real_item();
    if (item->type() != Item::FIELD_ITEM)
    {
      usable_keys.reset();
      return 0;
    }
    usable_keys&= ((Item_field*) item)->field->part_of_sortkey;
    if (usable_keys.none())
      return 0;					// No usable keys
  }

  ref_key= -1;
  /* Test if constant range in WHERE */
  if (tab->ref.key >= 0 && tab->ref.key_parts)
  {
    ref_key=	   tab->ref.key;
    ref_key_parts= tab->ref.key_parts;
    if (tab->type == AM_REF_OR_NULL)
      return 0;
  }
  else if (select && select->quick)		// Range found by optimizer/range
  {
    int quick_type= select->quick->get_type();
    save_quick= select->quick;
    /*
      assume results are not ordered when index merge is used
      @todo sergeyp: Results of all index merge selects actually are ordered
      by clustered PK values.
    */

    if (quick_type == optimizer::QuickSelectInterface::QS_TYPE_INDEX_MERGE ||
        quick_type == optimizer::QuickSelectInterface::QS_TYPE_ROR_UNION ||
        quick_type == optimizer::QuickSelectInterface::QS_TYPE_ROR_INTERSECT)
      return 0;
    ref_key=	   select->quick->index;
    ref_key_parts= select->quick->used_key_parts;
  }

  if (ref_key >= 0)
  {
    /*
      We come here when there is a REF key.
    */
    if (! usable_keys.test(ref_key))
    {
      /*
        We come here when ref_key is not among usable_keys
      */
      uint32_t new_ref_key;
      /*
        If using index only read, only consider other possible index only
        keys
      */
      if (table->covering_keys.test(ref_key))
        usable_keys&= table->covering_keys;
      if (tab->pre_idx_push_select_cond)
        tab->select_cond= tab->select->cond= tab->pre_idx_push_select_cond;
      if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts,
				       &usable_keys)) < MAX_KEY)
      {
        /* Found key that can be used to retrieve data in sorted order */
        if (tab->ref.key >= 0)
        {
          /*
            We'll use ref access method on key new_ref_key. In general case
            the index search tuple for new_ref_key will be different (e.g.
            when one index is defined as (part1, part2, ...) and another as
            (part1, part2(N), ...) and the WHERE clause contains
            "part1 = const1 AND part2=const2".
            So we build tab->ref from scratch here.
          */
          optimizer::KeyUse *keyuse= tab->keyuse;
          while (keyuse->getKey() != new_ref_key && keyuse->getTable() == tab->table)
            keyuse++;

          if (create_ref_for_key(tab->join, tab, keyuse,
                                 tab->join->const_table_map))
            return 0;
        }
        else
        {
          /*
            The range optimizer constructed QuickRange for ref_key, and
            we want to use instead new_ref_key as the index. We can't
            just change the index of the quick select, because this may
            result in an incosistent QUICK_SELECT object. Below we
            create a new QUICK_SELECT from scratch so that all its
            parameres are set correctly by the range optimizer.
           */
          key_map new_ref_key_map;
          new_ref_key_map.reset();  // Force the creation of quick select
          new_ref_key_map.set(new_ref_key); // only for new_ref_key.

          if (select->test_quick_select(tab->join->session, new_ref_key_map, 0,
                                        (tab->join->select_options &
                                         OPTION_FOUND_ROWS) ?
                                        HA_POS_ERROR :
                                        tab->join->unit->select_limit_cnt,0,
                                        true) <=
              0)
            return 0;
        }
        ref_key= new_ref_key;
      }
    }
    /* Check if we get the rows in requested sorted order by using the key */
    if (usable_keys.test(ref_key) &&
        (order_direction= test_if_order_by_key(order,table,ref_key,
					       &used_key_parts)))
      goto check_reverse_order;
  }
  {
    /*
      Check whether there is an index compatible with the given order
      usage of which is cheaper than usage of the ref_key index (ref_key>=0)
      or a table scan.
      It may be the case if order_st/GROUP BY is used with LIMIT.
    */
    uint32_t nr;
    key_map keys;
    uint32_t best_key_parts= 0;
    int best_key_direction= 0;
    ha_rows best_records= 0;
    double read_time;
    int best_key= -1;
    bool is_best_covering= false;
    double fanout= 1;
    Join *join= tab->join;
    uint32_t tablenr= tab - join->join_tab;
    ha_rows table_records= table->cursor->stats.records;
    bool group= join->group && order == join->group_list;
    optimizer::Position cur_pos;

    /*
      If not used with LIMIT, only use keys if the whole query can be
      resolved with a key;  This is because filesort() is usually faster than
      retrieving all rows through an index.
    */
    if (select_limit >= table_records)
    {
      /*
        filesort() and join cache are usually faster than reading in
        index order and not using join cache
        */
      if (tab->type == AM_ALL && tab->join->tables > tab->join->const_tables + 1)
        return 0;
      keys= *table->cursor->keys_to_use_for_scanning();
      keys|= table->covering_keys;

      /*
        We are adding here also the index specified in FORCE INDEX clause,
        if any.
        This is to allow users to use index in order_st BY.
      */
      if (table->force_index)
        keys|= (group ? table->keys_in_use_for_group_by :
                                table->keys_in_use_for_order_by);
      keys&= usable_keys;
    }
    else
      keys= usable_keys;

    cur_pos= join->getPosFromOptimalPlan(tablenr);
    read_time= cur_pos.getCost();
    for (uint32_t i= tablenr+1; i < join->tables; i++)
    {
      cur_pos= join->getPosFromOptimalPlan(i);
      fanout*= cur_pos.getFanout(); // fanout is always >= 1
    }

    for (nr=0; nr < table->getShare()->sizeKeys() ; nr++)
    {
      int direction;
      if (keys.test(nr) &&
          (direction= test_if_order_by_key(order, table, nr, &used_key_parts)))
      {
        bool is_covering= table->covering_keys.test(nr) || (nr == table->getShare()->getPrimaryKey() && table->cursor->primary_key_is_clustered());

