1
/* Copyright (c) 2008 PrimeBase Technologies GmbH, Germany
3
* PrimeBase Media Stream for MySQL
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; either version 2 of the License, or
8
* (at your option) any later version.
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
* Original author: Paul McCullagh (H&G2JCtL)
20
* Continued development: Barry Leslie
25
* Common definitions that may be required be included at the
26
* top of every header file.
33
#include <sys/types.h>
35
// Use standard portable data types
39
* An unsigned integer, 1 byte long:
42
#define u_char unsigned char
46
* An usigned integer, 1 byte long:
48
#define s_char unsigned char
50
/* PBMS assumes that off_t is 8 bytes so to ensure this always use off64_t*/
51
#define off64_t uint64_t
55
* A signed integer at least 32 bits long.
56
* The size used is whatever is most
57
* convenient to the machine.
59
#define s_int int_fast32_t
61
/* Forward declartion of a thread: */
64
// Used to avoid warnings about unused parameters.
65
#define UNUSED(x) (void)x
69
#define CS_DEFAULT_EOL "\r\n"
70
#define CS_DIR_CHAR '\\'
71
#define CS_DIR_DELIM "\\"
72
#define IS_DIR_CHAR(ch) ((ch) == CS_DIR_CHAR || (ch) == '/')
76
#define CS_DEFAULT_EOL "\n"
77
#define CS_DIR_CHAR '/'
78
#define CS_DIR_DELIM "/"
79
#define IS_DIR_CHAR(ch) ((ch) == CS_DIR_CHAR)
83
#define CS_CALL_STACK_SIZE 100
84
#define CS_RELEASE_STACK_SIZE 200
85
#define CS_JUMP_STACK_SIZE 20
87
/* Fixed length types */
92
#define PATH_MAX MAX_PATH
96
#define NAME_MAX MAX_PATH
101
/* C string display width sizes including space for a null terminator and possible sign. */
102
#define CS_WIDTH_INT_8 5
103
#define CS_WIDTH_INT_16 7
104
#define CS_WIDTH_INT_32 12
105
#define CS_WIDTH_INT_64 22
107
typedef uint8_t CSDiskValue1[1];
108
typedef uint8_t CSDiskValue2[2];
109
typedef uint8_t CSDiskValue3[3];
110
typedef uint8_t CSDiskValue4[4];
111
typedef uint8_t CSDiskValue6[6];
112
typedef uint8_t CSDiskValue8[8];
115
* Byte order on the disk is little endian! This is the byte order of the i386.
116
* Little endian byte order starts with the least significan byte.
118
* The reason for choosing this byte order for the disk is 2-fold:
119
* Firstly the i386 is the cheapest and fasted platform today.
120
* Secondly the i386, unlike RISK chips (with big endian) can address
121
* memory that is not aligned!
123
* Since the disk image of PrimeBase XT is not aligned, the second point
124
* is significant. A RISK chip needs to access it byte-wise, so we might as
125
* well do the byte swapping at the same time.
127
* The macros below are of 4 general types:
129
* GET/SET - Get and set 1,2,4,8 byte values (short, int, long, etc).
130
* Values are swapped only on big endian platforms. This makes these
131
* functions very efficient on little-endian platforms.
133
* COPY - Transfer data without swapping regardless of platform. This
134
* function is a bit more efficient on little-endian platforms
135
* because alignment is not an issue.
137
* MOVE - Similar to get and set, but the deals with memory instead
138
* of values. Since no swapping is done on little-endian platforms
139
* this function is identical to COPY on little-endian platforms.
141
* SWAP - Transfer and swap data regardless of the platform type.
142
* Aligment is not assumed.
144
* The DISK component of the macro names indicates that alignment of
145
* the value cannot be assumed.
