~launchpad-pqm/launchpad/devel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright 2009 Canonical Ltd.  This software is licensed under the
# GNU Affero General Public License version 3 (see the file LICENSE).

"""Character encoding utilities"""

__metaclass__ = type
__all__ = [
    'ascii_smash',
    'escape_nonascii_uniquely',
    'guess',
    ]

import re
import codecs
import unicodedata
from cStringIO import StringIO

_boms = [
    (codecs.BOM_UTF16_BE, 'utf_16_be'),
    (codecs.BOM_UTF16_LE, 'utf_16_le'),
    (codecs.BOM_UTF32_BE, 'utf_32_be'),
    (codecs.BOM_UTF32_LE, 'utf_32_le'),
    ]


def guess(s):
    r'''
    Attempts to heuristically guess a strings encoding, returning
    a Unicode string.

    This method should only be used for importing legacy data from systems
    or files where the encoding is not known. This method will always
    succeed and normally guess the correct encoding, but it is only
    a guess and will be incorrect some of the time. Also note that
    data may be lost, as if we cannot determine the correct encoding
    we fall back to ISO-8859-1 and replace unrecognized characters with
    \ufffd characters (the Unicode unrepresentable code point).

    NB: We currently only cope with the major Western character
    sets - we need to change the algorithm to cope with asian languages.
    One way that apparently works is to convert the string into all possible
    encodings, one at a time, and if successful score them based on the
    number of meaningful characters (using the unicodedata module to
    let us know what are control characters, letters, printable characters
    etc.).


    ASCII is easy

    >>> guess('hello')
    u'hello'

    Unicode raises an exception to annoy lazy programmers. It should also
    catches bugs as if you have valid Unicode you shouldn't be going anywhere
    near this method.

    >>> guess(u'Caution \N{BIOHAZARD SIGN}')
    Traceback (most recent call last):
    ...
    TypeError: ...

    UTF-8 is our best guess

    >>> guess(u'100% Pure Beef\N{TRADE MARK SIGN}'.encode('UTF-8'))
    u'100% Pure Beef\u2122'

    But we fall back to ISO-8859-1 if UTF-8 fails

    >>> u = u'Ol\N{LATIN SMALL LETTER E WITH ACUTE}'
    >>> u.encode('UTF-8') == u.encode('ISO-8859-1')
    False
    >>> guess(u.encode('UTF-8'))
    u'Ol\xe9'
    >>> guess(u.encode('ISO-8859-1'))
    u'Ol\xe9'

    However, if the string contains ISO-8859-1 control characters, it is
    probably a CP1252 document (Windows).

    >>> u = u'Show me the \N{EURO SIGN}'
    >>> u.encode('UTF-8') == u.encode('CP1252')
    False
    >>> guess(u.encode('UTF-8'))
    u'Show me the \u20ac'
    >>> guess(u.encode('CP1252'))
    u'Show me the \u20ac'

    We also check for characters common in ISO-8859-15 that are uncommon
    in ISO-8859-1, and use ISO-8859-15 if they are found.

    >>> u = u'\N{LATIN SMALL LETTER S WITH CARON}'
    >>> guess(u.encode('iso-8859-15'))
    u'\u0161'

    Strings with a BOM are unambiguous.

    >>> guess(u'hello'.encode('UTF-16'))
    u'hello'

    However, UTF-16 strings without a BOM will be interpreted as ISO-8859-1.
    I doubt this is a problem, as we are unlikely to see this except with
    asian languages and in these cases other encodings we don't support
    at the moment like ISO-2022-jp, BIG5, SHIFT-JIS etc. will be a bigger
    problem.

    >>> guess(u'hello'.encode('UTF-16be'))
    u'\x00h\x00e\x00l\x00l\x00o'

    '''

    # Calling this method with a Unicode argument indicates a hidden bug
    # that will bite you eventually -- StuartBishop 20050709
    if isinstance(s, unicode):
        raise TypeError(
                'encoding.guess called with Unicode string %r' % (s,)
                )

    # Attempt to use an objects default Unicode conversion, for objects
    # that can encode themselves as ASCII.
    try:
        return unicode(s)
    except UnicodeDecodeError:
        pass

    # Detect BOM
    try:
        for bom, encoding in _boms:
            if s.startswith(bom):
                return unicode(s[len(bom):], encoding)
    except UnicodeDecodeError:
        pass

