~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* Copyright (C) 2007 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  Implementation for the thread scheduler
*/

#ifdef USE_PRAGMA_INTERFACE
#pragma implementation
#endif

#include <mysql_priv.h>
#include "event.h"


/*
  'Dummy' functions to be used when we don't need any handling for a scheduler
  event
 */

static bool init_dummy(void) {return 0;}
static void post_kill_dummy(THD *thd __attribute__((unused))) {}
static void end_dummy(void) {}
static bool end_thread_dummy(THD *thd __attribute__((unused)),
                             bool cache_thread __attribute__((unused)))
{ return 0; }

/*
  Initialize default scheduler with dummy functions so that setup functions
  only need to declare those that are relvant for their usage
*/

scheduler_functions::scheduler_functions()
  :init(init_dummy),
   init_new_connection_thread(init_new_connection_handler_thread),
   add_connection(0),                           // Must be defined
   post_kill_notification(post_kill_dummy),
   end_thread(end_thread_dummy), end(end_dummy)
{}

static uint created_threads, killed_threads;
static bool kill_pool_threads;

static struct event thd_add_event;
static struct event thd_kill_event;

static pthread_mutex_t LOCK_thd_add;    /* protects thds_need_adding */
static LIST *thds_need_adding;    /* list of thds to add to libevent queue */

static int thd_add_pipe[2]; /* pipe to signal add a connection to libevent*/
static int thd_kill_pipe[2]; /* pipe to signal kill a connection in libevent */

/*
  LOCK_event_loop protects the non-thread safe libevent calls (event_add and 
  event_del) and thds_need_processing and thds_waiting_for_io.
*/
static pthread_mutex_t LOCK_event_loop;
static LIST *thds_need_processing; /* list of thds that needs some processing */
static LIST *thds_waiting_for_io; /* list of thds with added events */

pthread_handler_t libevent_thread_proc(void *arg);
static void libevent_end();
static bool libevent_needs_immediate_processing(THD *thd);
static void libevent_connection_close(THD *thd);
static bool libevent_should_close_connection(THD* thd);
static void libevent_thd_add(THD* thd);
void libevent_io_callback(int Fd, short Operation, void *ctx);
void libevent_add_thd_callback(int Fd, short Operation, void *ctx);
void libevent_kill_thd_callback(int Fd, short Operation, void *ctx);


/*
  Create a pipe and set to non-blocking.
  Returns true if there is an error.
*/

static bool init_pipe(int pipe_fds[])
{
  int flags;
  return pipe(pipe_fds) < 0 ||
          (flags= fcntl(pipe_fds[0], F_GETFL)) == -1 ||
          fcntl(pipe_fds[0], F_SETFL, flags | O_NONBLOCK) == -1;
          (flags= fcntl(pipe_fds[1], F_GETFL)) == -1 ||
          fcntl(pipe_fds[1], F_SETFL, flags | O_NONBLOCK) == -1;
}


/*
  thd_scheduler keeps the link between THD and events.
  It's embedded in the THD class.
*/

thd_scheduler::thd_scheduler()
  : logged_in(false), io_event(NULL), thread_attached(false)
{  
  dbug_explain_buf[0]= 0;
}


thd_scheduler::~thd_scheduler()
{
  my_free(io_event, MYF(MY_ALLOW_ZERO_PTR));
}


bool thd_scheduler::init(THD *parent_thd)
{
  io_event=
    (struct event*)my_malloc(sizeof(*io_event),MYF(MY_ZEROFILL|MY_WME));
    
  if (!io_event)
  {
    sql_print_error("Memory allocation error in thd_scheduler::init\n");
    return true;
  }
  
  event_set(io_event, parent_thd->net.vio->sd, EV_READ, 
            libevent_io_callback, (void*)parent_thd);
    
  list.data= parent_thd;
  
  return false;
}


/*
  Attach/associate the connection with the OS thread, for command processing.
*/

bool thd_scheduler::thread_attach()
{
  assert(!thread_attached);
  THD* thd = (THD*)list.data;
  if (libevent_should_close_connection(thd) ||
      setup_connection_thread_globals(thd))
  {
    return true;
  }
  my_errno= 0;
  thd->mysys_var->abort= 0;
  thread_attached= true;
  swap_dbug_explain();
  return false;
}


/*
  Detach/disassociate the connection with the OS thread.
*/

void thd_scheduler::thread_detach()
{
  if (thread_attached)
  {
    THD* thd = (THD*)list.data;
    thd->mysys_var= NULL;
    thread_attached= false;
    swap_dbug_explain();
  }
}


/*
  Swap the THD's dbug explain_buffer with the OS thread's dbug explain buffer.