148
#if BYTE_ORDER == BIG_ENDIAN
149
/* The native order of the machine is big endian. Since the native disk
150
* disk order of XT is little endian, all data to and from disk
153
#define CS_SET_DISK_1(d, s) ((d)[0] = (uint8_t) (s))
155
#define CS_SET_DISK_2(d, s) do { (d)[0] = (uint8_t) (((uint16_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint16_t) (s)) >> 8 ) & 0xFF); } while (0)
157
#define CS_SET_DISK_3(d, s) do { (d)[0] = (uint8_t) (((uint32_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
158
(d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); } while (0)
160
#define CS_SET_DISK_4(d, s) do { (d)[0] = (uint8_t) (((uint32_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint32_t) (s)) >> 8 ) & 0xFF); \
161
(d)[2] = (uint8_t) ((((uint32_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint32_t) (s)) >> 24) & 0xFF); } while (0)
163
#define CS_SET_DISK_6(d, s) do { (d)[0] = (uint8_t) (((uint64_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
164
(d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
165
(d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); } while (0)
167
#define CS_SET_DISK_8(d, s) do { (d)[0] = (uint8_t) (((uint64_t) (s)) & 0xFF); (d)[1] = (uint8_t) ((((uint64_t) (s)) >> 8 ) & 0xFF); \
168
(d)[2] = (uint8_t) ((((uint64_t) (s)) >> 16) & 0xFF); (d)[3] = (uint8_t) ((((uint64_t) (s)) >> 24) & 0xFF); \
169
(d)[4] = (uint8_t) ((((uint64_t) (s)) >> 32) & 0xFF); (d)[5] = (uint8_t) ((((uint64_t) (s)) >> 40) & 0xFF); \
170
(d)[6] = (uint8_t) ((((uint64_t) (s)) >> 48) & 0xFF); (d)[7] = (uint8_t) ((((uint64_t) (s)) >> 56) & 0xFF); } while (0)
172
#define CS_GET_DISK_1(s) ((s)[0])
174
#define CS_GET_DISK_2(s) ((uint16_t) (((uint16_t) (s)[0]) | (((uint16_t) (s)[1]) << 8)))
176
#define CS_GET_DISK_3(s) ((uint32_t) (((uint32_t) (s)[0]) | (((uint32_t) (s)[1]) << 8) | (((uint32_t) (s)[2]) << 16)))
178
#define CS_GET_DISK_4(s) (((uint32_t) (s)[0]) | (((uint32_t) (s)[1]) << 8 ) | \
179
(((uint32_t) (s)[2]) << 16) | (((uint32_t) (s)[3]) << 24))
181
#define CS_GET_DISK_6(s) (((uint64_t) (s)[0]) | (((uint64_t) (s)[1]) << 8 ) | \
182
(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
183
(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40))
185
#define CS_GET_DISK_8(s) (((uint64_t) (s)[0]) | (((uint64_t) (s)[1]) << 8 ) | \
186
(((uint64_t) (s)[2]) << 16) | (((uint64_t) (s)[3]) << 24) | \
187
(((uint64_t) (s)[4]) << 32) | (((uint64_t) (s)[5]) << 40) | \
188
(((uint64_t) (s)[6]) << 48) | (((uint64_t) (s)[7]) << 56))
190
/* Move will copy memory, and swap the bytes on a big endian machine.
191
* On a little endian machine it is the same as COPY.
193
#define CS_MOVE_DISK_1(d, s) ((d)[0] = (s)[0])
194
#define CS_MOVE_DISK_2(d, s) do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
195
#define CS_MOVE_DISK_3(d, s) do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
196
#define CS_MOVE_DISK_4(d, s) do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
197
#define CS_MOVE_DISK_8(d, s) do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; \
198
(d)[2] = (s)[5]; (d)[3] = (s)[4]; \
199
(d)[4] = (s)[3]; (d)[5] = (s)[2]; \
200
(d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
203
* Copy just copies the number of bytes assuming the data is not alligned.
