1
by brian
clean slate |
1 |
/************************************************************************
|
2 |
The memory management
|
|
3 |
||
4 |
(c) 1994, 1995 Innobase Oy
|
|
5 |
||
6 |
Created 6/9/1994 Heikki Tuuri
|
|
7 |
*************************************************************************/
|
|
8 |
||
9 |
||
10 |
#include "mem0mem.h" |
|
11 |
#ifdef UNIV_NONINL
|
|
12 |
#include "mem0mem.ic" |
|
13 |
#endif
|
|
14 |
||
15 |
#include "mach0data.h" |
|
16 |
#include "buf0buf.h" |
|
17 |
#include "btr0sea.h" |
|
18 |
#include "srv0srv.h" |
|
19 |
#include "mem0dbg.c" |
|
20 |
#include <stdarg.h> |
|
21 |
||
22 |
/*
|
|
23 |
THE MEMORY MANAGEMENT
|
|
24 |
=====================
|
|
25 |
||
26 |
The basic element of the memory management is called a memory
|
|
27 |
heap. A memory heap is conceptually a
|
|
28 |
stack from which memory can be allocated. The stack may grow infinitely.
|
|
29 |
The top element of the stack may be freed, or
|
|
30 |
the whole stack can be freed at one time. The advantage of the
|
|
31 |
memory heap concept is that we can avoid using the malloc and free
|
|
32 |
functions of C which are quite expensive, for example, on the Solaris + GCC
|
|
33 |
system (50 MHz Sparc, 1993) the pair takes 3 microseconds,
|
|
34 |
on Win NT + 100MHz Pentium, 2.5 microseconds.
|
|
35 |
When we use a memory heap,
|
|
36 |
we can allocate larger blocks of memory at a time and thus
|
|
37 |
reduce overhead. Slightly more efficient the method is when we
|
|
38 |
allocate the memory from the index page buffer pool, as we can
|
|
39 |
claim a new page fast. This is called buffer allocation.
|
|
40 |
When we allocate the memory from the dynamic memory of the
|
|
41 |
C environment, that is called dynamic allocation.
|
|
42 |
||
43 |
The default way of operation of the memory heap is the following.
|
|
44 |
First, when the heap is created, an initial block of memory is
|
|
45 |
allocated. In dynamic allocation this may be about 50 bytes.
|
|
46 |
If more space is needed, additional blocks are allocated
|
|
47 |
and they are put into a linked list.
|
|
48 |
After the initial block, each allocated block is twice the size of the
|
|
49 |
previous, until a threshold is attained, after which the sizes
|
|
50 |
of the blocks stay the same. An exception is, of course, the case
|
|
51 |
where the caller requests a memory buffer whose size is
|
|
52 |
bigger than the threshold. In that case a block big enough must
|
|
53 |
be allocated.
|
|
54 |
||
55 |
The heap is physically arranged so that if the current block
|
|
56 |
becomes full, a new block is allocated and always inserted in the
|
|
57 |
chain of blocks as the last block.
|
|
58 |
||
59 |
In the debug version of the memory management, all the allocated
|
|
60 |
heaps are kept in a list (which is implemented as a hash table).
|
|
61 |
Thus we can notice if the caller tries to free an already freed
|
|
62 |
heap. In addition, each buffer given to the caller contains
|
|
63 |
start field at the start and a trailer field at the end of the buffer.
|
|
64 |
||
65 |
The start field has the following content:
|
|
66 |
A. sizeof(ulint) bytes of field length (in the standard byte order)
|
|
67 |
B. sizeof(ulint) bytes of check field (a random number)
|
|
68 |
||
69 |
The trailer field contains:
|
|
70 |
A. sizeof(ulint) bytes of check field (the same random number as at the start)
|
|
71 |
||
72 |
Thus we can notice if something has been copied over the
|
|
73 |
borders of the buffer, which is illegal.
|
|
74 |
The memory in the buffers is initialized to a random byte sequence.
