~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
 *  vim:expandtab:shiftwidth=2:tabstop=2:smarttab:
 *
 *  Copyright (C) 2008 Sun Microsystems
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */


/* classes to use when handling where clause */

#ifndef DRIZZLED_OPT_RANGE_H
#define DRIZZLED_OPT_RANGE_H


typedef struct st_key_part {
  uint16_t           key,part;
  /* See KEY_PART_INFO for meaning of the next two: */
  uint16_t           store_length, length;
  uint8_t            null_bit;
  /*
    Keypart flags (0 when this structure is used by partition pruning code
    for fake partitioning index description)
  */
  uint8_t flag;
  Field            *field;
  Field::imagetype image_type;
} KEY_PART;


class QUICK_RANGE :public Sql_alloc {
 public:
  unsigned char *min_key,*max_key;
  uint16_t min_length,max_length,flag;
  key_part_map min_keypart_map, // bitmap of used keyparts in min_key
               max_keypart_map; // bitmap of used keyparts in max_key
#ifdef HAVE_purify
  uint16_t dummy;					/* Avoid warnings on 'flag' */
#endif
  QUICK_RANGE();				/* Full range */
  QUICK_RANGE(const unsigned char *min_key_arg, uint32_t min_length_arg,
              key_part_map min_keypart_map_arg,
	      const unsigned char *max_key_arg, uint32_t max_length_arg,
              key_part_map max_keypart_map_arg,
	      uint32_t flag_arg)
    : min_key((unsigned char*) sql_memdup(min_key_arg,min_length_arg+1)),
      max_key((unsigned char*) sql_memdup(max_key_arg,max_length_arg+1)),
      min_length((uint16_t) min_length_arg),
      max_length((uint16_t) max_length_arg),
      flag((uint16_t) flag_arg),
      min_keypart_map(min_keypart_map_arg),
      max_keypart_map(max_keypart_map_arg)
    {
#ifdef HAVE_purify
      dummy=0;
#endif
    }
};


/*
  Quick select interface.
  This class is a parent for all QUICK_*_SELECT classes.

  The usage scenario is as follows:
  1. Create quick select
    quick= new QUICK_XXX_SELECT(...);

  2. Perform lightweight initialization. This can be done in 2 ways:
  2.a: Regular initialization
    if (quick->init())
    {
      //the only valid action after failed init() call is delete
      delete quick;
    }
  2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT
    if (quick->init_ror_merged_scan())
      delete quick;

  3. Perform zero, one, or more scans.
    while (...)
    {
      // initialize quick select for scan. This may allocate
      // buffers and/or prefetch rows.
      if (quick->reset())
      {
        //the only valid action after failed reset() call is delete
        delete quick;
        //abort query
      }

      // perform the scan
      do
      {
        res= quick->get_next();
      } while (res && ...)
    }

  4. Delete the select:
    delete quick;

*/

class QUICK_SELECT_I
{
public:
  bool sorted;
  ha_rows records;  /* estimate of # of records to be retrieved */
  double  read_time; /* time to perform this retrieval          */
  Table   *head;
  /*
    Index this quick select uses, or MAX_KEY for quick selects
    that use several indexes
  */
  uint32_t index;

  /*
    Total length of first used_key_parts parts of the key.
    Applicable if index!= MAX_KEY.
  */
  uint32_t max_used_key_length;

  /*
    Max. number of (first) key parts this quick select uses for retrieval.
    eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2.
    Applicable if index!= MAX_KEY.

    For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts.
  */
  uint32_t used_key_parts;

  QUICK_SELECT_I();
  virtual ~QUICK_SELECT_I(){};

  /*
    Do post-constructor initialization.
    SYNOPSIS
      init()

    init() performs initializations that should have been in constructor if
    it was possible to return errors from constructors. The join optimizer may
    create and then delete quick selects without retrieving any rows so init()
    must not contain any IO or CPU intensive code.

    If init() call fails the only valid action is to delete this quick select,
    reset() and get_next() must not be called.