    # Try preferred encoding
    try:
        return unicode(s, 'UTF-8')
    except UnicodeDecodeError:
        pass

    # If we have characters in this range, it is probably CP1252
    if re.search(r"[\x80-\x9f]", s) is not None:
        try:
            return unicode(s, 'CP1252')
        except UnicodeDecodeError:
            pass

    # If we have characters in this range, it is probably ISO-8859-15
    if re.search(r"[\xa4\xa6\xa8\xb4\xb8\xbc-\xbe]", s) is not None:
        try:
            return unicode(s, 'ISO-8859-15')
        except UnicodeDecodeError:
            pass

    # Otherwise we default to ISO-8859-1
    return unicode(s, 'ISO-8859-1', 'replace')


def ascii_smash(unicode_string):
    """Attempt to convert the Unicode string, possibly containing accents,
    to an ASCII string.

    This is used for generating shipping labels because our shipping company
    can only deal with ASCII despite being European :-/

    ASCII goes through just fine

    >>> ascii_smash(u"Hello")
    'Hello'

    Latin-1 accented characters have their accents stripped.

    >>> ascii_smash(u"Ol\N{LATIN SMALL LETTER E WITH ACUTE}")
    'Ole'
    >>> ascii_smash(u"\N{LATIN CAPITAL LETTER A WITH RING ABOVE}iste")
    'Aiste'
    >>> ascii_smash(
    ...     u"\N{LATIN SMALL LETTER AE}"
    ...     u"\N{LATIN SMALL LETTER I WITH GRAVE}"
    ...     u"\N{LATIN SMALL LETTER O WITH STROKE}"
    ...     u"\N{LATIN SMALL LETTER U WITH CIRCUMFLEX}"
    ...     )
    'aeiou'
    >>> ascii_smash(
    ...     u"\N{LATIN CAPITAL LETTER AE}"
    ...     u"\N{LATIN CAPITAL LETTER I WITH GRAVE}"
    ...     u"\N{LATIN CAPITAL LETTER O WITH STROKE}"
    ...     u"\N{LATIN CAPITAL LETTER U WITH TILDE}"
    ...     )
    'AEIOU'
    >>> ascii_smash(u"Stra\N{LATIN SMALL LETTER SHARP S}e")
    'Strasse'

    Moving further into Eastern Europe we get more odd letters

    >>> ascii_smash(
    ...     u"\N{LATIN CAPITAL LETTER Z WITH CARON}"
    ...     u"ivkovi\N{LATIN SMALL LETTER C WITH CARON}"
    ...     )
    'Zivkovic'

    >>> ascii_smash(u"\N{LATIN CAPITAL LIGATURE OE}\N{LATIN SMALL LIGATURE OE}")
    'OEoe'

    """
    out = StringIO()
    for char in unicode_string:
        out.write(ascii_char_smash(char))
    return out.getvalue()


def ascii_char_smash(char):
    """Smash a single Unicode character into an ASCII representation.

    >>> ascii_char_smash(u"\N{KATAKANA LETTER SMALL A}")
    'a'
    >>> ascii_char_smash(u"\N{KATAKANA LETTER A}")
    'A'
    >>> ascii_char_smash(u"\N{KATAKANA LETTER KA}")
    'KA'
    >>> ascii_char_smash(u"\N{HIRAGANA LETTER SMALL A}")
    'a'
    >>> ascii_char_smash(u"\N{HIRAGANA LETTER A}")
    'A'
    >>> ascii_char_smash(u"\N{BOPOMOFO LETTER ANG}")
    'ANG'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER H WITH STROKE}")
    'H'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER LONG S}")
    's'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER THORN}")
    'TH'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER THORN}")
    'th'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER I WITH OGONEK}")
    'I'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER AE}")
    'AE'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER A WITH DIAERESIS}")
    'Ae'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER A WITH DIAERESIS}")
    'ae'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER O WITH DIAERESIS}")
    'Oe'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER O WITH DIAERESIS}")
    'oe'
    >>> ascii_char_smash(u"\N{LATIN CAPITAL LETTER U WITH DIAERESIS}")
    'Ue'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER U WITH DIAERESIS}")
    'ue'
    >>> ascii_char_smash(u"\N{LATIN SMALL LETTER SHARP S}")
    'ss'

    Latin-1 and other symbols are lost

    >>> ascii_char_smash(u"\N{POUND SIGN}")
    ''