|
|
75 |
After freeing, all the blocks in the heap are set to random bytes
|
|
76 |
to help us discover errors which result from the use of
|
|
77 |
buffers in an already freed heap. */
|
|
78 |
||
79 |
#ifdef MEM_PERIODIC_CHECK
|
|
80 |
||
81 |
ibool mem_block_list_inited; |
|
82 |
/* List of all mem blocks allocated; protected by the mem_comm_pool mutex */
|
|
83 |
UT_LIST_BASE_NODE_T(mem_block_t) mem_block_list; |
|
84 |
||
85 |
#endif
|
|
86 |
||
87 |
/*******************************************************************
|
|
88 |
NOTE: Use the corresponding macro instead of this function.
|
|
89 |
Allocates a single buffer of memory from the dynamic memory of
|
|
90 |
the C compiler. Is like malloc of C. The buffer must be freed
|
|
91 |
with mem_free. */
|
|
92 |
||
93 |
void* |
|
94 |
mem_alloc_func_noninline( |
|
95 |
/*=====================*/
|
|
96 |
/* out, own: free storage */
|
|
97 |
ulint n, /* in: desired number of bytes */ |
|
98 |
const char* file_name, /* in: file name where created */ |
|
99 |
ulint line) /* in: line where created */ |
|
100 |
{
|
|
101 |
return(mem_alloc_func(n, file_name, line)); |
|
102 |
}
|
|
103 |
||
104 |
/**************************************************************************
|
|
105 |
Duplicates a NUL-terminated string, allocated from a memory heap. */
|
|
106 |
||
107 |
char* |
|
108 |
mem_heap_strdup( |
|
109 |
/*============*/
|
|
110 |
/* out, own: a copy of the string */
|
|
111 |
mem_heap_t* heap, /* in: memory heap where string is allocated */ |
|
112 |
const char* str) /* in: string to be copied */ |
|
113 |
{
|
|
114 |
return(mem_heap_dup(heap, str, strlen(str) + 1)); |
|
115 |
}
|
|
116 |
||
117 |
/**************************************************************************
|
|
118 |
Duplicate a block of data, allocated from a memory heap. */
|
|
119 |
||
120 |
void* |
|
121 |
mem_heap_dup( |
|
122 |
/*=========*/
|
|
123 |
/* out, own: a copy of the data */
|
|
124 |
mem_heap_t* heap, /* in: memory heap where copy is allocated */ |
|
125 |
const void* data, /* in: data to be copied */ |
|
126 |
ulint len) /* in: length of data, in bytes */ |
|
127 |
{
|
|
128 |
return(memcpy(mem_heap_alloc(heap, len), data, len)); |
|
129 |
}
|
|
130 |
||
131 |
/**************************************************************************
|
|
132 |
Concatenate two memory blocks and return the result, using a memory heap. */
|
|
133 |
||
134 |
void* |
|
135 |
mem_heap_cat( |
|
136 |
/*=========*/
|
|
137 |
/* out, own: the result */
|
|
138 |
mem_heap_t* heap, /* in: memory heap where result is allocated */ |
|
139 |
const void* b1, /* in: block 1 */ |
|
140 |
ulint len1, /* in: length of b1, in bytes */ |
|
141 |
const void* b2, /* in: block 2 */ |
|
142 |
ulint len2) /* in: length of b2, in bytes */ |
|
143 |
{
|
|
144 |
void* res = mem_heap_alloc(heap, len1 + len2); |
|
145 |
||
146 |
memcpy(res, b1, len1); |
|
147 |
memcpy((char*)res + len1, b2, len2); |
|
148 |
||
149 |
return(res); |
|
150 |
}
|
|
151 |
||
152 |
/**************************************************************************
|
|
153 |
Concatenate two strings and return the result, using a memory heap. */
|
|
154 |
||
155 |
char* |
|
156 |
mem_heap_strcat( |
|
157 |
/*============*/
|
|
158 |
/* out, own: the result */
|
|
159 |
mem_heap_t* heap, /* in: memory heap where string is allocated */ |
|
160 |
const char* s1, /* in: string 1 */ |
|
161 |
const char* s2) /* in: string 2 */ |
|
162 |
{
|
|