    RETURN
      0      OK
      other  Error code
  */
  virtual int  init() = 0;

  /*
    Initialize quick select for row retrieval.
    SYNOPSIS
      reset()

    reset() should be called when it is certain that row retrieval will be
    necessary. This call may do heavyweight initialization like buffering first
    N records etc. If reset() call fails get_next() must not be called.
    Note that reset() may be called several times if 
     * the quick select is executed in a subselect
     * a JOIN buffer is used
    
    RETURN
      0      OK
      other  Error code
  */
  virtual int  reset(void) = 0;

  virtual int  get_next() = 0;   /* get next record to retrieve */

  /* Range end should be called when we have looped over the whole index */
  virtual void range_end() {}

  virtual bool reverse_sorted() = 0;
  virtual bool unique_key_range() { return false; }

  enum {
    QS_TYPE_RANGE = 0,
    QS_TYPE_INDEX_MERGE = 1,
    QS_TYPE_RANGE_DESC = 2,
    QS_TYPE_ROR_INTERSECT = 4,
    QS_TYPE_ROR_UNION = 5,
    QS_TYPE_GROUP_MIN_MAX = 6
  };

  /* Get type of this quick select - one of the QS_TYPE_* values */
  virtual int get_type() = 0;

  /*
    Initialize this quick select as a merged scan inside a ROR-union or a ROR-
    intersection scan. The caller must not additionally call init() if this
    function is called.
    SYNOPSIS
      init_ror_merged_scan()
        reuse_handler  If true, the quick select may use table->handler,
                       otherwise it must create and use a separate handler
                       object.
    RETURN
      0     Ok
      other Error
  */
  virtual int init_ror_merged_scan(bool reuse_handler __attribute__((unused)))
  { assert(0); return 1; }

  /*
    Save ROWID of last retrieved row in file->ref. This used in ROR-merging.
  */
  virtual void save_last_pos(){};

  /*
    Append comma-separated list of keys this quick select uses to key_names;
    append comma-separated list of corresponding used lengths to used_lengths.
    This is used by select_describe.
  */
  virtual void add_keys_and_lengths(String *key_names,
                                    String *used_lengths)=0;

  /*
    Append text representation of quick select structure (what and how is
    merged) to str. The result is added to "Extra" field in EXPLAIN output.
    This function is implemented only by quick selects that merge other quick
    selects output and/or can produce output suitable for merging.
  */
  virtual void add_info_string(String *str __attribute__((unused))) {};
  /*
    Return 1 if any index used by this quick select
    uses field which is marked in passed bitmap.
  */
  virtual bool is_keys_used(const MY_BITMAP *fields);

  /*
    rowid of last row retrieved by this quick select. This is used only when
    doing ROR-index_merge selects
  */
  unsigned char    *last_rowid;

  /*
    Table record buffer used by this quick select.
  */
  unsigned char    *record;
};


struct st_qsel_param;
class PARAM;
class SEL_ARG;


/*
  MRR range sequence, array<QUICK_RANGE> implementation: sequence traversal
  context.
*/
typedef struct st_quick_range_seq_ctx
{
  QUICK_RANGE **first;
  QUICK_RANGE **cur;
  QUICK_RANGE **last;
} QUICK_RANGE_SEQ_CTX;

range_seq_t quick_range_seq_init(void *init_param, uint32_t n_ranges, uint32_t flags);
uint32_t quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);


/*
  Quick select that does a range scan on a single key. The records are
  returned in key order.
*/
class QUICK_RANGE_SELECT : public QUICK_SELECT_I
{
protected:
  handler *file;
  DYNAMIC_ARRAY ranges;     /* ordered array of range ptrs */

  /* Members to deal with case when this quick select is a ROR-merged scan */
  bool in_ror_merged_scan;
  MY_BITMAP column_bitmap, *save_read_set, *save_write_set;
  bool free_file;   /* TRUE <=> this->file is "owned" by this quick select */

  /* Range pointers to be used when not using MRR interface */
  QUICK_RANGE **cur_range;  /* current element in ranges  */
  QUICK_RANGE *last_range;
  
  /* Members needed to use the MRR interface */
  QUICK_RANGE_SEQ_CTX qr_traversal_ctx;
public:
  uint32_t mrr_flags; /* Flags to be used with MRR interface */
protected:
  uint32_t mrr_buf_size; /* copy from session->variables.read_rnd_buff_size */  
  HANDLER_BUFFER *mrr_buf_desc; /* the handler buffer */

  /* Info about index we're scanning */
  KEY_PART *key_parts;
  KEY_PART_INFO *key_part_info;
  
  bool dont_free; /* Used by QUICK_SELECT_DESC */

  int cmp_next(QUICK_RANGE *range);
  int cmp_prev(QUICK_RANGE *range);
  bool row_in_ranges();
public:
  MEM_ROOT alloc;