205
#define CS_COPY_DISK_1(d, s) (d)[0] = s
206
#define CS_COPY_DISK_2(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; } while (0)
207
#define CS_COPY_DISK_3(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; } while (0)
208
#define CS_COPY_DISK_4(d, s) do { (d)[0] = (s)[0]; (d)[1] = (s)[1]; (d)[2] = (s)[2]; (d)[3] = (s)[3]; } while (0)
209
#define CS_COPY_DISK_6(d, s) memcpy(&((d)[0]), &((s)[0]), 6)
210
#define CS_COPY_DISK_8(d, s) memcpy(&((d)[0]), &((s)[0]), 8)
211
#define CS_COPY_DISK_10(d, s) memcpy(&((d)[0]), &((s)[0]), 10)
213
#define CS_SET_NULL_DISK_1(d) CS_SET_DISK_1(d, 0)
214
#define CS_SET_NULL_DISK_2(d) do { (d)[0] = 0; (d)[1] = 0; } while (0)
215
#define CS_SET_NULL_DISK_4(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; } while (0)
216
#define CS_SET_NULL_DISK_6(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; } while (0)
217
#define CS_SET_NULL_DISK_8(d) do { (d)[0] = 0; (d)[1] = 0; (d)[2] = 0; (d)[3] = 0; (d)[4] = 0; (d)[5] = 0; (d)[6] = 0; (d)[7] = 0; } while (0)
219
#define CS_IS_NULL_DISK_1(d) (!(CS_GET_DISK_1(d)))
220
#define CS_IS_NULL_DISK_4(d) (!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3])
221
#define CS_IS_NULL_DISK_8(d) (!(d)[0] && !(d)[1] && !(d)[2] && !(d)[3] && !(d)[4] && !(d)[5] && !(d)[6] && !(7)[3])
223
#define CS_EQ_DISK_4(d, s) ((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3])
224
#define CS_EQ_DISK_8(d, s) ((d)[0] == (s)[0] && (d)[1] == (s)[1] && (d)[2] == (s)[2] && (d)[3] == (s)[3] && \
225
(d)[4] == (s)[4] && (d)[5] == (s)[5] && (d)[6] == (s)[6] && (d)[7] == (s)[7])
227
#define CS_IS_FF_DISK_4(d) ((d)[0] == 0xFF && (d)[1] == 0xFF && (d)[2] == 0xFF && (d)[3] == 0xFF)
230
* The native order of the machine is little endian. This means the data to
231
* and from disk need not be swapped. In addition to this, since
232
* the i386 can access non-aligned memory we are not required to
233
* handle the data byte-for-byte.
235
#define CS_SET_DISK_1(d, s) ((d)[0] = (uint8_t) (s))
236
#define CS_SET_DISK_2(d, s) (*((uint16_t *) &((d)[0])) = (uint16_t) (s))
237
#define CS_SET_DISK_3(d, s) do { (*((uint16_t *) &((d)[0])) = (uint16_t) (s)); *((uint8_t *) &((d)[2])) = (uint8_t) (((uint32_t) (s)) >> 16); } while (0)
238
#define CS_SET_DISK_4(d, s) (*((uint32_t *) &((d)[0])) = (uint32_t) (s))
239
#define CS_SET_DISK_6(d, s) do { *((uint32_t *) &((d)[0])) = (uint32_t) (s); *((uint16_t *) &((d)[4])) = (uint16_t) (((uint64_t) (s)) >> 32); } while (0)
240
#define CS_SET_DISK_8(d, s) (*((uint64_t *) &((d)[0])) = (uint64_t) (s))
242
#define CS_GET_DISK_1(s) ((s)[0])
243
#define CS_GET_DISK_2(s) *((uint16_t *) &((s)[0]))
244
#define CS_GET_DISK_3(s) ((uint32_t) *((uint16_t *) &((s)[0])) | (((uint32_t) *((uint8_t *) &((s)[2]))) << 16))
245
#define CS_GET_DISK_4(s) *((uint32_t *) &((s)[0]))