163 |
char* s; |
|
164 |
ulint s1_len = strlen(s1); |
|
165 |
ulint s2_len = strlen(s2); |
|
166 |
||
167 |
s = mem_heap_alloc(heap, s1_len + s2_len + 1); |
|
168 |
||
169 |
memcpy(s, s1, s1_len); |
|
170 |
memcpy(s + s1_len, s2, s2_len); |
|
171 |
||
172 |
s[s1_len + s2_len] = '\0'; |
|
173 |
||
174 |
return(s); |
|
175 |
}
|
|
176 |
||
177 |
||
178 |
/********************************************************************
|
|
179 |
Helper function for mem_heap_printf. */
|
|
180 |
static
|
|
181 |
ulint
|
|
182 |
mem_heap_printf_low( |
|
183 |
/*================*/
|
|
184 |
/* out: length of formatted string,
|
|
185 |
including terminating NUL */
|
|
186 |
char* buf, /* in/out: buffer to store formatted string |
|
187 |
in, or NULL to just calculate length */
|
|
188 |
const char* format, /* in: format string */ |
|
189 |
va_list ap) /* in: arguments */ |
|
190 |
{
|
|
191 |
ulint len = 0; |
|
192 |
||
193 |
while (*format) { |
|
194 |
||
195 |
/* Does this format specifier have the 'l' length modifier. */
|
|
196 |
ibool is_long = FALSE; |
|
197 |
||
198 |
/* Length of one parameter. */
|
|
199 |
size_t plen; |
|
200 |
||
201 |
if (*format++ != '%') { |
|
202 |
/* Non-format character. */
|
|
203 |
||
204 |
len++; |
|
205 |
||
206 |
if (buf) { |
|
207 |
*buf++ = *(format - 1); |
|
208 |
}
|
|
209 |
||
210 |
continue; |
|
211 |
}
|
|
212 |
||
213 |
if (*format == 'l') { |
|
214 |
is_long = TRUE; |
|
215 |
format++; |
|
216 |
}
|
|
217 |
||
218 |
switch (*format++) { |
|
219 |
case 's': |
|
220 |
/* string */
|
|
221 |
{
|
|
222 |
char* s = va_arg(ap, char*); |
|
223 |
||
224 |
/* "%ls" is a non-sensical format specifier. */
|
|
225 |
ut_a(!is_long); |
|
226 |
||
227 |
plen = strlen(s); |
|
228 |
len += plen; |
|
229 |
||
230 |
if (buf) { |
|
231 |
memcpy(buf, s, plen); |
|
232 |
buf += plen; |
|
233 |
}
|
|
234 |
}
|
|
235 |
||
236 |
break; |
|
237 |
||
238 |
case 'u': |
|
239 |
/* unsigned int */
|
|
240 |
{
|
|
241 |
char tmp[32]; |
|
242 |
unsigned long val; |
|
243 |
||
244 |
/* We only support 'long' values for now. */
|
|
245 |
ut_a(is_long); |
|
246 |
||
247 |
val = va_arg(ap, unsigned long); |
|
248 |
||
249 |
plen = sprintf(tmp, "%lu", val); |
|
250 |
len += plen; |
|
251 |
||
252 |
if (buf) { |
|
253 |
memcpy(buf, tmp, plen); |
|
254 |
buf += plen; |
|
255 |
}
|
|
256 |
}
|
|
257 |
||
258 |
break; |
|
259 |
||
260 |
case '%': |
|
261 |
||
262 |
/* "%l%" is a non-sensical format specifier. */
|
|
263 |
ut_a(!is_long); |
|
264 |
||
265 |
len++; |
|
266 |
||
267 |
if (buf) { |
|
268 |
*buf++ = '%'; |
|
269 |
}
|
|
270 |
||
271 |
break; |
|
272 |
||
273 |
default: |
|
274 |
ut_error; |
|
275 |
}
|
|
276 |
}
|
|
277 |
||
278 |
/* For the NUL character. */
|
|
279 |
len++; |
|
280 |
||
281 |
if (buf) { |
|
282 |
*buf = '\0'; |
|
283 |
}
|
|
284 |
||
285 |
return(len); |
|
286 |
}
|
|
287 |
||
288 |
/********************************************************************
|
|
289 |
A simple (s)printf replacement that dynamically allocates the space for the
|
|
290 |
formatted string from the given heap. This supports a very limited set of
|
|
291 |
the printf syntax: types 's' and 'u' and length modifier 'l' (which is
|
|
292 |
required for the 'u' type). */
|
|
293 |
||
294 |
char* |
|
295 |
mem_heap_printf( |
|
296 |
/*============*/
|
|
297 |
/* out: heap-allocated formatted string */
|
|
298 |
mem_heap_t* heap, /* in: memory heap */ |
|
299 |
const char* format, /* in: format string */ |
|
300 |
...)