        /*
          Don't use an index scan with ORDER BY without limit.
          For GROUP BY without limit always use index scan
          if there is a suitable index.
          Why we hold to this asymmetry hardly can be explained
          rationally. It's easy to demonstrate that using
          temporary table + filesort could be cheaper for grouping
          queries too.
        */
        if (is_covering ||
            select_limit != HA_POS_ERROR ||
            (ref_key < 0 && (group || table->force_index)))
        {
          double rec_per_key;
          double index_scan_time;
          KeyInfo *keyinfo= tab->table->key_info+nr;
          if (select_limit == HA_POS_ERROR)
            select_limit= table_records;
          if (group)
          {
            rec_per_key= keyinfo->rec_per_key[used_key_parts-1];
            set_if_bigger(rec_per_key, 1.0);
            /*
              With a grouping query each group containing on average
              rec_per_key records produces only one row that will
              be included into the result set.
            */
            if (select_limit > table_records/rec_per_key)
                select_limit= table_records;
            else
              select_limit= (ha_rows) (select_limit*rec_per_key);
          }
          /*
            If tab=tk is not the last joined table tn then to get first
            L records from the result set we can expect to retrieve
            only L/fanout(tk,tn) where fanout(tk,tn) says how many
            rows in the record set on average will match each row tk.
            Usually our estimates for fanouts are too pessimistic.
            So the estimate for L/fanout(tk,tn) will be too optimistic
            and as result we'll choose an index scan when using ref/range
            access + filesort will be cheaper.
          */
          select_limit= (ha_rows) (select_limit < fanout ?
                                   1 : select_limit/fanout);
          /*
            We assume that each of the tested indexes is not correlated
            with ref_key. Thus, to select first N records we have to scan
            N/selectivity(ref_key) index entries.
            selectivity(ref_key) = #scanned_records/#table_records =
            table->quick_condition_rows/table_records.
            In any case we can't select more than #table_records.
            N/(table->quick_condition_rows/table_records) > table_records
            <=> N > table->quick_condition_rows.
          */
          if (select_limit > table->quick_condition_rows)
            select_limit= table_records;
          else
            select_limit= (ha_rows) (select_limit *
                                     (double) table_records /
                                      table->quick_condition_rows);
          rec_per_key= keyinfo->rec_per_key[keyinfo->key_parts-1];
          set_if_bigger(rec_per_key, 1.0);
          /*
            Here we take into account the fact that rows are
            accessed in sequences rec_per_key records in each.
            Rows in such a sequence are supposed to be ordered
            by rowid/primary key. When reading the data
            in a sequence we'll touch not more pages than the
            table cursor contains.
            TODO. Use the formula for a disk sweep sequential access
            to calculate the cost of accessing data rows for one
            index entry.
          */
          index_scan_time= select_limit/rec_per_key *
                           min(rec_per_key, table->cursor->scan_time());
          if (is_covering || (ref_key < 0 && (group || table->force_index)) ||
              index_scan_time < read_time)
          {
            ha_rows quick_records= table_records;
            if (is_best_covering && !is_covering)
              continue;
            if (table->quick_keys.test(nr))
              quick_records= table->quick_rows[nr];
            if (best_key < 0 ||
                (select_limit <= min(quick_records,best_records) ?
                 keyinfo->key_parts < best_key_parts :
                 quick_records < best_records))
            {
              best_key= nr;
              best_key_parts= keyinfo->key_parts;
              best_records= quick_records;
              is_best_covering= is_covering;
              best_key_direction= direction;
            }
          }
        }
      }
    }
    if (best_key >= 0)
    {
      bool quick_created= false;
      if (table->quick_keys.test(best_key) && best_key != ref_key)
      {
        key_map test_map;
        test_map.reset();       // Force the creation of quick select
        test_map.set(best_key); // only best_key.
        quick_created=
          select->test_quick_select(join->session, test_map, 0,
                                    join->select_options & OPTION_FOUND_ROWS ?
                                    HA_POS_ERROR :
                                    join->unit->select_limit_cnt,
                                    true, false) > 0;
      }
      if (!no_changes)
      {
        if (!quick_created)
        {
          tab->index= best_key;
          tab->read_first_record= best_key_direction > 0 ?
                                  join_read_first:join_read_last;
          tab->type= AM_NEXT;           // Read with index_first(), index_next()
          if (select && select->quick)
          {
            safe_delete(select->quick);
          }
          if (table->covering_keys.test(best_key))
          {
            table->key_read=1;
            table->cursor->extra(HA_EXTRA_KEYREAD);
          }
          table->cursor->ha_index_or_rnd_end();
          if (join->select_options & SELECT_DESCRIBE)
          {
            tab->ref.key= -1;
            tab->ref.key_parts= 0;
            if (select_limit < table_records)
              tab->limit= select_limit;
          }
        }
        else if (tab->type != AM_ALL)
        {
          /*
            We're about to use a quick access to the table.
            We need to change the access method so as the quick access
            method is actually used.
          */
          assert(tab->select->quick);
          tab->type= AM_ALL;
          tab->use_quick=1;
          tab->ref.key= -1;
          tab->ref.key_parts=0;		// Don't use ref key.
          tab->read_first_record= join_init_read_record;
        }
      }
      used_key_parts= best_key_parts;
      order_direction= best_key_direction;
    }
    else
      return 0;
  }

check_reverse_order:
  if (order_direction == -1)		// If ORDER BY ... DESC
  {
    if (select && select->quick)
    {
      /*
        Don't reverse the sort order, if it's already done.
        (In some cases test_if_order_by_key() can be called multiple times
      */
      if (! select->quick->reverse_sorted())
      {
        optimizer::QuickSelectDescending *tmp= NULL;
        bool error= false;
        int quick_type= select->quick->get_type();
        if (quick_type == optimizer::QuickSelectInterface::QS_TYPE_INDEX_MERGE ||
            quick_type == optimizer::QuickSelectInterface::QS_TYPE_ROR_INTERSECT ||
            quick_type == optimizer::QuickSelectInterface::QS_TYPE_ROR_UNION ||
            quick_type == optimizer::QuickSelectInterface::QS_TYPE_GROUP_MIN_MAX)
        {
          tab->limit= 0;
          select->quick= save_quick;
          return 0; // Use filesort
        }

        /* ORDER BY range_key DESC */
        tmp= new optimizer::QuickSelectDescending((optimizer::QuickRangeSelect*)(select->quick),
                                                  used_key_parts,
                                                  &error);
        if (! tmp || error)
        {
          delete tmp;
          select->quick= save_quick;
          tab->limit= 0;
          return 0; // Reverse sort not supported
        }
        select->quick= tmp;
      }
    }
    else if (tab->type != AM_NEXT &&
             tab->ref.key >= 0 && tab->ref.key_parts <= used_key_parts)
    {
      /*
        SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC

        Use a traversal function that starts by reading the last row
        with key part (A) and then traverse the index backwards.
      */
      tab->read_first_record= join_read_last_key;
      tab->read_record.read_record= join_read_prev_same;
    }
  }
  else if (select && select->quick)
    select->quick->sorted= 1;
  return 1;
}

/*
  If not selecting by given key, create an index how records should be read

  SYNOPSIS
   create_sort_index()
     session		Thread Cursor
     tab		Table to sort (in join structure)
     order		How table should be sorted
     filesort_limit	Max number of rows that needs to be sorted
     select_limit	Max number of rows in final output
		        Used to decide if we should use index or not
     is_order_by        true if we are sorting on order_st BY, false if GROUP BY
                        Used to decide if we should use index or not


  IMPLEMENTATION
   - If there is an index that can be used, 'tab' is modified to use
     this index.
   - If no index, create with filesort() an index cursor that can be used to
     retrieve rows in order (should be done with 'read_record').
     The sorted data is stored in tab->table and will be freed when calling
     tab->table->free_io_cache().

