~drizzle-trunk/drizzle/development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/************************************************************************
The memory management

(c) 1994, 1995 Innobase Oy

Created 6/9/1994 Heikki Tuuri
*************************************************************************/


#include "mem0mem.h"
#ifdef UNIV_NONINL
#include "mem0mem.ic"
#endif

#include "mach0data.h"
#include "buf0buf.h"
#include "btr0sea.h"
#include "srv0srv.h"
#include "mem0dbg.c"
#include <stdarg.h>

/*
			THE MEMORY MANAGEMENT
			=====================

The basic element of the memory management is called a memory
heap. A memory heap is conceptually a
stack from which memory can be allocated. The stack may grow infinitely.
The top element of the stack may be freed, or
the whole stack can be freed at one time. The advantage of the
memory heap concept is that we can avoid using the malloc and free
functions of C which are quite expensive, for example, on the Solaris + GCC
system (50 MHz Sparc, 1993) the pair takes 3 microseconds,
on Win NT + 100MHz Pentium, 2.5 microseconds.
When we use a memory heap,
we can allocate larger blocks of memory at a time and thus
reduce overhead. Slightly more efficient the method is when we
allocate the memory from the index page buffer pool, as we can
claim a new page fast. This is called buffer allocation.
When we allocate the memory from the dynamic memory of the
C environment, that is called dynamic allocation.

The default way of operation of the memory heap is the following.
First, when the heap is created, an initial block of memory is
allocated. In dynamic allocation this may be about 50 bytes.
If more space is needed, additional blocks are allocated
and they are put into a linked list.
After the initial block, each allocated block is twice the size of the
previous, until a threshold is attained, after which the sizes
of the blocks stay the same. An exception is, of course, the case
where the caller requests a memory buffer whose size is
bigger than the threshold. In that case a block big enough must
be allocated.

The heap is physically arranged so that if the current block
becomes full, a new block is allocated and always inserted in the
chain of blocks as the last block.

In the debug version of the memory management, all the allocated
heaps are kept in a list (which is implemented as a hash table).
Thus we can notice if the caller tries to free an already freed
heap. In addition, each buffer given to the caller contains
start field at the start and a trailer field at the end of the buffer.

The start field has the following content:
A. sizeof(ulint) bytes of field length (in the standard byte order)
B. sizeof(ulint) bytes of check field (a random number)

The trailer field contains:
A. sizeof(ulint) bytes of check field (the same random number as at the start)

Thus we can notice if something has been copied over the
borders of the buffer, which is illegal.
The memory in the buffers is initialized to a random byte sequence.
After freeing, all the blocks in the heap are set to random bytes
to help us discover errors which result from the use of
buffers in an already freed heap. */

#ifdef MEM_PERIODIC_CHECK

ibool					mem_block_list_inited;
/* List of all mem blocks allocated; protected by the mem_comm_pool mutex */
UT_LIST_BASE_NODE_T(mem_block_t)	mem_block_list;

#endif

/*******************************************************************
NOTE: Use the corresponding macro instead of this function.
Allocates a single buffer of memory from the dynamic memory of
the C compiler. Is like malloc of C. The buffer must be freed
with mem_free. */

void*
mem_alloc_func_noninline(
/*=====================*/
					/* out, own: free storage */
	ulint		n,		/* in: desired number of bytes */
	const char*	file_name,	/* in: file name where created */
	ulint		line)		/* in: line where created */
{
	return(mem_alloc_func(n, file_name, line));
}

/**************************************************************************
Duplicates a NUL-terminated string, allocated from a memory heap. */

char*
mem_heap_strdup(
/*============*/
				/* out, own: a copy of the string */
	mem_heap_t*	heap,	/* in: memory heap where string is allocated */
	const char*	str)	/* in: string to be copied */
{
	return(mem_heap_dup(heap, str, strlen(str) + 1));
}