|
|
301 |
{
|
|
302 |
va_list ap; |
|
303 |
char* str; |
|
304 |
ulint len; |
|
305 |
||
306 |
/* Calculate length of string */
|
|
307 |
len = 0; |
|
308 |
va_start(ap, format); |
|
309 |
len = mem_heap_printf_low(NULL, format, ap); |
|
310 |
va_end(ap); |
|
311 |
||
312 |
/* Now create it for real. */
|
|
313 |
str = mem_heap_alloc(heap, len); |
|
314 |
va_start(ap, format); |
|
315 |
mem_heap_printf_low(str, format, ap); |
|
316 |
va_end(ap); |
|
317 |
||
318 |
return(str); |
|
319 |
}
|
|
320 |
||
321 |
/*******************************************************************
|
|
322 |
Creates a memory heap block where data can be allocated. */
|
|
323 |
||
324 |
mem_block_t* |
|
325 |
mem_heap_create_block( |
|
326 |
/*==================*/
|
|
327 |
/* out, own: memory heap block, NULL if
|
|
328 |
did not succeed (only possible for
|
|
329 |
MEM_HEAP_BTR_SEARCH type heaps) */
|
|
330 |
mem_heap_t* heap, /* in: memory heap or NULL if first block |
|
331 |
should be created */
|
|
332 |
ulint n, /* in: number of bytes needed for user data, or |
|
333 |
if init_block is not NULL, its size in bytes */
|
|
334 |
void* init_block, /* in: init block in fast create, |
|
335 |
type must be MEM_HEAP_DYNAMIC */
|
|
336 |
ulint type, /* in: type of heap: MEM_HEAP_DYNAMIC or |
|
337 |
MEM_HEAP_BUFFER */
|
|
338 |
const char* file_name,/* in: file name where created */ |
|
339 |
ulint line) /* in: line where created */ |
|
340 |
{
|
|
341 |
mem_block_t* block; |
|
342 |
ulint len; |
|
343 |
||
344 |
ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER) |
|
345 |
|| (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH)); |
|
346 |
||
347 |
if (heap && heap->magic_n != MEM_BLOCK_MAGIC_N) { |
|
348 |
mem_analyze_corruption(heap); |
|
349 |
}
|
|
350 |
||
351 |
/* In dynamic allocation, calculate the size: block header + data. */
|
|
352 |
||
353 |
if (init_block != NULL) { |
|
354 |
ut_ad(type == MEM_HEAP_DYNAMIC); |
|
355 |
ut_ad(n > MEM_BLOCK_START_SIZE + MEM_BLOCK_HEADER_SIZE); |
|
356 |
len = n; |
|
357 |
block = init_block; |
|
358 |
||
359 |
} else if (type == MEM_HEAP_DYNAMIC) { |
|
360 |
||
361 |
len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); |
|
362 |
block = mem_area_alloc(len, mem_comm_pool); |
|
363 |
} else { |
|
364 |
ut_ad(n <= MEM_MAX_ALLOC_IN_BUF); |
|
365 |
||
366 |
len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); |
|
367 |
||
368 |
if (len < UNIV_PAGE_SIZE / 2) { |
|
369 |
||
370 |
block = mem_area_alloc(len, mem_comm_pool); |
|
371 |
} else { |
|
372 |
len = UNIV_PAGE_SIZE; |
|
373 |
||
374 |
if ((type & MEM_HEAP_BTR_SEARCH) && heap) { |
|
375 |
/* We cannot allocate the block from the
|
|
376 |
buffer pool, but must get the free block from
|
|
377 |
the heap header free block field */
|
|
378 |
||
379 |
block = (mem_block_t*)heap->free_block; |
|
380 |
heap->free_block = NULL; |
|
381 |
} else { |
|
382 |
block = (mem_block_t*)buf_frame_alloc(); |
|
383 |
}
|
|
384 |
}
|
|
385 |
}
|
|
386 |
||
387 |