  RETURN VALUES
    0		ok
    -1		Some fatal error
    1		No records
*/
int create_sort_index(Session *session, Join *join, Order *order, ha_rows filesort_limit, ha_rows select_limit, bool is_order_by)
{
  uint32_t length= 0;
  ha_rows examined_rows;
  Table *table;
  optimizer::SqlSelect *select= NULL;
  JoinTable *tab;

  if (join->tables == join->const_tables)
    return 0;				// One row, no need to sort
  tab=    join->join_tab + join->const_tables;
  table=  tab->table;
  select= tab->select;

  /*
    When there is SQL_BIG_RESULT do not sort using index for GROUP BY,
    and thus force sorting on disk unless a group min-max optimization
    is going to be used as it is applied now only for one table queries
    with covering indexes.
  */
  if ((order != join->group_list ||
       !(join->select_options & SELECT_BIG_RESULT) ||
       (select && select->quick && (select->quick->get_type() == optimizer::QuickSelectInterface::QS_TYPE_GROUP_MIN_MAX))) &&
      test_if_skip_sort_order(tab,order,select_limit,0,
                              is_order_by ?  &table->keys_in_use_for_order_by :
                              &table->keys_in_use_for_group_by))
    return 0;
  for (Order *ord= join->order; ord; ord= ord->next)
    length++;
  join->sortorder= make_unireg_sortorder(order, &length, join->sortorder);
  table->sort.io_cache= new internal::io_cache_st;
  table->status=0;				// May be wrong if quick_select

  // If table has a range, move it to select
  if (select && !select->quick && tab->ref.key >= 0)
  {
    if (tab->quick)
    {
      select->quick=tab->quick;
      tab->quick=0;
      /*
        We can only use 'Only index' if quick key is same as ref_key
        and in index_merge 'Only index' cannot be used
      */
      if (table->key_read && ((uint32_t) tab->ref.key != select->quick->index))
      {
        table->key_read=0;
        table->cursor->extra(HA_EXTRA_NO_KEYREAD);
      }
    }
    else
    {
      /*
        We have a ref on a const;  Change this to a range that filesort
        can use.
        For impossible ranges (like when doing a lookup on NULL on a NOT NULL
        field, quick will contain an empty record set.
      */
      if (! (select->quick= (optimizer::get_quick_select_for_ref(session,
                                                                 table,
                                                                 &tab->ref,
                                                                 tab->found_records))))
      {
	return(-1);
      }
    }
  }

  if (table->getShare()->getType())
    table->cursor->info(HA_STATUS_VARIABLE);	// Get record count

  FileSort filesort(*session);
  table->sort.found_records=filesort.run(table,join->sortorder, length,
					 select, filesort_limit, 0,
					 examined_rows);
  tab->records= table->sort.found_records;	// For SQL_CALC_ROWS
  if (select)
  {
    select->cleanup();				// filesort did select
    tab->select= 0;
  }
  tab->select_cond=0;
  tab->last_inner= 0;
  tab->first_unmatched= 0;
  tab->type= AM_ALL;				// Read with normal read_record
  tab->read_first_record= join_init_read_record;
  tab->join->examined_rows+=examined_rows;
  if (table->key_read)				// Restore if we used indexes
  {
    table->key_read=0;
    table->cursor->extra(HA_EXTRA_NO_KEYREAD);
  }

  return(table->sort.found_records == HA_POS_ERROR);
}

int remove_dup_with_compare(Session *session, Table *table, Field **first_field, uint32_t offset, Item *having)
{
  Cursor *cursor=table->cursor;
  char *org_record,*new_record;
  unsigned char *record;
  int error;
  uint32_t reclength= table->getShare()->getRecordLength() - offset;

  org_record=(char*) (record=table->getInsertRecord())+offset;
  new_record=(char*) table->getUpdateRecord()+offset;

  if ((error= cursor->startTableScan(1)))
    goto err;

  error=cursor->rnd_next(record);
  for (;;)
  {
    if (session->getKilled())
    {
      session->send_kill_message();
      error=0;
      goto err;
    }
    if (error)
    {
      if (error == HA_ERR_RECORD_DELETED)
        continue;
      if (error == HA_ERR_END_OF_FILE)
        break;
      goto err;
    }
    if (having && !having->val_int())
    {
      if ((error=cursor->deleteRecord(record)))
        goto err;
      error=cursor->rnd_next(record);
      continue;
    }
    copy_blobs(first_field);
    memcpy(new_record,org_record,reclength);

    /* Read through rest of cursor and mark duplicated rows deleted */
    bool found=0;
    for (;;)
    {
      if ((error=cursor->rnd_next(record)))
      {
        if (error == HA_ERR_RECORD_DELETED)
          continue;
        if (error == HA_ERR_END_OF_FILE)
          break;
        goto err;
      }
      if (table->compare_record(first_field) == 0)
      {
        if ((error=cursor->deleteRecord(record)))
          goto err;
      }
      else if (!found)
      {
        found= 1;
        cursor->position(record);	// Remember position
      }
    }
    if (!found)
      break;					// End of cursor
    /* Move current position to the next row */
    error= cursor->rnd_pos(record, cursor->ref);
  }

  cursor->extra(HA_EXTRA_NO_CACHE);
  return 0;
err:
  cursor->extra(HA_EXTRA_NO_CACHE);
  if (error)
    table->print_error(error,MYF(0));
  return 1;
}

/**
  Generate a hash index for each row to quickly find duplicate rows.

  @note
    Note that this will not work on tables with blobs!
*/
int remove_dup_with_hash_index(Session *session,
                               Table *table,
                               uint32_t field_count,
                               Field **first_field,
                               uint32_t key_length,
                               Item *having)
{
  unsigned char *key_pos, *record=table->getInsertRecord();
  int error;
  Cursor &cursor= *table->cursor;
  uint32_t extra_length= ALIGN_SIZE(key_length)-key_length;
  uint32_t *field_length;
  HASH hash;
  std::vector<unsigned char> key_buffer((key_length + extra_length) * (long) cursor.stats.records);
  std::vector<uint32_t> field_lengths(field_count);

  {
    Field **ptr;
    uint32_t total_length= 0;

    for (ptr= first_field, field_length= &field_lengths[0] ; *ptr ; ptr++)
    {
      uint32_t length= (*ptr)->sort_length();
      (*field_length++)= length;
      total_length+= length;
    }
    assert(total_length <= key_length);
    key_length= total_length;
    extra_length= ALIGN_SIZE(key_length)-key_length;
  }

  hash_init(&hash, &my_charset_bin, (uint32_t) cursor.stats.records, 0, key_length, (hash_get_key) 0, 0, 0);

  if ((error= cursor.startTableScan(1)))
    goto err;

  key_pos= &key_buffer[0];
  for (;;)
  {
    if (session->getKilled())
    {
      session->send_kill_message();
      error=0;
      goto err;
    }
    if ((error=cursor.rnd_next(record)))
    {
      if (error == HA_ERR_RECORD_DELETED)
        continue;
      if (error == HA_ERR_END_OF_FILE)
        break;
      goto err;
    }
    if (having && !having->val_int())
    {
      if ((error=cursor.deleteRecord(record)))
        goto err;
      continue;
    }

