~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
 *  vim:expandtab:shiftwidth=2:tabstop=2:smarttab:
 *
 *  Copyright (C) 2008 Sun Microsystems
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <drizzled/server_includes.h>
#include CSTDINT_H
#include <drizzled/function/math/round.h>
#include CMATH_H
#include <drizzled/util/math.h>

#if defined(CMATH_NAMESPACE)
using namespace CMATH_NAMESPACE;
#endif
using namespace std;

void Item_func_round::fix_length_and_dec()
{
  int      decimals_to_set;
  int64_t val1;
  bool     val1_unsigned;

  unsigned_flag= args[0]->unsigned_flag;
  if (!args[1]->const_item())
  {
    max_length= args[0]->max_length;
    decimals= args[0]->decimals;
    if (args[0]->result_type() == DECIMAL_RESULT)
    {
      max_length++;
      hybrid_type= DECIMAL_RESULT;
    }
    else
      hybrid_type= REAL_RESULT;
    return;
  }

  val1= args[1]->val_int();
  val1_unsigned= args[1]->unsigned_flag;
  if (val1 < 0)
    decimals_to_set= val1_unsigned ? INT_MAX : 0;
  else
    decimals_to_set= (val1 > INT_MAX) ? INT_MAX : (int) val1;

  if (args[0]->decimals == NOT_FIXED_DEC)
  {
    max_length= args[0]->max_length;
    decimals= cmin(decimals_to_set, NOT_FIXED_DEC);
    hybrid_type= REAL_RESULT;
    return;
  }

  switch (args[0]->result_type()) {
  case REAL_RESULT:
  case STRING_RESULT:
    hybrid_type= REAL_RESULT;
    decimals= cmin(decimals_to_set, NOT_FIXED_DEC);
    max_length= float_length(decimals);
    break;
  case INT_RESULT:
    if ((!decimals_to_set && truncate) || (args[0]->decimal_precision() < DECIMAL_LONGLONG_DIGITS))
    {
      int length_can_increase= test(!truncate && (val1 < 0) && !val1_unsigned);
      max_length= args[0]->max_length + length_can_increase;
      /* Here we can keep INT_RESULT */
      hybrid_type= INT_RESULT;
      decimals= 0;
      break;
    }
    /* fall through */
  case DECIMAL_RESULT:
  {
    hybrid_type= DECIMAL_RESULT;
    decimals_to_set= cmin(DECIMAL_MAX_SCALE, decimals_to_set);
    int decimals_delta= args[0]->decimals - decimals_to_set;
    int precision= args[0]->decimal_precision();
    int length_increase= ((decimals_delta <= 0) || truncate) ? 0:1;

    precision-= decimals_delta - length_increase;
    decimals= cmin(decimals_to_set, DECIMAL_MAX_SCALE);
    max_length= my_decimal_precision_to_length(precision, decimals,
                                               unsigned_flag);
    break;
  }
  default:
    assert(0); /* This result type isn't handled */
  }
}

double my_double_round(double value, int64_t dec, bool dec_unsigned,
                       bool truncate)
{
  double tmp;
  bool dec_negative= (dec < 0) && !dec_unsigned;
  uint64_t abs_dec= dec_negative ? -dec : dec;
  /*
    tmp2 is here to avoid return the value with 80 bit precision
    This will fix that the test round(0.1,1) = round(0.1,1) is true
  */
  double tmp2;

  tmp=(abs_dec < array_elements(log_10) ?
       log_10[abs_dec] : pow(10.0,(double) abs_dec));

  double value_times_tmp= value * tmp;

  /*
    NOTE: This is a workaround for a gcc 4.3 bug on Intel x86 32bit
    See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=39228
    See http://bugs.mysql.com/bug.php?id=42965

    This forces the compiler to store/load the value as 64bit and avoids
    an optimisation that *could* have the isinf() be done on the 80bit
    representation.
   */
  if(sizeof(double) < sizeof(double_t))
  {
    volatile double t= value_times_tmp;
    value_times_tmp= t;
  }

  if (dec_negative && isinf(tmp))
    tmp2= 0;
  else if (!dec_negative && isinf(value_times_tmp))
    tmp2= value;
  else if (truncate)
  {
    if (value >= 0)
      tmp2= dec < 0 ? floor(value/tmp)*tmp : floor(value*tmp)/tmp;
    else
      tmp2= dec < 0 ? ceil(value/tmp)*tmp : ceil(value*tmp)/tmp;
  }
  else
    tmp2=dec < 0 ? rint(value/tmp)*tmp : rint(value*tmp)/tmp;
  return tmp2;
}


double Item_func_round::real_op()
{
  double value= args[0]->val_real();

  if (!(null_value= args[0]->null_value || args[1]->null_value))
    return my_double_round(value, args[1]->val_int(), args[1]->unsigned_flag,
                           truncate);

  return 0.0;
}

/*
  Rounds a given value to a power of 10 specified as the 'to' argument,
  avoiding overflows when the value is close to the uint64_t range boundary.
*/

static inline uint64_t my_unsigned_round(uint64_t value, uint64_t to)
{
  uint64_t tmp= value / to * to;
  return (value - tmp < (to >> 1)) ? tmp : tmp + to;
}


int64_t Item_func_round::int_op()
{
  int64_t value= args[0]->val_int();
  int64_t dec= args[1]->val_int();
  decimals= 0;
  uint64_t abs_dec;
  if ((null_value= args[0]->null_value || args[1]->null_value))
    return 0;
  if ((dec >= 0) || args[1]->unsigned_flag)
    return value; // integer have not digits after point

  abs_dec= -dec;
  int64_t tmp;

  if(abs_dec >= array_elements(log_10_int))
    return 0;

  tmp= log_10_int[abs_dec];

  if (truncate)
    value= (unsigned_flag) ?
      ((uint64_t) value / tmp) * tmp : (value / tmp) * tmp;
  else
    value= (unsigned_flag || value >= 0) ?
      my_unsigned_round((uint64_t) value, tmp) :
      -(int64_t) my_unsigned_round((uint64_t) -value, tmp);
  return value;
}


my_decimal *Item_func_round::decimal_op(my_decimal *decimal_value)
{
  my_decimal val, *value= args[0]->val_decimal(&val);
  int64_t dec= args[1]->val_int();
  if (dec >= 0 || args[1]->unsigned_flag)
    dec= cmin(dec, (int64_t) decimals);
  else if (dec < INT_MIN)
    dec= INT_MIN;

  if (!(null_value= (args[0]->null_value || args[1]->null_value ||
                     my_decimal_round(E_DEC_FATAL_ERROR, value, (int) dec,
                                      truncate, decimal_value) > 1)))
  {
    decimal_value->frac= decimals;
    return decimal_value;
  }
  return 0;
}