~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#ifndef _SQL_BITMAP_H_
#define _SQL_BITMAP_H_
/* Copyright (C) 2003 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  Implementation of a bitmap type.
  The idea with this is to be able to handle any constant number of bits but
  also be able to use 32 or 64 bits bitmaps very efficiently
*/

#include <mysys/my_bitmap.h>

template <uint default_width> class Bitmap
{
  MY_BITMAP map;
  uint32_t buffer[(default_width+31)/32];
public:
  Bitmap() { init(); }
  Bitmap(const Bitmap& from) { *this=from; }
  explicit Bitmap(uint prefix_to_set) { init(prefix_to_set); }
  void init() { bitmap_init(&map, buffer, default_width, 0); }
  void init(uint prefix_to_set) { init(); set_prefix(prefix_to_set); }
  uint length() const { return default_width; }
  Bitmap& operator=(const Bitmap& map2)
  {
    init();
    memcpy(buffer, map2.buffer, sizeof(buffer));
    return *this;
  }
  void set_bit(uint n) { bitmap_set_bit(&map, n); }
  void clear_bit(uint n) { bitmap_clear_bit(&map, n); }
  void set_prefix(uint n) { bitmap_set_prefix(&map, n); }
  void set_all() { bitmap_set_all(&map); }
  void clear_all() { bitmap_clear_all(&map); }
  void intersect(Bitmap& map2) { bitmap_intersect(&map, &map2.map); }
  void intersect(uint64_t map2buff)
  {
    MY_BITMAP map2;
    bitmap_init(&map2, (uint32_t *)&map2buff, sizeof(uint64_t)*8, 0);
    bitmap_intersect(&map, &map2);
  }
  /* Use highest bit for all bits above sizeof(uint64_t)*8. */
  void intersect_extended(uint64_t map2buff)
  {
    intersect(map2buff);
    if (map.n_bits > sizeof(uint64_t) * 8)
      bitmap_set_above(&map, sizeof(uint64_t),
                       test(map2buff & (1 << (sizeof(uint64_t) * 8 - 1))));
  }
  void subtract(Bitmap& map2) { bitmap_subtract(&map, &map2.map); }
  void merge(Bitmap& map2) { bitmap_union(&map, &map2.map); }
  bool is_set(uint n) const { return bitmap_is_set(&map, n); }
  bool is_set() const { return !bitmap_is_clear_all(&map); }
  bool is_prefix(uint n) const { return bitmap_is_prefix(&map, n); }
  bool is_clear_all() const { return bitmap_is_clear_all(&map); }
  bool is_set_all() const { return bitmap_is_set_all(&map); }
  bool is_subset(const Bitmap& map2) const { return bitmap_is_subset(&map, &map2.map); }
  bool is_overlapping(const Bitmap& map2) const { return bitmap_is_overlapping(&map, &map2.map); }
  bool operator==(const Bitmap& map2) const { return bitmap_cmp(&map, &map2.map); }
  bool operator!=(const Bitmap& map2) const { return !bitmap_cmp(&map, &map2.map); }
  Bitmap operator&=(uint n)
  {
    if (bitmap_is_set(&map, n))
    {
      bitmap_clear_all(&map);
      bitmap_set_bit(&map, n);
    }
    else
      bitmap_clear_all(&map);
    return *this;
  }
  Bitmap operator&=(const Bitmap& map2)
  {
    bitmap_intersect(&map, &map2.map);
    return *this;
  }
  Bitmap operator&(uint n)
  {
    Bitmap bm(*this);
    bm&= n;
    return bm;
  }
  Bitmap operator&(const Bitmap& map2)
  {
    Bitmap bm(*this);
    bm&= map2;
    return bm;
  }
  Bitmap operator|=(uint n)
  {
    bitmap_set_bit(&map, n);
    return *this;
  }
  Bitmap operator|=(const Bitmap& map2)
  {
    bitmap_union(&map, &map2.map);
  }
  Bitmap operator|(uint n)
  {
    Bitmap bm(*this);
    bm|= n;
    return bm;
  }
  Bitmap operator|(const Bitmap& map2)
  {
    Bitmap bm(*this);
    bm|= map2;
    return bm;
  }
  Bitmap operator~()
  {
    Bitmap bm(*this);
    bitmap_invert(&bm.map);
    return bm;
  }
  char *print(char *buf) const
  {
    char *s=buf;
    const uchar *e=(uchar *)buffer, *b=e+sizeof(buffer)-1;
    while (!*b && b>e)
      b--;
    if ((*s=_dig_vec_upper[*b >> 4]) != '0')
        s++;
    *s++=_dig_vec_upper[*b & 15];
    while (--b>=e)
    {
      *s++=_dig_vec_upper[*b >> 4];
      *s++=_dig_vec_upper[*b & 15];
    }
    *s=0;
    return buf;
  }
  uint64_t to_uint64_t() const
  {
    if (sizeof(buffer) >= 8)
      return uint8korr(buffer);
    assert(sizeof(buffer) >= 4);
    return (uint64_t) uint4korr(buffer);
  }
};