  This is used to preserve the SESSION DEBUG variable, which is mapped to the OS 
  thread during a command, but each command is handled by a different thread.
*/
void thd_scheduler::swap_dbug_explain()
{
  char buffer[sizeof(dbug_explain_buf)];
  memcpy(dbug_explain_buf, buffer, sizeof(buffer));
}

/**
  Create all threads for the thread pool

  NOTES
    After threads are created we wait until all threads has signaled that
    they have started before we return

  RETURN
    0  ok
    1  We got an error creating the thread pool
       In this case we will abort all created threads
*/

static bool libevent_init(void)
{
  uint i;

  event_init();
  
  created_threads= 0;
  killed_threads= 0;
  kill_pool_threads= false;
  
  pthread_mutex_init(&LOCK_event_loop, NULL);
  pthread_mutex_init(&LOCK_thd_add, NULL);
  
  /* set up the pipe used to add new thds to the event pool */
  if (init_pipe(thd_add_pipe))
  {
    sql_print_error("init_pipe(thd_add_pipe) error in libevent_init\n");
    return(1);
  }
  /* set up the pipe used to kill thds in the event queue */
  if (init_pipe(thd_kill_pipe))
  {
    sql_print_error("init_pipe(thd_kill_pipe) error in libevent_init\n");
    close(thd_add_pipe[0]);
    close(thd_add_pipe[1]);
    return(1);
  }
  event_set(&thd_add_event, thd_add_pipe[0], EV_READ|EV_PERSIST,
            libevent_add_thd_callback, NULL);
  event_set(&thd_kill_event, thd_kill_pipe[0], EV_READ|EV_PERSIST,
            libevent_kill_thd_callback, NULL);
 
 if (event_add(&thd_add_event, NULL) || event_add(&thd_kill_event, NULL))
 {
   sql_print_error("thd_add_event event_add error in libevent_init\n");
   libevent_end();
   return(1);
   
 }
  /* Set up the thread pool */
  created_threads= killed_threads= 0;
  pthread_mutex_lock(&LOCK_thread_count);

  for (i= 0; i < thread_pool_size; i++)
  {
    pthread_t thread;
    int error;
    if ((error= pthread_create(&thread, &connection_attrib,
                               libevent_thread_proc, 0)))
    {
      sql_print_error("Can't create completion port thread (error %d)",
                      error);
      pthread_mutex_unlock(&LOCK_thread_count);
      libevent_end();                      // Cleanup
      return(true);
    }
  }

  /* Wait until all threads are created */
  while (created_threads != thread_pool_size)
    pthread_cond_wait(&COND_thread_count,&LOCK_thread_count);
  pthread_mutex_unlock(&LOCK_thread_count);
  
  return(false);
}


/*
  This is called when data is ready on the socket.
  
  NOTES
    This is only called by the thread that owns LOCK_event_loop.
  
    We add the thd that got the data to thds_need_processing, and 
    cause the libevent event_loop() to terminate. Then this same thread will
    return from event_loop and pick the thd value back up for processing.
*/

void libevent_io_callback(int, short, void *ctx)
{    
  safe_mutex_assert_owner(&LOCK_event_loop);
  THD *thd= (THD*)ctx;
  thds_waiting_for_io= list_delete(thds_waiting_for_io, &thd->scheduler.list);
  thds_need_processing= list_add(thds_need_processing, &thd->scheduler.list);
}

/*
  This is called when we have a thread we want to be killed.
  
  NOTES
    This is only called by the thread that owns LOCK_event_loop.
*/

void libevent_kill_thd_callback(int Fd, short, void*)
{    
  safe_mutex_assert_owner(&LOCK_event_loop);

  /* clear the pending events */
  char c;
  while (read(Fd, &c, sizeof(c)) == sizeof(c))
  {}

  LIST* list= thds_waiting_for_io;
  while (list)
  {
    THD *thd= (THD*)list->data;
    list= list_rest(list);
    if (thd->killed == THD::KILL_CONNECTION)
    {
      /*
        Delete from libevent and add to the processing queue.
      */
      event_del(thd->scheduler.io_event);
      thds_waiting_for_io= list_delete(thds_waiting_for_io,
                                       &thd->scheduler.list);
      thds_need_processing= list_add(thds_need_processing,
                                     &thd->scheduler.list);
    }
  }
}


/*
  This is used to add connections to the pool. This callback is invoked from
  the libevent event_loop() call whenever the thd_add_pipe[1] pipe has a byte
  written to it.
  