    /* copy fields to key buffer */
    unsigned char* org_key_pos= key_pos;
    field_length= &field_lengths[0];
    for (Field **ptr= first_field ; *ptr ; ptr++)
    {
      (*ptr)->sort_string(key_pos,*field_length);
      key_pos+= *field_length++;
    }
    /* Check if it exists before */
    if (hash_search(&hash, org_key_pos, key_length))
    {
      /* Duplicated found ; Remove the row */
      if ((error=cursor.deleteRecord(record)))
        goto err;
    }
    else
      (void) my_hash_insert(&hash, org_key_pos);
    key_pos+=extra_length;
  }
  hash_free(&hash);
  cursor.extra(HA_EXTRA_NO_CACHE);
  (void) cursor.endTableScan();
  return 0;

err:
  hash_free(&hash);
  cursor.extra(HA_EXTRA_NO_CACHE);
  (void) cursor.endTableScan();
  if (error)
    table->print_error(error,MYF(0));
  return 1;
}

SortField* make_unireg_sortorder(Order* order, uint32_t* length, SortField* sortorder)
{
  SortField *sort,*pos;

  uint32_t count= 0;
  for (Order *tmp = order; tmp; tmp=tmp->next)
    count++;
  if (not sortorder)
    sortorder= (SortField*) memory::sql_alloc(sizeof(SortField) * (max(count, *length) + 1));
  pos= sort= sortorder;

  for (; order; order= order->next,pos++)
  {
    Item *item= order->item[0]->real_item();
    pos->field= 0; pos->item= 0;
    if (item->type() == Item::FIELD_ITEM)
      pos->field= ((Item_field*) item)->field;
    else if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item())
      pos->field= ((Item_sum*) item)->get_tmp_table_field();
    else if (item->type() == Item::COPY_STR_ITEM)
    {						// Blob patch
      pos->item= ((Item_copy_string*) item)->item;
    }
    else
      pos->item= *order->item;
    pos->reverse=! order->asc;
  }
  *length=count;
  return sort;
}

/*
  eq_ref: Create the lookup key and check if it is the same as saved key

  SYNOPSIS
    cmp_buffer_with_ref()
      tab  Join tab of the accessed table

  DESCRIPTION
    Used by eq_ref access method: create the index lookup key and check if
    we've used this key at previous lookup (If yes, we don't need to repeat
    the lookup - the record has been already fetched)

  RETURN
    true   No cached record for the key, or failed to create the key (due to
           out-of-domain error)
    false  The created key is the same as the previous one (and the record
           is already in table->record)
*/
static bool cmp_buffer_with_ref(JoinTable *tab)
{
  bool no_prev_key;
  if (!tab->ref.disable_cache)
  {
    if (!(no_prev_key= tab->ref.key_err))
    {
      /* Previous access found a row. Copy its key */
      memcpy(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length);
    }
  }
  else
    no_prev_key= true;
  if ((tab->ref.key_err= cp_buffer_from_ref(tab->join->session, &tab->ref)) ||
      no_prev_key)
    return 1;
  return memcmp(tab->ref.key_buff2, tab->ref.key_buff, tab->ref.key_length)
    != 0;
}

bool cp_buffer_from_ref(Session *session, table_reference_st *ref)
{
  enum enum_check_fields save_count_cuted_fields= session->count_cuted_fields;
  session->count_cuted_fields= CHECK_FIELD_IGNORE;
  bool result= 0;

  for (StoredKey **copy=ref->key_copy ; *copy ; copy++)
  {
    if ((*copy)->copy() & 1)
    {
      result= 1;
      break;
    }
  }
  session->count_cuted_fields= save_count_cuted_fields;
  return result;
}

/*****************************************************************************
  Group and order functions
*****************************************************************************/

/**
  Resolve an ORDER BY or GROUP BY column reference.

  Given a column reference (represented by 'order') from a GROUP BY or order_st
  BY clause, find the actual column it represents. If the column being
  resolved is from the GROUP BY clause, the procedure searches the SELECT
  list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
  the ORDER BY clause, only the SELECT list is being searched.

  If 'order' is resolved to an Item, then order->item is set to the found
  Item. If there is no item for the found column (that is, it was resolved
  into a table field), order->item is 'fixed' and is added to all_fields and
  ref_pointer_array.

  ref_pointer_array and all_fields are updated.

  @param[in] session		     Pointer to current thread structure
  @param[in,out] ref_pointer_array  All select, group and order by fields
  @param[in] tables                 List of tables to search in (usually
    FROM clause)
  @param[in] order                  Column reference to be resolved
  @param[in] fields                 List of fields to search in (usually
    SELECT list)
  @param[in,out] all_fields         All select, group and order by fields
  @param[in] is_group_field         True if order is a GROUP field, false if
    order_st by field

  @retval
    false if OK
  @retval
    true  if error occurred
*/
static bool find_order_in_list(Session *session,
                               Item **ref_pointer_array,
                               TableList *tables,
                               Order *order,
                               List<Item> &fields,
                               List<Item> &all_fields,
                               bool is_group_field)
{
  Item *order_item= *order->item; /* The item from the GROUP/order_st caluse. */
  Item::Type order_item_type;
  Item **select_item; /* The corresponding item from the SELECT clause. */
  Field *from_field;  /* The corresponding field from the FROM clause. */
  uint32_t counter;
  enum_resolution_type resolution;

  /*
    Local SP variables may be int but are expressions, not positions.
    (And they can't be used before fix_fields is called for them).
  */
  if (order_item->type() == Item::INT_ITEM && order_item->basic_const_item())
  {						/* Order by position */
    uint32_t count= (uint32_t) order_item->val_int();
    if (!count || count > fields.size())
    {
      my_error(ER_BAD_FIELD_ERROR, MYF(0), order_item->full_name(), session->where());
      return true;
    }
    order->item= ref_pointer_array + count - 1;
    order->in_field_list= 1;
    order->counter= count;
    order->counter_used= 1;
    return false;
  }
  /* Lookup the current GROUP/order_st field in the SELECT clause. */
  select_item= find_item_in_list(session, order_item, fields, &counter, REPORT_EXCEPT_NOT_FOUND, &resolution);
  if (!select_item)
    return true; /* The item is not unique, or some other error occured. */


  /* Check whether the resolved field is not ambiguos. */
  if (select_item != not_found_item)
  {
    Item *view_ref= NULL;
    /*
      If we have found field not by its alias in select list but by its
      original field name, we should additionaly check if we have conflict
      for this name (in case if we would perform lookup in all tables).
    */
    if (resolution == RESOLVED_BEHIND_ALIAS && !order_item->fixed &&
        order_item->fix_fields(session, order->item))
      return true;