    Unless they also happen to be letters of some kind, such as greek

    >>> ascii_char_smash(u"\N{MICRO SIGN}")
    'mu'

    Fractions

    >>> ascii_char_smash(u"\N{VULGAR FRACTION ONE HALF}")
    '1/2'

    """
    mapping = {
        u"\N{LATIN CAPITAL LETTER AE}": "AE",
        u"\N{LATIN SMALL LETTER AE}": "ae",

        u"\N{LATIN CAPITAL LETTER A WITH DIAERESIS}": "Ae",
        u"\N{LATIN SMALL LETTER A WITH DIAERESIS}": "ae",

        u"\N{LATIN CAPITAL LETTER O WITH DIAERESIS}": "Oe",
        u"\N{LATIN SMALL LETTER O WITH DIAERESIS}": "oe",

        u"\N{LATIN CAPITAL LETTER U WITH DIAERESIS}": "Ue",
        u"\N{LATIN SMALL LETTER U WITH DIAERESIS}": "ue",

        u"\N{LATIN SMALL LETTER SHARP S}": "ss",

        u"\N{LATIN CAPITAL LETTER THORN}": "TH",
        u"\N{LATIN SMALL LETTER THORN}": "th",

        u"\N{FRACTION SLASH}": "/",
        u"\N{MULTIPLICATION SIGN}": "x",

        u"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}": "=",
        }

    # Pass through ASCII
    if ord(char) < 127:
        return char

    # Handle manual mappings
    if mapping.has_key(char):
        return mapping[char]

    # Regress to decomposed form and recurse if necessary.
    decomposed = unicodedata.normalize("NFKD", char)
    if decomposed != char:
        out = StringIO()
        for char in decomposed:
            out.write(ascii_char_smash(char))
        return out.getvalue()

    # Handle whitespace
    if char.isspace():
        return " "

    # Handle digits
    if char.isdigit():
        return unicodedata.digit(char)

    # Handle decimal (probably pointless given isdigit above)
    if char.isdecimal():
        return unicodedata.decimal(char)

    # Handle numerics, such as 1/2
    if char.isnumeric():
        formatted = "%f" % unicodedata.numeric(char)
        # Strip leading and trailing 0
        return formatted.strip("0")

    # Ignore unprintables, such as the accents we denormalized
    if not char.isalnum():
        return ""

    # Return modified latin characters as just the latin part.
    name = unicodedata.name(char)

    match = re.search("LATIN CAPITAL LIGATURE (\w+)", name)
    if match is not None:
        return match.group(1)

    match = re.search("LATIN SMALL LIGATURE (\w+)", name)
    if match is not None:
        return match.group(1).lower()

    match = re.search("(?:LETTER SMALL|SMALL LETTER) (\w+)", name)
    if match is not None:
        return match.group(1).lower()

    match = re.search("LETTER (\w+)", name)
    if match is not None:
        return match.group(1)

    # Something we can't represent. Return empty string.
    return ""


def escape_nonascii_uniquely(bogus_string):
    """Replace non-ascii characters with a hex representation.

    This is mainly for preventing emails with invalid characters from causing
    oopses. The nonascii characters could have been removed or just converted
    to "?", but this provides some insight into what the bogus data was, and
    it prevents the message-id from two unrelated emails matching because
    all the nonascii characters have been replaced with the same ascii
    character.

    Unfortunately, all the strings below are actually part of this
    function's docstring, so python processes the backslash once before
    doctest, and then python processes it again when doctest runs the
    test. This makes it confusing, since four backslashes will get
    converted into a single ascii character.

    >>> print len('\xa9'), len('\\xa9'), len('\\\\xa9')
    1 1 4
    >>> print escape_nonascii_uniquely('hello \xa9')
    hello \\xa9
    >>> print escape_nonascii_uniquely('hello \\xa9')
    hello \\xa9

    This string only has ascii characters, so escape_nonascii_uniquely()
    actually has no effect.

    >>> print escape_nonascii_uniquely('hello \\\\xa9')
    hello \\xa9
    """
    nonascii_regex = re.compile(r'[\200-\377]')
    # By encoding the invalid ascii with a backslash, x, and then the
    # hex value, it makes it easy to decode it by pasting into a python
    # interpreter. quopri() is not used, since that could caused the
    # decoding of an email to fail.
    def quote(match):
        return '\\x%x' % ord(match.group(0))
    return nonascii_regex.sub(quote, bogus_string)