  NOTES
    This is only called by the thread that owns LOCK_event_loop.
*/

void libevent_add_thd_callback(int Fd, short, void *)
{ 
  safe_mutex_assert_owner(&LOCK_event_loop);

  /* clear the pending events */
  char c;
  while (read(Fd, &c, sizeof(c)) == sizeof(c))
  {}

  pthread_mutex_lock(&LOCK_thd_add);
  while (thds_need_adding)
  {
    /* pop the first thd off the list */
    THD* thd= (THD*)thds_need_adding->data;
    thds_need_adding= list_delete(thds_need_adding, thds_need_adding);

    pthread_mutex_unlock(&LOCK_thd_add);
    
    if (!thd->scheduler.logged_in || libevent_should_close_connection(thd))
    {
      /*
        Add thd to thds_need_processing list. If it needs closing we'll close
        it outside of event_loop().
      */
      thds_need_processing= list_add(thds_need_processing,
                                     &thd->scheduler.list);
    }
    else
    {
      /* Add to libevent */
      if (event_add(thd->scheduler.io_event, NULL))
      {
        sql_print_error("event_add error in libevent_add_thd_callback\n");
        libevent_connection_close(thd);
      } 
      else
      {
        thds_waiting_for_io= list_add(thds_waiting_for_io,
                                      &thd->scheduler.list);
      }
    }
    pthread_mutex_lock(&LOCK_thd_add);
  }
  pthread_mutex_unlock(&LOCK_thd_add);
}


/**
  Notify the thread pool about a new connection

  NOTES
    LOCK_thread_count is locked on entry. This function MUST unlock it!
*/

static void libevent_add_connection(THD *thd)
{
  if (thd->scheduler.init(thd))
  {
    sql_print_error("Scheduler init error in libevent_add_new_connection\n");
    pthread_mutex_unlock(&LOCK_thread_count);
    libevent_connection_close(thd);
    return;
  }
  threads.append(thd);
  libevent_thd_add(thd);
  
  pthread_mutex_unlock(&LOCK_thread_count);
  return;
}


/**
  @brief Signal a waiting connection it's time to die.
 
  @details This function will signal libevent the THD should be killed.
    Either the global LOCK_thd_count or the THD's LOCK_delete must be locked
    upon entry.
 
  @param[in]  thd The connection to kill
*/

static void libevent_post_kill_notification(THD *)
{
  /*
    Note, we just wake up libevent with an event that a THD should be killed,
    It will search its list of thds for thd->killed ==  KILL_CONNECTION to
    find the THDs it should kill.
    
    So we don't actually tell it which one and we don't actually use the
    THD being passed to us, but that's just a design detail that could change
    later.
  */
  char c= 0;
  write(thd_kill_pipe[1], &c, sizeof(c));
}


/*
  Close and delete a connection.
*/

static void libevent_connection_close(THD *thd)
{
  thd->killed= THD::KILL_CONNECTION;          // Avoid error messages

  if (thd->net.vio->sd >= 0)                  // not already closed
  {
    end_connection(thd);
    close_connection(thd, 0, 1);
  }
  thd->scheduler.thread_detach();
  unlink_thd(thd);   /* locks LOCK_thread_count and deletes thd */
  pthread_mutex_unlock(&LOCK_thread_count);

  return;
}


/*
  Returns true if we should close and delete a THD connection.
*/

static bool libevent_should_close_connection(THD* thd)
{
  return thd->net.error ||
         thd->net.vio == 0 ||
         thd->killed == THD::KILL_CONNECTION;
}


/*
  libevent_thread_proc is the outer loop of each thread in the thread pool.
  These procs only return/terminate on shutdown (kill_pool_threads == true).
*/

pthread_handler_t libevent_thread_proc(void *arg __attribute__((unused)))
{
  if (init_new_connection_handler_thread())
  {
    my_thread_global_end();
    sql_print_error("libevent_thread_proc: my_thread_init() failed\n");
    exit(1);
  }

  /*
    Signal libevent_init() when all threads has been created and are ready to
    receive events.
  */
  (void) pthread_mutex_lock(&LOCK_thread_count);
  created_threads++;
  if (created_threads == thread_pool_size)
    (void) pthread_cond_signal(&COND_thread_count);
  (void) pthread_mutex_unlock(&LOCK_thread_count);
  
  for (;;)
  {
    THD *thd= NULL;
    (void) pthread_mutex_lock(&LOCK_event_loop);
    