    /* Lookup the current GROUP field in the FROM clause. */
    order_item_type= order_item->type();
    from_field= (Field*) not_found_field;
    if ((is_group_field && order_item_type == Item::FIELD_ITEM) ||
        order_item_type == Item::REF_ITEM)
    {
      from_field= find_field_in_tables(session, (Item_ident*) order_item, tables,
                                       NULL, &view_ref, IGNORE_ERRORS, false);
      if (!from_field)
        from_field= (Field*) not_found_field;
    }

    if (from_field == not_found_field ||
        (from_field != view_ref_found ?
         /* it is field of base table => check that fields are same */
         ((*select_item)->type() == Item::FIELD_ITEM &&
          ((Item_field*) (*select_item))->field->eq(from_field)) :
         /*
           in is field of view table => check that references on translation
           table are same
         */
         ((*select_item)->type() == Item::REF_ITEM &&
          view_ref->type() == Item::REF_ITEM &&
          ((Item_ref *) (*select_item))->ref ==
          ((Item_ref *) view_ref)->ref)))
    {
      /*
        If there is no such field in the FROM clause, or it is the same field
        as the one found in the SELECT clause, then use the Item created for
        the SELECT field. As a result if there was a derived field that
        'shadowed' a table field with the same name, the table field will be
        chosen over the derived field.
      */
      order->item= ref_pointer_array + counter;
      order->in_field_list=1;
      return false;
    }
    else
    {
      /*
        There is a field with the same name in the FROM clause. This
        is the field that will be chosen. In this case we issue a
        warning so the user knows that the field from the FROM clause
        overshadows the column reference from the SELECT list.
      */
      push_warning_printf(session, DRIZZLE_ERROR::WARN_LEVEL_WARN, ER_NON_UNIQ_ERROR,
                          ER(ER_NON_UNIQ_ERROR),
                          ((Item_ident*) order_item)->field_name,
                          session->where());
    }
  }

  order->in_field_list=0;
  /*
    The call to order_item->fix_fields() means that here we resolve
    'order_item' to a column from a table in the list 'tables', or to
    a column in some outer query. Exactly because of the second case
    we come to this point even if (select_item == not_found_item),
    inspite of that fix_fields() calls find_item_in_list() one more
    time.

    We check order_item->fixed because Item_func_group_concat can put
    arguments for which fix_fields already was called.
  */
  if (!order_item->fixed &&
      (order_item->fix_fields(session, order->item) ||
       (order_item= *order->item)->check_cols(1) ||
       session->is_fatal_error))
    return true; /* Wrong field. */

  uint32_t el= all_fields.size();
  all_fields.push_front(order_item); /* Add new field to field list. */
  ref_pointer_array[el]= order_item;
  order->item= ref_pointer_array + el;
  return false;
}

/**
  Change order to point at item in select list.

  If item isn't a number and doesn't exits in the select list, add it the
  the field list.
*/
int setup_order(Session *session,
                Item **ref_pointer_array,
                TableList *tables,
		            List<Item> &fields,
                List<Item> &all_fields,
                Order *order)
{
  session->setWhere("order clause");
  for (; order; order= order->next)
  {
    if (find_order_in_list(session, ref_pointer_array, tables, order, fields, all_fields, false))
      return 1;
  }
  return 0;
}

/**
  Intitialize the GROUP BY list.

  @param session			Thread Cursor
  @param ref_pointer_array	We store references to all fields that was
                               not in 'fields' here.
  @param fields		All fields in the select part. Any item in
                               'order' that is part of these list is replaced
                               by a pointer to this fields.
  @param all_fields		Total list of all unique fields used by the
                               select. All items in 'order' that was not part
                               of fields will be added first to this list.
  @param order			The fields we should do GROUP BY on.
  @param hidden_group_fields	Pointer to flag that is set to 1 if we added
                               any fields to all_fields.

  @todo
    change ER_WRONG_FIELD_WITH_GROUP to more detailed
    ER_NON_GROUPING_FIELD_USED

  @retval
    0  ok
  @retval
    1  error (probably out of memory)
*/
int setup_group(Session *session,
                Item **ref_pointer_array,
                TableList *tables,
	              List<Item> &fields,
                List<Item> &all_fields,
                Order *order,
	              bool *hidden_group_fields)
{
  *hidden_group_fields=0;
  Order *ord;

  if (!order)
    return 0;				/* Everything is ok */

  uint32_t org_fields=all_fields.size();

  session->setWhere("group statement");
  for (ord= order; ord; ord= ord->next)
  {
    if (find_order_in_list(session, ref_pointer_array, tables, ord, fields,
			   all_fields, true))
      return 1;
    (*ord->item)->marker= UNDEF_POS;		/* Mark found */
    if ((*ord->item)->with_sum_func)
    {
      my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*ord->item)->full_name());
      return 1;
    }
  }
  /* MODE_ONLY_FULL_GROUP_BY */
  {
    /*
      Don't allow one to use fields that is not used in GROUP BY
      For each select a list of field references that aren't under an
      aggregate function is created. Each field in this list keeps the
      position of the select list expression which it belongs to.

      First we check an expression from the select list against the GROUP BY
      list. If it's found there then it's ok. It's also ok if this expression
      is a constant or an aggregate function. Otherwise we scan the list
      of non-aggregated fields and if we'll find at least one field reference
      that belongs to this expression and doesn't occur in the GROUP BY list
      we throw an error. If there are no fields in the created list for a
      select list expression this means that all fields in it are used under
      aggregate functions.
    */
    Item *item;
    Item_field *field;
    int cur_pos_in_select_list= 0;
    List<Item>::iterator li(fields.begin());
    List<Item_field>::iterator naf_it(session->lex().current_select->non_agg_fields.begin());

    field= naf_it++;
    while (field && (item=li++))
    {
      if (item->type() != Item::SUM_FUNC_ITEM && item->marker >= 0 &&
          !item->const_item() &&
          !(item->real_item()->type() == Item::FIELD_ITEM &&
            item->used_tables() & OUTER_REF_TABLE_BIT))
      {
        while (field)
        {
          /* Skip fields from previous expressions. */
          if (field->marker < cur_pos_in_select_list)
            goto next_field;
          /* Found a field from the next expression. */
          if (field->marker > cur_pos_in_select_list)
            break;
          /*
            Check whether the field occur in the GROUP BY list.
            Throw the error later if the field isn't found.
          */
          for (ord= order; ord; ord= ord->next)
            if ((*ord->item)->eq((Item*)field, 0))
              goto next_field;
          /*
            @todo change ER_WRONG_FIELD_WITH_GROUP to more detailed ER_NON_GROUPING_FIELD_USED
          */
          my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), field->full_name());
          return 1;
next_field:
          field= naf_it++;
        }
      }
      cur_pos_in_select_list++;
    }
  }
  if (org_fields != all_fields.size())
    *hidden_group_fields=1;			// group fields is not used
  return 0;
}

/**
  Create a group by that consist of all non const fields.