246
#define CS_GET_DISK_6(s) ((uint64_t) *((uint32_t *) &((s)[0])) | (((uint64_t) *((uint16_t *) &((s)[4]))) << 32))
247
#define CS_GET_DISK_8(s) *((uint64_t *) &((s)[0]))
249
#define CS_MOVE_DISK_1(d, s) ((d)[0] = (s)[0])
250
#define CS_MOVE_DISK_2(d, s) CS_COPY_DISK_2(d, s)
251
#define CS_MOVE_DISK_3(d, s) CS_COPY_DISK_3(d, s)
252
#define CS_MOVE_DISK_4(d, s) CS_COPY_DISK_4(d, s)
253
#define CS_MOVE_DISK_8(d, s) CS_COPY_DISK_8(d, s)
255
#define CS_COPY_DISK_1(d, s) (d)[0] = s
256
#define CS_COPY_DISK_2(d, s) (*((uint16_t *) &((d)[0])) = (*((uint16_t *) &((s)[0]))))
257
#define CS_COPY_DISK_3(d, s) do { *((uint16_t *) &((d)[0])) = *((uint16_t *) &((s)[0])); (d)[2] = (s)[2]; } while (0)
258
#define CS_COPY_DISK_4(d, s) (*((uint32_t *) &((d)[0])) = (*((uint32_t *) &((s)[0]))))
259
#define CS_COPY_DISK_6(d, s) do { *((uint32_t *) &((d)[0])) = *((uint32_t *) &((s)[0])); *((uint16_t *) &((d)[4])) = *((uint16_t *) &((s)[4])); } while (0)
260
#define CS_COPY_DISK_8(d, s) (*((uint64_t *) &(d[0])) = (*((uint64_t *) &((s)[0]))))
261
#define CS_COPY_DISK_10(d, s) memcpy(&((d)[0]), &((s)[0]), 10)
263
#define CS_SET_NULL_DISK_1(d) CS_SET_DISK_1(d, 0)
264
#define CS_SET_NULL_DISK_2(d) CS_SET_DISK_2(d, 0)
265
#define CS_SET_NULL_DISK_3(d) CS_SET_DISK_3(d, 0)
266
#define CS_SET_NULL_DISK_4(d) CS_SET_DISK_4(d, 0L)
267
#define CS_SET_NULL_DISK_6(d) CS_SET_DISK_6(d, 0LL)
268
#define CS_SET_NULL_DISK_8(d) CS_SET_DISK_8(d, 0LL)
270
#define CS_IS_NULL_DISK_1(d) (!(CS_GET_DISK_1(d)))
271
#define CS_IS_NULL_DISK_2(d) (!(CS_GET_DISK_2(d)))
272
#define CS_IS_NULL_DISK_3(d) (!(CS_GET_DISK_3(d)))
273
#define CS_IS_NULL_DISK_4(d) (!(CS_GET_DISK_4(d)))
274
#define CS_IS_NULL_DISK_8(d) (!(CS_GET_DISK_8(d)))
276
#define CS_EQ_DISK_4(d, s) (CS_GET_DISK_4(d) == CS_GET_DISK_4(s))
277
#define CS_EQ_DISK_8(d, s) (CS_GET_DISK_8(d) == CS_GET_DISK_8(s))
279
#define CS_IS_FF_DISK_4(d) (CS_GET_DISK_4(d) == 0xFFFFFFFF)
282
#define CS_CMP_DISK_4(a, b) ((int32_t) CS_GET_DISK_4(a) - (int32_t) CS_GET_DISK_4(b))
283
#define CS_CMP_DISK_8(d, s) memcmp(&((d)[0]), &((s)[0]), 8)
284
//#define CS_CMP_DISK_8(d, s) (CS_CMP_DISK_4((d).h_number_4, (s).h_number_4) == 0 ? CS_CMP_DISK_4((d).h_file_4, (s).h_file_4) : CS_CMP_DISK_4((d).h_number_4, (s).h_number_4))
286
#define CS_SWAP_DISK_2(d, s) do { (d)[0] = (s)[1]; (d)[1] = (s)[0]; } while (0)
287
#define CS_SWAP_DISK_3(d, s) do { (d)[0] = (s)[2]; (d)[1] = (s)[1]; (d)[2] = (s)[0]; } while (0)
288
#define CS_SWAP_DISK_4(d, s) do { (d)[0] = (s)[3]; (d)[1] = (s)[2]; (d)[2] = (s)[1]; (d)[3] = (s)[0]; } while (0)
289
#define CS_SWAP_DISK_8(d, s) do { (d)[0] = (s)[7]; (d)[1] = (s)[6]; (d)[2] = (s)[5]; (d)[3] = (s)[4]; \
290
(d)[4] = (s)[3]; (d)[5] = (s)[2]; (d)[6] = (s)[1]; (d)[7] = (s)[0]; } while (0)
295
} CSIntRec, *CSIntPtr;
298
const char *rec_cchars;