~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/* Copyright (C) 2000 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  qsort implementation optimized for comparison of pointers
  Inspired by the qsort implementations by Douglas C. Schmidt,
  and Bentley & McIlroy's "Engineering a Sort Function".
*/


#include "mysys_priv.h"
#include <mystrings/m_string.h>
/* We need to use qsort with 2 different compare functions */
#ifdef QSORT_EXTRA_CMP_ARGUMENT
#define CMP(A,B) ((*cmp)(cmp_argument,(A),(B)))
#else
#define CMP(A,B) ((*cmp)((A),(B)))
#endif

#define SWAP(A, B, size,swap_ptrs)			\
do {							\
   if (swap_ptrs)					\
   {							\
     register char **a = (char**) (A), **b = (char**) (B);  \
     char *tmp = *a; *a++ = *b; *b++ = tmp;		\
   }							\
   else							\
   {							\
     register char *a = (A), *b = (B);			\
     register char *end= a+size;				\
     do							\
     {							\
       char tmp = *a; *a++ = *b; *b++ = tmp;		\
     } while (a < end);					\
   }							\
} while (0)

/* Put the median in the middle argument */
#define MEDIAN(low, mid, high)				\
{							\
    if (CMP(high,low) < 0)				\
      SWAP(high, low, size, ptr_cmp);			\
    if (CMP(mid, low) < 0)				\
      SWAP(mid, low, size, ptr_cmp);			\
    else if (CMP(high, mid) < 0)			\
      SWAP(mid, high, size, ptr_cmp);			\
}

/* The following node is used to store ranges to avoid recursive calls */

typedef struct st_stack
{
  char *low,*high;
} stack_node;

#define PUSH(LOW,HIGH)  {stack_ptr->low = LOW; stack_ptr++->high = HIGH;}
#define POP(LOW,HIGH)   {LOW = (--stack_ptr)->low; HIGH = stack_ptr->high;}

/* The following stack size is enough for ulong ~0 elements */
#define STACK_SIZE	(8 * sizeof(unsigned long int))
#define THRESHOLD_FOR_INSERT_SORT 10
#if defined(QSORT_TYPE_IS_VOID)
#define SORT_RETURN return
#else
#define SORT_RETURN return 0
#endif

/****************************************************************************
** 'standard' quicksort with the following extensions:
**
** Can be compiled with the qsort2_cmp compare function
** Store ranges on stack to avoid recursion
** Use insert sort on small ranges
** Optimize for sorting of pointers (used often by MySQL)
** Use median comparison to find partition element
*****************************************************************************/

#ifdef QSORT_EXTRA_CMP_ARGUMENT
qsort_t my_qsort2(void *base_ptr, size_t count, size_t size, qsort2_cmp cmp,
	       void *cmp_argument)
#else
qsort_t my_qsort(void *base_ptr, size_t count, size_t size, qsort_cmp cmp)
#endif
{
  char *low, *high, *pivot;
  stack_node stack[STACK_SIZE], *stack_ptr;
  bool ptr_cmp;
  /* Handle the simple case first */
  /* This will also make the rest of the code simpler */
  if (count <= 1)
    SORT_RETURN;

  low  = (char*) base_ptr;
  high = low+ size * (count - 1);
  stack_ptr = stack + 1;
#ifdef HAVE_purify
  /* The first element in the stack will be accessed for the last POP */
  stack[0].low=stack[0].high=0;
#endif
  pivot = (char *) my_alloca((int) size);
  ptr_cmp= size == sizeof(char*) && !((low - (char*) 0)& (sizeof(char*)-1));

  /* The following loop sorts elements between high and low */
  do
  {
    char *low_ptr, *high_ptr, *mid;

    count=((size_t) (high - low) / size)+1;
    /* If count is small, then an insert sort is faster than qsort */
    if (count < THRESHOLD_FOR_INSERT_SORT)
    {
      for (low_ptr = low + size; low_ptr <= high; low_ptr += size)
      {
	char *ptr;
	for (ptr = low_ptr; ptr > low && CMP(ptr - size, ptr) > 0;
	     ptr -= size)
	  SWAP(ptr, ptr - size, size, ptr_cmp);
      }
      POP(low, high);
      continue;
    }

    /* Try to find a good middle element */
    mid= low + size * (count >> 1);
    if (count > 40)				/* Must be bigger than 24 */
    {
      size_t step = size* (count / 8);
      MEDIAN(low, low + step, low+step*2);
      MEDIAN(mid - step, mid, mid+step);
      MEDIAN(high - 2 * step, high-step, high);
      /* Put best median in 'mid' */
      MEDIAN(low+step, mid, high-step);
      low_ptr  = low;
      high_ptr = high;
    }
    else
    {
      MEDIAN(low, mid, high);
      /* The low and high argument are already in sorted against 'pivot' */
      low_ptr  = low + size;
      high_ptr = high - size;
    }
    memcpy(pivot, mid, size);

    do
    {
      while (CMP(low_ptr, pivot) < 0)
	low_ptr += size;
      while (CMP(pivot, high_ptr) < 0)
	high_ptr -= size;

      if (low_ptr < high_ptr)
      {
	SWAP(low_ptr, high_ptr, size, ptr_cmp);
	low_ptr += size;
	high_ptr -= size;
      }
      else 
      {
	if (low_ptr == high_ptr)
	{
	  low_ptr += size;
	  high_ptr -= size;
	}
	break;
      }
    }
    while (low_ptr <= high_ptr);

    /*
      Prepare for next iteration.
       Skip partitions of size 1 as these doesn't have to be sorted
       Push the larger partition and sort the smaller one first.
       This ensures that the stack is keept small.
    */

    if ((int) (high_ptr - low) <= 0)
    {
      if ((int) (high - low_ptr) <= 0)
      {
	POP(low, high);			/* Nothing more to sort */
      }
      else
	low = low_ptr;			/* Ignore small left part. */
    }
    else if ((int) (high - low_ptr) <= 0)
      high = high_ptr;			/* Ignore small right part. */
    else if ((high_ptr - low) > (high - low_ptr))
    {
      PUSH(low, high_ptr);		/* Push larger left part */
      low = low_ptr;
    }
    else
    {
      PUSH(low_ptr, high);		/* Push larger right part */
      high = high_ptr;
    }
  } while (stack_ptr > stack);
  my_afree(pivot);
  SORT_RETURN;
}