if (block == NULL) { |
|
388 |
/* Only MEM_HEAP_BTR_SEARCH allocation should ever fail. */
|
|
389 |
ut_a(type & MEM_HEAP_BTR_SEARCH); |
|
390 |
||
391 |
return(NULL); |
|
392 |
}
|
|
393 |
||
394 |
block->magic_n = MEM_BLOCK_MAGIC_N; |
|
395 |
ut_strlcpy_rev(block->file_name, file_name, sizeof(block->file_name)); |
|
396 |
block->line = line; |
|
397 |
||
398 |
#ifdef MEM_PERIODIC_CHECK
|
|
399 |
mem_pool_mutex_enter(); |
|
400 |
||
401 |
if (!mem_block_list_inited) { |
|
402 |
mem_block_list_inited = TRUE; |
|
403 |
UT_LIST_INIT(mem_block_list); |
|
404 |
}
|
|
405 |
||
406 |
UT_LIST_ADD_LAST(mem_block_list, mem_block_list, block); |
|
407 |
||
408 |
mem_pool_mutex_exit(); |
|
409 |
#endif
|
|
410 |
mem_block_set_len(block, len); |
|
411 |
mem_block_set_type(block, type); |
|
412 |
mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE); |
|
413 |
mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE); |
|
414 |
||
415 |
block->free_block = NULL; |
|
416 |
block->init_block = (init_block != NULL); |
|
417 |
||
418 |
ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len); |
|
419 |
||
420 |
return(block); |
|
421 |
}
|
|
422 |
||
423 |
/*******************************************************************
|
|
424 |
Adds a new block to a memory heap. */
|
|
425 |
||
426 |
mem_block_t* |
|
427 |
mem_heap_add_block( |
|
428 |
/*===============*/
|
|
429 |
/* out: created block, NULL if did not
|
|
430 |
succeed (only possible for
|
|
431 |
MEM_HEAP_BTR_SEARCH type heaps)*/
|
|
432 |
mem_heap_t* heap, /* in: memory heap */ |
|
433 |
ulint n) /* in: number of bytes user needs */ |
|
434 |
{
|
|
435 |
mem_block_t* block; |
|
436 |
mem_block_t* new_block; |
|
437 |
ulint new_size; |
|
438 |
||
439 |
ut_ad(mem_heap_check(heap)); |
|
440 |
||
441 |
block = UT_LIST_GET_LAST(heap->base); |
|
442 |
||
443 |
/* We have to allocate a new block. The size is always at least
|
|
444 |
doubled until the standard size is reached. After that the size
|
|
445 |
stays the same, except in cases where the caller needs more space. */
|
|
446 |
||
447 |
new_size = 2 * mem_block_get_len(block); |
|
448 |
||
449 |
if (heap->type != MEM_HEAP_DYNAMIC) { |
|
450 |
/* From the buffer pool we allocate buffer frames */
|
|
451 |
ut_a(n <= MEM_MAX_ALLOC_IN_BUF); |
|
452 |
||
453 |
if (new_size > MEM_MAX_ALLOC_IN_BUF) { |
|
454 |
new_size = MEM_MAX_ALLOC_IN_BUF; |
|
455 |
}
|
|
456 |
} else if (new_size > MEM_BLOCK_STANDARD_SIZE) { |
|
457 |
||
458 |
new_size = MEM_BLOCK_STANDARD_SIZE; |
|
459 |
}
|
|
460 |
||
461 |
if (new_size < n) { |
|
462 |
new_size = n; |
|
463 |
}
|
|
464 |
||
465 |
new_block = mem_heap_create_block(heap, new_size, NULL, heap->type, |
|
466 |
heap->file_name, heap->line); |
|
467 |
if (new_block == NULL) { |
|
468 |
||
469 |
return(NULL); |
|
470 |
}
|
|
471 |
||
472 |
/* Add the new block as the last block */
|
|
473 |
||
474 |
UT_LIST_INSERT_AFTER(list, heap->base, block, new_block); |
|
475 |
||
476 |
return(new_block); |
|
477 |
}
|