  QUICK_RANGE_SELECT(Session *session, Table *table,uint32_t index_arg,bool no_alloc,
                     MEM_ROOT *parent_alloc, bool *create_err);
  ~QUICK_RANGE_SELECT();

  int init();
  int reset(void);
  int get_next();
  void range_end();
  int get_next_prefix(uint32_t prefix_length, key_part_map keypart_map,
                      unsigned char *cur_prefix);
  bool reverse_sorted() { return 0; }
  bool unique_key_range();
  int init_ror_merged_scan(bool reuse_handler);
  void save_last_pos()
  { file->position(record); }
  int get_type() { return QS_TYPE_RANGE; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  void add_info_string(String *str);
private:
  /* Used only by QUICK_SELECT_DESC */
  QUICK_RANGE_SELECT(const QUICK_RANGE_SELECT& org) : QUICK_SELECT_I()
  {
    memmove(this, &org, sizeof(*this));
    /* 
      Use default MRR implementation for reverse scans. No table engine
      currently can do an MRR scan with output in reverse index order.
    */
    mrr_buf_desc= NULL;
    mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
    mrr_buf_size= 0;
  }
  friend class TRP_ROR_INTERSECT;
  friend
  QUICK_RANGE_SELECT *get_quick_select_for_ref(Session *session, Table *table,
                                               struct st_table_ref *ref,
                                               ha_rows records);
  friend bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick, 
                             KEY_PART *key, SEL_ARG *key_tree, 
                             unsigned char *min_key, uint32_t min_key_flag,
                             unsigned char *max_key, uint32_t max_key_flag);
  friend QUICK_RANGE_SELECT *get_quick_select(PARAM*,uint32_t idx,
                                              SEL_ARG *key_tree,
                                              uint32_t mrr_flags,
                                              uint32_t mrr_buf_size,
                                              MEM_ROOT *alloc);
  friend class QUICK_SELECT_DESC;
  friend class QUICK_INDEX_MERGE_SELECT;
  friend class QUICK_ROR_INTERSECT_SELECT;
  friend class QUICK_GROUP_MIN_MAX_SELECT;
  friend uint32_t quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
  friend range_seq_t quick_range_seq_init(void *init_param,
                                          uint32_t n_ranges, uint32_t flags);
  friend void select_describe(JOIN *join, bool need_tmp_table, bool need_order,
                              bool distinct,const char *message);
};


/*
  QUICK_INDEX_MERGE_SELECT - index_merge access method quick select.

    QUICK_INDEX_MERGE_SELECT uses
     * QUICK_RANGE_SELECTs to get rows
     * Unique class to remove duplicate rows

  INDEX MERGE OPTIMIZER
    Current implementation doesn't detect all cases where index_merge could
    be used, in particular:
     * index_merge will never be used if range scan is possible (even if
       range scan is more expensive)

     * index_merge+'using index' is not supported (this the consequence of
       the above restriction)

     * If WHERE part contains complex nested AND and OR conditions, some ways
       to retrieve rows using index_merge will not be considered. The choice
       of read plan may depend on the order of conjuncts/disjuncts in WHERE
       part of the query, see comments near imerge_list_or_list and
       SEL_IMERGE::or_sel_tree_with_checks functions for details.

     * There is no "index_merge_ref" method (but index_merge on non-first
       table in join is possible with 'range checked for each record').

    See comments around SEL_IMERGE class and test_quick_select for more
    details.

  ROW RETRIEVAL ALGORITHM

    index_merge uses Unique class for duplicates removal.  index_merge takes
    advantage of Clustered Primary Key (CPK) if the table has one.
    The index_merge algorithm consists of two phases:

    Phase 1 (implemented in QUICK_INDEX_MERGE_SELECT::prepare_unique):
    prepare()
    {
      activate 'index only';
      while(retrieve next row for non-CPK scan)
      {
        if (there is a CPK scan and row will be retrieved by it)
          skip this row;
        else
          put its rowid into Unique;
      }
      deactivate 'index only';
    }

    Phase 2 (implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next
    calls):

    fetch()
    {
      retrieve all rows from row pointers stored in Unique;
      free Unique;
      retrieve all rows for CPK scan;
    }
*/

class QUICK_INDEX_MERGE_SELECT : public QUICK_SELECT_I
{
public:
  QUICK_INDEX_MERGE_SELECT(Session *session, Table *table);
  ~QUICK_INDEX_MERGE_SELECT();

  int  init();
  int  reset(void);
  int  get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_INDEX_MERGE; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  void add_info_string(String *str);
  bool is_keys_used(const MY_BITMAP *fields);

  bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);