/**************************************************************************
Duplicate a block of data, allocated from a memory heap. */

void*
mem_heap_dup(
/*=========*/
				/* out, own: a copy of the data */
	mem_heap_t*	heap,	/* in: memory heap where copy is allocated */
	const void*	data,	/* in: data to be copied */
	ulint		len)	/* in: length of data, in bytes */
{
	return(memcpy(mem_heap_alloc(heap, len), data, len));
}

/**************************************************************************
Concatenate two memory blocks and return the result, using a memory heap. */

void*
mem_heap_cat(
/*=========*/
				/* out, own: the result */
	mem_heap_t*	heap,	/* in: memory heap where result is allocated */
	const void*	b1,	/* in: block 1 */
	ulint		len1,	/* in: length of b1, in bytes */
	const void*	b2,	/* in: block 2 */
	ulint		len2)	/* in: length of b2, in bytes */
{
	void*	res = mem_heap_alloc(heap, len1 + len2);

	memcpy(res, b1, len1);
	memcpy((char*)res + len1, b2, len2);

	return(res);
}

/**************************************************************************
Concatenate two strings and return the result, using a memory heap. */

char*
mem_heap_strcat(
/*============*/
				/* out, own: the result */
	mem_heap_t*	heap,	/* in: memory heap where string is allocated */
	const char*	s1,	/* in: string 1 */
	const char*	s2)	/* in: string 2 */
{
	char*	s;
	ulint	s1_len = strlen(s1);
	ulint	s2_len = strlen(s2);

	s = mem_heap_alloc(heap, s1_len + s2_len + 1);

	memcpy(s, s1, s1_len);
	memcpy(s + s1_len, s2, s2_len);

	s[s1_len + s2_len] = '\0';

	return(s);
}


/********************************************************************
Helper function for mem_heap_printf. */
static
ulint
mem_heap_printf_low(
/*================*/
				/* out: length of formatted string,
				including terminating NUL */
	char*		buf,	/* in/out: buffer to store formatted string
				in, or NULL to just calculate length */
	const char*	format,	/* in: format string */
	va_list		ap)	/* in: arguments */
{
	ulint 		len = 0;

	while (*format) {

		/* Does this format specifier have the 'l' length modifier. */
		ibool	is_long = FALSE;

		/* Length of one parameter. */
		size_t	plen;

		if (*format++ != '%') {
			/* Non-format character. */

			len++;

			if (buf) {
				*buf++ = *(format - 1);
			}

			continue;
		}

		if (*format == 'l') {
			is_long = TRUE;
			format++;
		}

		switch (*format++) {
		case 's':
			/* string */
			{
				char*	s = va_arg(ap, char*);

				/* "%ls" is a non-sensical format specifier. */
				ut_a(!is_long);

				plen = strlen(s);
				len += plen;

				if (buf) {
					memcpy(buf, s, plen);
					buf += plen;
				}
			}

			break;

		case 'u':
			/* unsigned int */
			{
				char		tmp[32];
				unsigned long	val;

				/* We only support 'long' values for now. */
				ut_a(is_long);

				val = va_arg(ap, unsigned long);

				plen = sprintf(tmp, "%lu", val);
				len += plen;

				if (buf) {
					memcpy(buf, tmp, plen);
					buf += plen;
				}
			}

			break;

		case '%':

			/* "%l%" is a non-sensical format specifier. */
			ut_a(!is_long);

			len++;

			if (buf) {
				*buf++ = '%';
			}

			break;

		default:
			ut_error;
		}
	}

	/* For the NUL character. */
	len++;

	if (buf) {
		*buf = '\0';
	}

	return(len);
}

/********************************************************************
A simple (s)printf replacement that dynamically allocates the space for the
formatted string from the given heap. This supports a very limited set of
the printf syntax: types 's' and 'u' and length modifier 'l' (which is
required for the 'u' type). */

char*
mem_heap_printf(
/*============*/
				/* out: heap-allocated formatted string */
	mem_heap_t*	heap,	/* in: memory heap */
	const char*	format,	/* in: format string */
	...)
{
	va_list		ap;
	char*		str;
	ulint 		len;