  Try to use the fields in the order given by 'order' to allow one to
  optimize away 'order by'.
*/
Order *create_distinct_group(Session *session,
                                Item **ref_pointer_array,
                                Order *order_list,
                                List<Item> &fields,
                                List<Item> &,
                                bool *all_order_by_fields_used)
{
  List<Item>::iterator li(fields.begin());
  Order *order,*group,**prev;

  *all_order_by_fields_used= 1;
  while (Item* item=li++)
    item->marker=0;			/* Marker that field is not used */

  prev= &group;  group=0;
  for (order=order_list ; order; order=order->next)
  {
    if (order->in_field_list)
    {
      Order *ord=(Order*) session->mem.memdup(order,sizeof(Order));
      *prev=ord;
      prev= &ord->next;
      (*ord->item)->marker=1;
    }
    else
      *all_order_by_fields_used= 0;
  }

  li= fields.begin();
  while (Item* item=li++)
  {
    if (!item->const_item() && !item->with_sum_func && !item->marker)
    {
      /*
        Don't put duplicate columns from the SELECT list into the
        GROUP BY list.
      */
      Order *ord_iter;
      for (ord_iter= group; ord_iter; ord_iter= ord_iter->next)
        if ((*ord_iter->item)->eq(item, 1))
          goto next_item;

      Order *ord=(Order*) session->mem.calloc(sizeof(Order));

      /*
        We have here only field_list (not all_field_list), so we can use
        simple indexing of ref_pointer_array (order in the array and in the
        list are same)
      */
      ord->item= ref_pointer_array;
      ord->asc=1;
      *prev=ord;
      prev= &ord->next;
    }
next_item:
    ref_pointer_array++;
  }
  *prev=0;
  return group;
}

/**
  Update join with count of the different type of fields.
*/
void count_field_types(Select_Lex *select_lex, Tmp_Table_Param *param, List<Item> &fields, bool reset_with_sum_func)
{
  List<Item>::iterator li(fields.begin());
  Item *field;

  param->field_count=param->sum_func_count=param->func_count=
    param->hidden_field_count=0;
  param->quick_group=1;
  while ((field=li++))
  {
    Item::Type real_type= field->real_item()->type();
    if (real_type == Item::FIELD_ITEM)
      param->field_count++;
    else if (real_type == Item::SUM_FUNC_ITEM)
    {
      if (! field->const_item())
      {
        Item_sum *sum_item=(Item_sum*) field->real_item();
        if (!sum_item->depended_from() ||
            sum_item->depended_from() == select_lex)
        {
          if (!sum_item->quick_group)
            param->quick_group=0;			// UDF SUM function
          param->sum_func_count++;

          for (uint32_t i=0 ; i < sum_item->arg_count ; i++)
          {
            if (sum_item->args[0]->real_item()->type() == Item::FIELD_ITEM)
              param->field_count++;
            else
              param->func_count++;
          }
        }
        param->func_count++;
      }
    }
    else
    {
      param->func_count++;
      if (reset_with_sum_func)
        field->with_sum_func=0;
    }
  }
}

/*
  Test if a single-row cache of items changed, and update the cache.

  @details Test if a list of items that typically represents a result
  row has changed. If the value of some item changed, update the cached
  value for this item.

  @param list list of <item, cached_value> pairs stored as Cached_item.

  @return -1 if no item changed
  @return index of the first item that changed
*/
int test_if_item_cache_changed(List<Cached_item> &list)
{
  List<Cached_item>::iterator li(list.begin());
  int idx= -1,i;
  Cached_item *buff;

  for (i=(int) list.size()-1 ; (buff=li++) ; i--)
  {
    if (buff->cmp())
      idx=i;
  }
  return(idx);
}

/**
  Setup copy_fields to save fields at start of new group.

  Setup copy_fields to save fields at start of new group

  Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups.
  Change old item_field to use a new field with points at saved fieldvalue
  This function is only called before use of send_fields.

  @param session                   Session pointer
  @param param                 temporary table parameters
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @todo
    In most cases this result will be sent to the user.
    This should be changed to use copy_int or copy_real depending
    on how the value is to be used: In some cases this may be an
    argument in a group function, like: IF(ISNULL(col),0,COUNT(*))

  @retval
    0     ok
  @retval
    !=0   error
*/
bool setup_copy_fields(Session *session,
                       Tmp_Table_Param *param,
                       Item **ref_pointer_array,
                       List<Item> &res_selected_fields,
                       List<Item> &res_all_fields,
                       uint32_t elements,
                       List<Item> &all_fields)
{
  Item *pos;
  List<Item>::iterator li(all_fields.begin());
  CopyField *copy= NULL;
  res_selected_fields.clear();
  res_all_fields.clear();
  List<Item>::iterator itr(res_all_fields.begin());
  List<Item> extra_funcs;
  uint32_t i, border= all_fields.size() - elements;

  if (param->field_count &&
      !(copy= param->copy_field= new CopyField[param->field_count]))
    return true;

  param->copy_funcs.clear();
  for (i= 0; (pos= li++); i++)
  {
    Field *field;
    unsigned char *tmp;
    Item *real_pos= pos->real_item();
    if (real_pos->type() == Item::FIELD_ITEM)
    {
      Item_field* item= new Item_field(session, ((Item_field*) real_pos));
      if (pos->type() == Item::REF_ITEM)
      {
        /* preserve the names of the ref when dereferncing */
        Item_ref *ref= (Item_ref *) pos;
        item->db_name= ref->db_name;
        item->table_name= ref->table_name;
        item->name= ref->name;
      }
      pos= item;
      if (item->field->flags & BLOB_FLAG)
      {
        pos= new Item_copy_string(pos);
            /*
              Item_copy_string::copy for function can call
              Item_copy_string::val_int for blob via Item_ref.
              But if Item_copy_string::copy for blob isn't called before,
              it's value will be wrong
              so let's insert Item_copy_string for blobs in the beginning of
              copy_funcs
              (to see full test case look at having.test, BUG #4358)
            */
        param->copy_funcs.push_front(pos);
      }
      else
      {
        /*
          set up save buffer and change result_field to point at
          saved value
        */
        field= item->field;
        item->result_field=field->new_field(session->mem_root,field->getTable(), 1);
              /*
                We need to allocate one extra byte for null handling and
                another extra byte to not get warnings from purify in
                Field_varstring::val_int
              */
        if (!(tmp= (unsigned char*) memory::sql_alloc(field->pack_length()+2)))
          goto err;
        if (copy)
        {
          copy->set(tmp, item->result_field);
          item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1);
#ifdef HAVE_VALGRIND
          copy->to_ptr[copy->from_length]= 0;
#endif
          copy++;
        }
      }
    }
    else if ((real_pos->type() == Item::FUNC_ITEM ||
	      real_pos->type() == Item::SUBSELECT_ITEM ||
	      real_pos->type() == Item::CACHE_ITEM ||
	      real_pos->type() == Item::COND_ITEM) &&
	     !real_pos->with_sum_func)
    {						// Save for send fields
      pos= real_pos;
      /*
        @todo In most cases this result will be sent to the user.
        This should be changed to use copy_int or copy_real depending
        on how the value is to be used: In some cases this may be an
        argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
      */
      pos=new Item_copy_string(pos);
      if (i < border)                           // HAVING, order_st and GROUP BY
        extra_funcs.push_back(pos);
      else 
				param->copy_funcs.push_back(pos);
    }
    res_all_fields.push_back(pos);
    ref_pointer_array[((i < border)? all_fields.size()-i-1 : i-border)]=
      pos;
  }
  param->copy_field_end= copy;