    /* get thd(s) to process */
    while (!thds_need_processing)
    {
      if (kill_pool_threads)
      {
        /* the flag that we should die has been set */
        (void) pthread_mutex_unlock(&LOCK_event_loop);
        goto thread_exit;
      }
      event_loop(EVLOOP_ONCE);
    }
    
    /* pop the first thd off the list */
    thd= (THD*)thds_need_processing->data;
    thds_need_processing= list_delete(thds_need_processing,
                                      thds_need_processing);
    
    (void) pthread_mutex_unlock(&LOCK_event_loop);
    
    /* now we process the connection (thd) */
    
    /* set up the thd<->thread links. */
    thd->thread_stack= (char*) &thd;
    
    if (thd->scheduler.thread_attach())
    {
      libevent_connection_close(thd);
      continue;
    }

    /* is the connection logged in yet? */
    if (!thd->scheduler.logged_in)
    {
      if (login_connection(thd))
      {
        /* Failed to log in */
        libevent_connection_close(thd);
        continue;
      }
      else
      {
        /* login successful */
        thd->scheduler.logged_in= true;
        prepare_new_connection_state(thd);
        if (!libevent_needs_immediate_processing(thd))
          continue; /* New connection is now waiting for data in libevent*/
      }
    }

    do
    {
      /* Process a query */
      if (do_command(thd))
      {
        libevent_connection_close(thd);
        break;
      }
    } while (libevent_needs_immediate_processing(thd));
  }
  
thread_exit:
  (void) pthread_mutex_lock(&LOCK_thread_count);
  killed_threads++;
  pthread_cond_broadcast(&COND_thread_count);
  (void) pthread_mutex_unlock(&LOCK_thread_count);
  my_thread_end();
  pthread_exit(0);
  return(0);                               /* purify: deadcode */
}


/*
  Returns true if the connection needs immediate processing and false if 
  instead it's queued for libevent processing or closed,
*/

static bool libevent_needs_immediate_processing(THD *thd)
{
  if (libevent_should_close_connection(thd))
  {
    libevent_connection_close(thd);
    return false;
  }
  /*
    If more data in the socket buffer, return true to process another command.

    Note: we cannot add for event processing because the whole request might
    already be buffered and we wouldn't receive an event.
  */
  if (thd->net.vio == 0 || thd->net.vio->read_pos < thd->net.vio->read_end)
    return true;
  
  thd->scheduler.thread_detach();
  libevent_thd_add(thd);
  return false;
}


/*
  Adds a THD to queued for libevent processing.
  
  This call does not actually register the event with libevent.
  Instead, it places the THD onto a queue and signals libevent by writing
  a byte into thd_add_pipe, which will cause our libevent_add_thd_callback to
  be invoked which will find the THD on the queue and add it to libevent.
*/

static void libevent_thd_add(THD* thd)
{
  char c=0;
  pthread_mutex_lock(&LOCK_thd_add);
  /* queue for libevent */
  thds_need_adding= list_add(thds_need_adding, &thd->scheduler.list);
  /* notify libevent */
  write(thd_add_pipe[1], &c, sizeof(c));
  pthread_mutex_unlock(&LOCK_thd_add);
}


/**
  Wait until all pool threads have been deleted for clean shutdown
*/

static void libevent_end()
{
  (void) pthread_mutex_lock(&LOCK_thread_count);
  
  kill_pool_threads= true;
  while (killed_threads != created_threads)
  {
    /* wake up the event loop */
    char c= 0;
    write(thd_add_pipe[1], &c, sizeof(c));

    pthread_cond_wait(&COND_thread_count, &LOCK_thread_count);
  }
  (void) pthread_mutex_unlock(&LOCK_thread_count);
  
  event_del(&thd_add_event);
  close(thd_add_pipe[0]);
  close(thd_add_pipe[1]);
  event_del(&thd_kill_event);
  close(thd_kill_pipe[0]);
  close(thd_kill_pipe[1]);

  (void) pthread_mutex_destroy(&LOCK_event_loop);
  (void) pthread_mutex_destroy(&LOCK_thd_add);
  return;
}


void pool_of_threads_scheduler(scheduler_functions* func)
{
  func->max_threads= thread_pool_size;
  func->init= libevent_init;
  func->end=  libevent_end;
  func->post_kill_notification= libevent_post_kill_notification;
  func->add_connection= libevent_add_connection;
}