	/* Calculate length of string */
	len = 0;
	va_start(ap, format);
	len = mem_heap_printf_low(NULL, format, ap);
	va_end(ap);

	/* Now create it for real. */
	str = mem_heap_alloc(heap, len);
	va_start(ap, format);
	mem_heap_printf_low(str, format, ap);
	va_end(ap);

	return(str);
}

/*******************************************************************
Creates a memory heap block where data can be allocated. */

mem_block_t*
mem_heap_create_block(
/*==================*/
				/* out, own: memory heap block, NULL if
				did not succeed (only possible for
				MEM_HEAP_BTR_SEARCH type heaps) */
	mem_heap_t*	heap,	/* in: memory heap or NULL if first block
				should be created */
	ulint		n,	/* in: number of bytes needed for user data, or
				if init_block is not NULL, its size in bytes */
	void*		init_block, /* in: init block in fast create,
				type must be MEM_HEAP_DYNAMIC */
	ulint		type,	/* in: type of heap: MEM_HEAP_DYNAMIC or
				MEM_HEAP_BUFFER */
	const char*	file_name,/* in: file name where created */
	ulint		line)	/* in: line where created */
{
	mem_block_t*	block;
	ulint		len;

	ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER)
	      || (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH));

	if (heap && heap->magic_n != MEM_BLOCK_MAGIC_N) {
		mem_analyze_corruption(heap);
	}

	/* In dynamic allocation, calculate the size: block header + data. */

	if (init_block != NULL) {
		ut_ad(type == MEM_HEAP_DYNAMIC);
		ut_ad(n > MEM_BLOCK_START_SIZE + MEM_BLOCK_HEADER_SIZE);
		len = n;
		block = init_block;

	} else if (type == MEM_HEAP_DYNAMIC) {

		len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n);
		block = mem_area_alloc(len, mem_comm_pool);
	} else {
		ut_ad(n <= MEM_MAX_ALLOC_IN_BUF);

		len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n);

		if (len < UNIV_PAGE_SIZE / 2) {

			block = mem_area_alloc(len, mem_comm_pool);
		} else {
			len = UNIV_PAGE_SIZE;

			if ((type & MEM_HEAP_BTR_SEARCH) && heap) {
				/* We cannot allocate the block from the
				buffer pool, but must get the free block from
				the heap header free block field */

				block = (mem_block_t*)heap->free_block;
				heap->free_block = NULL;
			} else {
				block = (mem_block_t*)buf_frame_alloc();
			}
		}
	}

	if (block == NULL) {
		/* Only MEM_HEAP_BTR_SEARCH allocation should ever fail. */
		ut_a(type & MEM_HEAP_BTR_SEARCH);

		return(NULL);
	}

	block->magic_n = MEM_BLOCK_MAGIC_N;
	ut_strlcpy_rev(block->file_name, file_name, sizeof(block->file_name));
	block->line = line;

#ifdef MEM_PERIODIC_CHECK
	mem_pool_mutex_enter();

	if (!mem_block_list_inited) {
		mem_block_list_inited = TRUE;
		UT_LIST_INIT(mem_block_list);
	}

	UT_LIST_ADD_LAST(mem_block_list, mem_block_list, block);

	mem_pool_mutex_exit();
#endif
	mem_block_set_len(block, len);
	mem_block_set_type(block, type);
	mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE);
	mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE);

	block->free_block = NULL;
	block->init_block = (init_block != NULL);

	ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len);

	return(block);
}

/*******************************************************************
Adds a new block to a memory heap. */

mem_block_t*
mem_heap_add_block(
/*===============*/
				/* out: created block, NULL if did not
				succeed (only possible for
				MEM_HEAP_BTR_SEARCH type heaps)*/
	mem_heap_t*	heap,	/* in: memory heap */
	ulint		n)	/* in: number of bytes user needs */
{
	mem_block_t*	block;
	mem_block_t*	new_block;
	ulint		new_size;

	ut_ad(mem_heap_check(heap));

	block = UT_LIST_GET_LAST(heap->base);