  /* range quick selects this index_merge read consists of */
  List<QUICK_RANGE_SELECT> quick_selects;

  /* quick select that uses clustered primary key (NULL if none) */
  QUICK_RANGE_SELECT* pk_quick_select;

  /* true if this select is currently doing a clustered PK scan */
  bool  doing_pk_scan;

  MEM_ROOT alloc;
  Session *session;
  int read_keys_and_merge();

  /* used to get rows collected in Unique */
  READ_RECORD read_record;
};


/*
  Rowid-Ordered Retrieval (ROR) index intersection quick select.
  This quick select produces intersection of row sequences returned
  by several QUICK_RANGE_SELECTs it "merges".

  All merged QUICK_RANGE_SELECTs must return rowids in rowid order.
  QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too.

  All merged quick selects retrieve {rowid, covered_fields} tuples (not full
  table records).
  QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used
  by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't
  cover needed all fields.

  If one of the merged quick selects is a Clustered PK range scan, it is
  used only to filter rowid sequence produced by other merged quick selects.
*/

class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I
{
public:
  QUICK_ROR_INTERSECT_SELECT(Session *session, Table *table,
                             bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
  ~QUICK_ROR_INTERSECT_SELECT();

  int  init();
  int  reset(void);
  int  get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_ROR_INTERSECT; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  void add_info_string(String *str);
  bool is_keys_used(const MY_BITMAP *fields);
  int init_ror_merged_scan(bool reuse_handler);
  bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);

  /*
    Range quick selects this intersection consists of, not including
    cpk_quick.
  */
  List<QUICK_RANGE_SELECT> quick_selects;

  /*
    Merged quick select that uses Clustered PK, if there is one. This quick
    select is not used for row retrieval, it is used for row retrieval.
  */
  QUICK_RANGE_SELECT *cpk_quick;

  MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
  Session *session;       /* current thread */
  bool need_to_fetch_row; /* if true, do retrieve full table records. */
  /* in top-level quick select, true if merged scans where initialized */
  bool scans_inited; 
};


/*
  Rowid-Ordered Retrieval index union select.
  This quick select produces union of row sequences returned by several
  quick select it "merges".

  All merged quick selects must return rowids in rowid order.
  QUICK_ROR_UNION_SELECT will return rows in rowid order, too.

  All merged quick selects are set not to retrieve full table records.
  ROR-union quick select always retrieves full records.

*/

class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I
{
public:
  QUICK_ROR_UNION_SELECT(Session *session, Table *table);
  ~QUICK_ROR_UNION_SELECT();

  int  init();
  int  reset(void);
  int  get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_ROR_UNION; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
  void add_info_string(String *str);
  bool is_keys_used(const MY_BITMAP *fields);

  bool push_quick_back(QUICK_SELECT_I *quick_sel_range);

  List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */

  QUEUE queue;    /* Priority queue for merge operation */
  MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */

  Session *session;             /* current thread */
  unsigned char *cur_rowid;      /* buffer used in get_next() */
  unsigned char *prev_rowid;     /* rowid of last row returned by get_next() */
  bool have_prev_rowid; /* true if prev_rowid has valid data */
  uint32_t rowid_length;    /* table rowid length */
private:
  static int queue_cmp(void *arg, unsigned char *val1, unsigned char *val2);
  bool scans_inited; 
};


/*
  Index scan for GROUP-BY queries with MIN/MAX aggregate functions.

  This class provides a specialized index access method for GROUP-BY queries
  of the forms:

       SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)]
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
       GROUP BY A_1,...,A_k;

    or

       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  where all selected fields are parts of the same index.
  The class of queries that can be processed by this quick select is fully
  specified in the description of get_best_trp_group_min_max() in opt_range.cc.

  The get_next() method directly produces result tuples, thus obviating the
  need to call end_send_group() because all grouping is already done inside
  get_next().