  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);
  /*
    Put elements from HAVING, ORDER BY and GROUP BY last to ensure that any
    reference used in these will resolve to a item that is already calculated
  */
  param->copy_funcs.concat(&extra_funcs);

  return 0;

err:
  if (copy)
    delete[] param->copy_field;
  param->copy_field=0;
  return true;
}

/**
  Make a copy of all simple SELECT'ed items.

  This is done at the start of a new group so that we can retrieve
  these later when the group changes.
*/
void copy_fields(Tmp_Table_Param *param)
{
  CopyField *ptr= param->copy_field;
  CopyField *end= param->copy_field_end;

  for (; ptr != end; ptr++)
    (*ptr->do_copy)(ptr);

  List<Item>::iterator it(param->copy_funcs.begin());
  Item_copy_string *item;
  while ((item = (Item_copy_string*) it++))
    item->copy();
}

/**
  Change all funcs and sum_funcs to fields in tmp table, and create
  new list of all items.

  @param session                   Session pointer
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @retval
    0     ok
  @retval
    !=0   error
*/
bool change_to_use_tmp_fields(Session *session,
                              Item **ref_pointer_array,
			                        List<Item> &res_selected_fields,
			                        List<Item> &res_all_fields,
			                        uint32_t elements,
                              List<Item> &all_fields)
{
  List<Item>::iterator it(all_fields.begin());
  Item *item_field,*item;

  res_selected_fields.clear();
  res_all_fields.clear();

  uint32_t i, border= all_fields.size() - elements;
  for (i= 0; (item= it++); i++)
  {
    Field *field;

    if ((item->with_sum_func && item->type() != Item::SUM_FUNC_ITEM) ||
        (item->type() == Item::FUNC_ITEM &&
         ((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC))
      item_field= item;
    else
    {
      if (item->type() == Item::FIELD_ITEM)
      {
        item_field= item->get_tmp_table_item(session);
      }
      else if ((field= item->get_tmp_table_field()))
      {
        if (item->type() == Item::SUM_FUNC_ITEM && field->getTable()->group)
          item_field= ((Item_sum*) item)->result_item(field);
        else
          item_field= (Item*) new Item_field(field);
        if (!item_field)
          return true;                    // Fatal error

        if (item->real_item()->type() != Item::FIELD_ITEM)
          field->orig_table= 0;
        item_field->name= item->name;
        if (item->type() == Item::REF_ITEM)
        {
          Item_field *ifield= (Item_field *) item_field;
          Item_ref *iref= (Item_ref *) item;
          ifield->table_name= iref->table_name;
          ifield->db_name= iref->db_name;
        }
      }
      else
        item_field= item;
    }
    res_all_fields.push_back(item_field);
    ref_pointer_array[((i < border)? all_fields.size()-i-1 : i-border)]=
      item_field;
  }

  List<Item>::iterator itr(res_all_fields.begin());
  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);
  return false;
}

/**
  Change all sum_func refs to fields to point at fields in tmp table.
  Change all funcs to be fields in tmp table.

  @param session                   Session pointer
  @param ref_pointer_array     array of pointers to top elements of filed list
  @param res_selected_fields   new list of items of select item list
  @param res_all_fields        new list of all items
  @param elements              number of elements in select item list
  @param all_fields            all fields list

  @retval
    0	ok
  @retval
    1	error
*/
bool change_refs_to_tmp_fields(Session *session,
                               Item **ref_pointer_array,
                               List<Item> &res_selected_fields,
                               List<Item> &res_all_fields,
                               uint32_t elements,
			                         List<Item> &all_fields)
{
  List<Item>::iterator it(all_fields.begin());
  Item *item, *new_item;
  res_selected_fields.clear();
  res_all_fields.clear();

  uint32_t i, border= all_fields.size() - elements;
  for (i= 0; (item= it++); i++)
  {
    res_all_fields.push_back(new_item= item->get_tmp_table_item(session));
    ref_pointer_array[((i < border)? all_fields.size()-i-1 : i-border)]=
      new_item;
  }

  List<Item>::iterator itr(res_all_fields.begin());
  for (i= 0; i < border; i++)
    itr++;
  itr.sublist(res_selected_fields, elements);

  return session->is_fatal_error;
}

/******************************************************************************
  Code for calculating functions
******************************************************************************/

/**
  Call ::setup for all sum functions.

  @param session           thread Cursor
  @param func_ptr      sum function list

  @retval
    false  ok
  @retval
    true   error
*/
bool setup_sum_funcs(Session *session, Item_sum **func_ptr)
{
  Item_sum *func;
  while ((func= *(func_ptr++)))
  {
    if (func->setup(session))
      return true;
  }
  return false;
}

void init_tmptable_sum_functions(Item_sum **func_ptr)
{
  Item_sum *func;
  while ((func= *(func_ptr++)))
    func->reset_field();
}

/** Update record 0 in tmp_table from record 1. */
void update_tmptable_sum_func(Item_sum **func_ptr, Table *)
{
  Item_sum *func;
  while ((func= *(func_ptr++)))
    func->update_field();
}

/** Copy result of sum functions to record in tmp_table. */
void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr)
{
  for (; func_ptr != end_ptr ; func_ptr++)
    (void) (*func_ptr)->save_in_result_field(1);
  return;
}

bool init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr)
{
  for (; func_ptr != end_ptr ;func_ptr++)
  {
    if ((*func_ptr)->reset())
      return 1;
  }
  /* If rollup, calculate the upper sum levels */
  for ( ; *func_ptr ; func_ptr++)
  {
    if ((*func_ptr)->add())
      return 1;
  }
  return 0;
}

bool update_sum_func(Item_sum **func_ptr)
{
  Item_sum *func;
  for (; (func= (Item_sum*) *func_ptr) ; func_ptr++)
    if (func->add())
      return 1;
  return 0;
}

/** Copy result of functions to record in tmp_table. */
bool copy_funcs(Item **func_ptr, const Session *session)
{
  Item *func;
  for (; (func = *func_ptr) ; func_ptr++)
  {
    func->save_in_result_field(1);
    /*
      Need to check the THD error state because Item::val_xxx() don't
      return error code, but can generate errors
      @todo change it for a real status check when Item::val_xxx()
      are extended to return status code.
    */
    if (session->is_error())
      return true;
  }
  return false;
}

/**
  Free joins of subselect of this select.