	/* We have to allocate a new block. The size is always at least
	doubled until the standard size is reached. After that the size
	stays the same, except in cases where the caller needs more space. */

	new_size = 2 * mem_block_get_len(block);

	if (heap->type != MEM_HEAP_DYNAMIC) {
		/* From the buffer pool we allocate buffer frames */
		ut_a(n <= MEM_MAX_ALLOC_IN_BUF);

		if (new_size > MEM_MAX_ALLOC_IN_BUF) {
			new_size = MEM_MAX_ALLOC_IN_BUF;
		}
	} else if (new_size > MEM_BLOCK_STANDARD_SIZE) {

		new_size = MEM_BLOCK_STANDARD_SIZE;
	}

	if (new_size < n) {
		new_size = n;
	}

	new_block = mem_heap_create_block(heap, new_size, NULL, heap->type,
					  heap->file_name, heap->line);
	if (new_block == NULL) {

		return(NULL);
	}

	/* Add the new block as the last block */

	UT_LIST_INSERT_AFTER(list, heap->base, block, new_block);

	return(new_block);
}

/**********************************************************************
Frees a block from a memory heap. */

void
mem_heap_block_free(
/*================*/
	mem_heap_t*	heap,	/* in: heap */
	mem_block_t*	block)	/* in: block to free */
{
	ulint	type;
	ulint	len;
	ibool	init_block;

	if (block->magic_n != MEM_BLOCK_MAGIC_N) {
		mem_analyze_corruption(block);
	}

	UT_LIST_REMOVE(list, heap->base, block);

#ifdef MEM_PERIODIC_CHECK
	mem_pool_mutex_enter();

	UT_LIST_REMOVE(mem_block_list, mem_block_list, block);

	mem_pool_mutex_exit();
#endif
	type = heap->type;
	len = block->len;
	init_block = block->init_block;
	block->magic_n = MEM_FREED_BLOCK_MAGIC_N;

#ifdef UNIV_MEM_DEBUG
	/* In the debug version we set the memory to a random combination
	of hex 0xDE and 0xAD. */

	mem_erase_buf((byte*)block, len);
#else /* UNIV_MEM_DEBUG */
	UNIV_MEM_ASSERT_AND_FREE(block, len);
#endif /* UNIV_MEM_DEBUG */

	if (init_block) {
		/* Do not have to free: do nothing */

	} else if (type == MEM_HEAP_DYNAMIC) {

		mem_area_free(block, mem_comm_pool);
	} else {
		ut_ad(type & MEM_HEAP_BUFFER);

		if (len >= UNIV_PAGE_SIZE / 2) {
			buf_frame_free((byte*)block);
		} else {
			mem_area_free(block, mem_comm_pool);
		}
	}
}

/**********************************************************************
Frees the free_block field from a memory heap. */

void
mem_heap_free_block_free(
/*=====================*/
	mem_heap_t*	heap)	/* in: heap */
{
	if (heap->free_block) {

		buf_frame_free(heap->free_block);

		heap->free_block = NULL;
	}
}

#ifdef MEM_PERIODIC_CHECK
/**********************************************************************
Goes through the list of all allocated mem blocks, checks their magic
numbers, and reports possible corruption. */

void
mem_validate_all_blocks(void)
/*=========================*/
{
	mem_block_t*	block;

	mem_pool_mutex_enter();

	block = UT_LIST_GET_FIRST(mem_block_list);

	while (block) {
		if (block->magic_n != MEM_BLOCK_MAGIC_N) {
			mem_analyze_corruption(block);
		}

		block = UT_LIST_GET_NEXT(mem_block_list, block);
	}

	mem_pool_mutex_exit();
}
#endif