  Since one of the requirements is that all select fields are part of the same
  index, this class produces only index keys, and not complete records.
*/

class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I
{
private:
  handler *file;         /* The handler used to get data. */
  JOIN *join;            /* Descriptor of the current query */
  KEY  *index_info;      /* The index chosen for data access */
  unsigned char *record;          /* Buffer where the next record is returned. */
  unsigned char *tmp_record;      /* Temporary storage for next_min(), next_max(). */
  unsigned char *group_prefix;    /* Key prefix consisting of the GROUP fields. */
  uint32_t group_prefix_len; /* Length of the group prefix. */
  uint32_t group_key_parts;  /* A number of keyparts in the group prefix */
  unsigned char *last_prefix;     /* Prefix of the last group for detecting EOF. */
  bool have_min;         /* Specify whether we are computing */
  bool have_max;         /*   a MIN, a MAX, or both.         */
  bool seen_first_key;   /* Denotes whether the first key was retrieved.*/
  KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */
                                   /* of all MIN/MAX functions.              */
  uint32_t min_max_arg_len;  /* The length of the MIN/MAX argument field */
  unsigned char *key_infix;       /* Infix of constants from equality predicates. */
  uint32_t key_infix_len;
  DYNAMIC_ARRAY min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */
  uint32_t real_prefix_len; /* Length of key prefix extended with key_infix. */
  uint32_t real_key_parts;  /* A number of keyparts in the above value.      */
  List<Item_sum> *min_functions;
  List<Item_sum> *max_functions;
  List_iterator<Item_sum> *min_functions_it;
  List_iterator<Item_sum> *max_functions_it;
public:
  /*
    The following two members are public to allow easy access from
    TRP_GROUP_MIN_MAX::make_quick()
  */
  MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */
  QUICK_RANGE_SELECT *quick_prefix_select;/* For retrieval of group prefixes. */
private:
  int  next_prefix();
  int  next_min_in_range();
  int  next_max_in_range();
  int  next_min();
  int  next_max();
  void update_min_result();
  void update_max_result();
public:
  QUICK_GROUP_MIN_MAX_SELECT(Table *table, JOIN *join, bool have_min,
                             bool have_max, KEY_PART_INFO *min_max_arg_part,
                             uint32_t group_prefix_len, uint32_t group_key_parts,
                             uint32_t used_key_parts, KEY *index_info, uint
                             use_index, double read_cost, ha_rows records, uint
                             key_infix_len, unsigned char *key_infix, MEM_ROOT
                             *parent_alloc);
  ~QUICK_GROUP_MIN_MAX_SELECT();
  bool add_range(SEL_ARG *sel_range);
  void update_key_stat();
  void adjust_prefix_ranges();
  bool alloc_buffers();
  int init();
  int reset();
  int get_next();
  bool reverse_sorted() { return false; }
  bool unique_key_range() { return false; }
  int get_type() { return QS_TYPE_GROUP_MIN_MAX; }
  void add_keys_and_lengths(String *key_names, String *used_lengths);
};


class QUICK_SELECT_DESC: public QUICK_RANGE_SELECT
{
public:
  QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint32_t used_key_parts, 
                    bool *create_err);
  int get_next();
  bool reverse_sorted() { return 1; }
  int get_type() { return QS_TYPE_RANGE_DESC; }
private:
  bool range_reads_after_key(QUICK_RANGE *range);
#ifdef NOT_USED
  bool test_if_null_range(QUICK_RANGE *range, uint32_t used_key_parts);
#endif
  int reset(void) { rev_it.rewind(); return QUICK_RANGE_SELECT::reset(); }
  List<QUICK_RANGE> rev_ranges;
  List_iterator<QUICK_RANGE> rev_it;
};


class SQL_SELECT :public Sql_alloc {
 public:
  QUICK_SELECT_I *quick;	// If quick-select used
  COND		*cond;		// where condition
  Table	*head;
  IO_CACHE file;		// Positions to used records
  ha_rows records;		// Records in use if read from file
  double read_time;		// Time to read rows
  key_map quick_keys;		// Possible quick keys
  key_map needed_reg;		// Possible quick keys after prev tables.
  table_map const_tables,read_tables;
  bool	free_cond;

  SQL_SELECT();
  ~SQL_SELECT();
  void cleanup();
  bool check_quick(Session *session, bool force_quick_range, ha_rows limit)
  {
    key_map tmp;
    tmp.set_all();
    return test_quick_select(session, tmp, 0, limit, force_quick_range, false) < 0;
  }
  inline bool skip_record() { return cond ? cond->val_int() == 0 : 0; }
  int test_quick_select(Session *session, key_map keys, table_map prev_tables,
			ha_rows limit, bool force_quick_range, 
                        bool ordered_output);
};

QUICK_RANGE_SELECT *get_quick_select_for_ref(Session *session, Table *table,
                                             struct st_table_ref *ref,
                                             ha_rows records);
uint32_t get_index_for_order(Table *table, order_st *order, ha_rows limit);

#endif