  @param session      Session pointer
  @param select   pointer to Select_Lex which subselects joins we will free
*/
void free_underlaid_joins(Session *, Select_Lex *select)
{
  for (Select_Lex_Unit *unit= select->first_inner_unit();
       unit;
       unit= unit->next_unit())
    unit->cleanup();
}

/****************************************************************************
  ROLLUP handling
****************************************************************************/

/**
  Replace occurences of group by fields in an expression by ref items.

  The function replaces occurrences of group by fields in expr
  by ref objects for these fields unless they are under aggregate
  functions.
  The function also corrects value of the the maybe_null attribute
  for the items of all subexpressions containing group by fields.

  @b EXAMPLES
    @code
      SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP
      SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP
  @endcode

  @b IMPLEMENTATION

    The function recursively traverses the tree of the expr expression,
    looks for occurrences of the group by fields that are not under
    aggregate functions and replaces them for the corresponding ref items.

  @note
    This substitution is needed GROUP BY queries with ROLLUP if
    SELECT list contains expressions over group by attributes.

  @param session                  reference to the context
  @param expr                 expression to make replacement
  @param group_list           list of references to group by items
  @param changed        out:  returns 1 if item contains a replaced field item

  @todo
    - @todo Some functions are not null-preserving. For those functions
    updating of the maybe_null attribute is an overkill.

  @retval
    0	if ok
  @retval
    1   on error
*/
bool change_group_ref(Session *session, Item_func *expr, Order *group_list, bool *changed)
{
  if (expr->arg_count)
  {
    Name_resolution_context *context= &session->lex().current_select->context;
    Item **arg,**arg_end;
    bool arg_changed= false;
    for (arg= expr->arguments(),
         arg_end= expr->arguments()+expr->arg_count;
         arg != arg_end; arg++)
    {
      Item *item= *arg;
      if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM)
      {
        Order *group_tmp;
        for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
        {
          if (item->eq(*group_tmp->item,0))
          {
            Item* new_item= new Item_ref(context, group_tmp->item, 0, item->name);
            *arg= new_item;
            arg_changed= true;
          }
        }
      }
      else if (item->type() == Item::FUNC_ITEM)
      {
        if (change_group_ref(session, (Item_func *) item, group_list, &arg_changed))
          return 1;
      }
    }
    if (arg_changed)
    {
      expr->maybe_null= 1;
      *changed= true;
    }
  }
  return 0;
}


static void print_table_array(Session *session, String *str, TableList **table,
                              TableList **end)
{
  (*table)->print(session, str);

  for (TableList **tbl= table + 1; tbl < end; tbl++)
  {
    TableList *curr= *tbl;
    if (curr->outer_join)
    {
      /* MySQL converts right to left joins */
      str->append(STRING_WITH_LEN(" left join "));
    }
    else if (curr->straight)
      str->append(STRING_WITH_LEN(" straight_join "));
    else
      str->append(STRING_WITH_LEN(" join "));
    curr->print(session, str);
    if (curr->on_expr)
    {
      str->append(STRING_WITH_LEN(" on("));
      curr->on_expr->print(str);
      str->append(')');
    }
  }
}

/**
  Print joins from the FROM clause.
  @param session     thread Cursor
  @param str     string where table should be printed
  @param tables  list of tables in join
*/
void print_join(Session *session, String *str,
                List<TableList> *tables)
{
  /* List is reversed => we should reverse it before using */
  List<TableList>::iterator ti(tables->begin());
  TableList **table= new (session->mem) TableList*[tables->size()];

  for (TableList **t= table + (tables->size() - 1); t >= table; t--)
    *t= ti++;
  assert(tables->size() >= 1);
  print_table_array(session, str, table, table + tables->size());
}

void Select_Lex::print(Session *session, String *str)
{
  /* QQ: session may not be set for sub queries, but this should be fixed */
  if(not session)
    session= current_session;


  str->append(STRING_WITH_LEN("select "));

  /* First add options */
  if (options & SELECT_STRAIGHT_JOIN)
    str->append(STRING_WITH_LEN("straight_join "));
  if (options & SELECT_DISTINCT)
    str->append(STRING_WITH_LEN("distinct "));
  if (options & SELECT_SMALL_RESULT)
    str->append(STRING_WITH_LEN("sql_small_result "));
  if (options & SELECT_BIG_RESULT)
    str->append(STRING_WITH_LEN("sql_big_result "));
  if (options & OPTION_BUFFER_RESULT)
    str->append(STRING_WITH_LEN("sql_buffer_result "));
  if (options & OPTION_FOUND_ROWS)
    str->append(STRING_WITH_LEN("sql_calc_found_rows "));

  //Item List
  bool first= 1;
  List<Item>::iterator it(item_list.begin());
  Item *item;
  while ((item= it++))
  {
    if (first)
      first= 0;
    else
      str->append(',');
    item->print_item_w_name(str);
  }

  /*
    from clause
    @todo support USING/FORCE/IGNORE index
  */
  if (table_list.size())
  {
    str->append(STRING_WITH_LEN(" from "));
    /* go through join tree */
    print_join(session, str, &top_join_list);
  }
  else if (where)
  {
    /*
      "SELECT 1 FROM DUAL WHERE 2" should not be printed as
      "SELECT 1 WHERE 2": the 1st syntax is valid, but the 2nd is not.
    */
    str->append(STRING_WITH_LEN(" from DUAL "));
  }

  // Where
  Item *cur_where= where;
  if (join)
    cur_where= join->conds;
  if (cur_where || cond_value != Item::COND_UNDEF)
  {
    str->append(STRING_WITH_LEN(" where "));
    if (cur_where)
      cur_where->print(str);
    else
      str->append(cond_value != Item::COND_FALSE ? "1" : "0");
  }

  // group by & olap
  if (group_list.size())
  {
    str->append(STRING_WITH_LEN(" group by "));
    print_order(str, (Order *) group_list.first);
    switch (olap)
    {
      case CUBE_TYPE:
	str->append(STRING_WITH_LEN(" with cube"));
	break;
      case ROLLUP_TYPE:
	str->append(STRING_WITH_LEN(" with rollup"));
	break;
      default:
	;  //satisfy compiler
    }
  }

  // having
  Item *cur_having= having;
  if (join)
    cur_having= join->having;

  if (cur_having || having_value != Item::COND_UNDEF)
  {
    str->append(STRING_WITH_LEN(" having "));
    if (cur_having)
      cur_having->print(str);
    else
      str->append(having_value != Item::COND_FALSE ? "1" : "0");
  }

  if (order_list.size())
  {
    str->append(STRING_WITH_LEN(" order by "));
    print_order(str, (Order *) order_list.first);
  }

  // limit
  print_limit(session, str);

  // PROCEDURE unsupported here
}

/**
  @} (end of group Query_Optimizer)
*/

} /* namespace drizzled */