template <> class Bitmap<64>
{
  uint64_t map;
public:
  Bitmap<64>() { map= 0; }
  explicit Bitmap<64>(uint prefix_to_set) { set_prefix(prefix_to_set); }
  void init() { }
  void init(uint prefix_to_set) { set_prefix(prefix_to_set); }
  uint length() const { return 64; }
  void set_bit(uint n) { map|= ((uint64_t)1) << n; }
  void clear_bit(uint n) { map&= ~(((uint64_t)1) << n); }
  void set_prefix(uint n)
  {
    if (n >= length())
      set_all();
    else
      map= (((uint64_t)1) << n)-1;
  }
  void set_all() { map=~(uint64_t)0; }
  void clear_all() { map=(uint64_t)0; }
  void intersect(Bitmap<64>& map2) { map&= map2.map; }
  void intersect(uint64_t map2) { map&= map2; }
  void intersect_extended(uint64_t map2) { map&= map2; }
  void subtract(Bitmap<64>& map2) { map&= ~map2.map; }
  void merge(Bitmap<64>& map2) { map|= map2.map; }
  bool is_set(uint n) const { return test(map & (((uint64_t)1) << n)); }
  bool is_prefix(uint n) const { return map == (((uint64_t)1) << n)-1; }
  bool is_clear_all() const { return map == (uint64_t)0; }
  bool is_set_all() const { return map == ~(uint64_t)0; }
  bool is_subset(const Bitmap<64>& map2) const { return !(map & ~map2.map); }
  bool is_overlapping(const Bitmap<64>& map2) const { return (map & map2.map)!= 0; }
  bool operator==(const Bitmap<64>& map2) const { return map == map2.map; }
  char *print(char *buf) const { int64_t2str(map,buf,16); return buf; }
  uint64_t to_uint64_t() const { return map; }
};


/* An iterator to quickly walk over bits in unint64_t bitmap. */
class Table_map_iterator
{
  uint64_t bmp;
  uint no;
public:
  Table_map_iterator(uint64_t t) : bmp(t), no(0) {}
  int next_bit()
  {
    static const char last_bit[16]= {32, 0, 1, 0, 
                                      2, 0, 1, 0, 
                                      3, 0, 1, 0,
                                      2, 0, 1, 0};
    uint bit;
    while ((bit= last_bit[bmp & 0xF]) == 32)
    {
      no += 4;
      bmp= bmp >> 4;
      if (!bmp)
        return BITMAP_END;
    }
    bmp &= ~(1 << bit);
    return no + bit;
  }
  enum { BITMAP_END= 64 };
};


#if 0
void print_bits(table_map bmp)
{
  Table_map_iterator it(bmp);
  int i, first= 1;
  fprintf(stderr, "0x%llx = ", bmp);
  while ((i= it.next_bit()) != Table_map_iterator::BITMAP_END)
  {
    fprintf(stderr, " %s 2^%d", (first?"":"+"), i);
    if (first)
      first= 0;
  }
  fprintf(stderr, "\n");
}

int main()
{
  print_bits(1024);
  print_bits(3);
  print_bits(0xF);
  print_bits(0xF0);
  print_bits(35);
  print_bits(1LL<<63);
  print_bits(0);
  print_bits(-1LL);
}
#endif

#endif /* _SQL_BITMAP_H_ */