|
478 |
||
479 |
/**********************************************************************
|
|
480 |
Frees a block from a memory heap. */
|
|
481 |
||
482 |
void
|
|
483 |
mem_heap_block_free( |
|
484 |
/*================*/
|
|
485 |
mem_heap_t* heap, /* in: heap */ |
|
486 |
mem_block_t* block) /* in: block to free */ |
|
487 |
{
|
|
488 |
ulint type; |
|
489 |
ulint len; |
|
490 |
ibool init_block; |
|
491 |
||
492 |
if (block->magic_n != MEM_BLOCK_MAGIC_N) { |
|
493 |
mem_analyze_corruption(block); |
|
494 |
}
|
|
495 |
||
496 |
UT_LIST_REMOVE(list, heap->base, block); |
|
497 |
||
498 |
#ifdef MEM_PERIODIC_CHECK
|
|
499 |
mem_pool_mutex_enter(); |
|
500 |
||
501 |
UT_LIST_REMOVE(mem_block_list, mem_block_list, block); |
|
502 |
||
503 |
mem_pool_mutex_exit(); |
|
504 |
#endif
|
|
505 |
type = heap->type; |
|
506 |
len = block->len; |
|
507 |
init_block = block->init_block; |
|
508 |
block->magic_n = MEM_FREED_BLOCK_MAGIC_N; |
|
509 |
||
510 |
#ifdef UNIV_MEM_DEBUG
|
|
511 |
/* In the debug version we set the memory to a random combination
|
|
512 |
of hex 0xDE and 0xAD. */
|
|
513 |
||
514 |
mem_erase_buf((byte*)block, len); |
|
515 |
#else /* UNIV_MEM_DEBUG */ |
|
516 |
UNIV_MEM_ASSERT_AND_FREE(block, len); |
|
517 |
#endif /* UNIV_MEM_DEBUG */ |
|
518 |
||
519 |
if (init_block) { |
|
520 |
/* Do not have to free: do nothing */
|
|
521 |
||
522 |
} else if (type == MEM_HEAP_DYNAMIC) { |
|
523 |
||
524 |
mem_area_free(block, mem_comm_pool); |
|
525 |
} else { |
|
526 |
ut_ad(type & MEM_HEAP_BUFFER); |
|
527 |
||
528 |
if (len >= UNIV_PAGE_SIZE / 2) { |
|
529 |
buf_frame_free((byte*)block); |
|
530 |
} else { |
|
531 |
mem_area_free(block, mem_comm_pool); |
|
532 |
}
|
|
533 |
}
|
|
534 |
}
|
|
535 |
||
536 |
/**********************************************************************
|
|
537 |
Frees the free_block field from a memory heap. */
|
|
538 |
||
539 |
void
|
|
540 |
mem_heap_free_block_free( |
|
541 |
/*=====================*/
|
|
542 |
mem_heap_t* heap) /* in: heap */ |
|
543 |
{
|
|
544 |
if (heap->free_block) { |
|
545 |
||
546 |
buf_frame_free(heap->free_block); |
|
547 |
||
548 |
heap->free_block = NULL; |
|
549 |
}
|
|
550 |
}
|
|
551 |
||
552 |
#ifdef MEM_PERIODIC_CHECK
|
|
553 |
/**********************************************************************
|
|
554 |
Goes through the list of all allocated mem blocks, checks their magic
|
|
555 |
numbers, and reports possible corruption. */
|
|
556 |
||
557 |
void
|
|
558 |
mem_validate_all_blocks(void) |
|
559 |
/*=========================*/
|
|
560 |
{
|
|
561 |
mem_block_t* block; |
|
562 |
||
563 |
mem_pool_mutex_enter(); |
|
564 |
||
565 |
block = UT_LIST_GET_FIRST(mem_block_list); |
|
566 |
||
567 |
while (block) { |
|
568 |
if (block->magic_n != MEM_BLOCK_MAGIC_N) { |
|
569 |
mem_analyze_corruption(block); |
|
570 |
}
|
|
571 |
||
572 |
block = UT_LIST_GET_NEXT(mem_block_list, block); |
|
573 |
}
|
|
574 |
||
575 |
mem_pool_mutex_exit(); |
|
576 |
}
|
|
577 |
#endif
|