~drizzle-trunk/drizzle/development

« back to all changes in this revision

Viewing changes to docs/groupby.rst

  • Committer: Stewart Smith
  • Date: 2011-01-14 05:18:39 UTC
  • mto: (2086.1.3 build)
  • mto: This revision was merged to the branch mainline in revision 2087.
  • Revision ID: stewart@flamingspork.com-20110114051839-d4zao1vnsln9ocv0
\r and trailing whitespace removed.

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
Group By
2
 
========
3
 
 
4
 
The GROUP BY clause is used to extract only those records that fulfill a specified criterion.
5
 
 
6
 
SQL GROUP BY Syntax ::
7
 
 
8
 
        SELECT column_name, aggregate_function(column_name)
9
 
        FROM table_name
10
 
        WHERE column_name operator value
11
 
        GROUP BY column_name
12
 
 
13
 
        
14
 
**GROUP BY Clause Example**
15
 
 
16
 
The "Activities" table:
17
 
 
18
 
+---------+--------------+--------------+-------------+----------+
19
 
|Id       |ActivityDate  |ActivityType  |ActivityCost | userID   |
20
 
+=========+==============+==============+=============+==========+
21
 
| 1       |2011-01-02    | Sport        |45           |131       |
22
 
+---------+--------------+--------------+-------------+----------+
23
 
| 2       |2011-01-02    | Art          |10           |256       |
24
 
+---------+--------------+--------------+-------------+----------+
25
 
| 3       |2011-01-02    | Music        |25           |022       |
26
 
+---------+--------------+--------------+-------------+----------+
27
 
| 4       |2011-01-02    | Food         |125          |022       |
28
 
+---------+--------------+--------------+-------------+----------+
29
 
| 5       |2011-01-03    | Music        |40           |131       |
30
 
+---------+--------------+--------------+-------------+----------+
31
 
| 6       |2011-01-03    | Food         |20           |175       |
 
1
Group By
 
2
========
 
3
 
 
4
The GROUP BY clause is used to extract only those records that fulfill a specified criterion.
 
5
 
 
6
SQL GROUP BY Syntax ::
 
7
 
 
8
        SELECT column_name, aggregate_function(column_name)
 
9
        FROM table_name
 
10
        WHERE column_name operator value
 
11
        GROUP BY column_name
 
12
 
 
13
**GROUP BY Clause Example**
 
14
 
 
15
The "Activities" table:
 
16
 
 
17
+---------+--------------+--------------+-------------+----------+
 
18
|Id       |ActivityDate  |ActivityType  |ActivityCost | userID   |
 
19
+=========+==============+==============+=============+==========+
 
20
| 1       |2011-01-02    | Sport        |45           |131       |
 
21
+---------+--------------+--------------+-------------+----------+
 
22
| 2       |2011-01-02    | Art          |10           |256       |
 
23
+---------+--------------+--------------+-------------+----------+
 
24
| 3       |2011-01-02    | Music        |25           |022       |
 
25
+---------+--------------+--------------+-------------+----------+
 
26
| 4       |2011-01-02    | Food         |125          |022       |
 
27
+---------+--------------+--------------+-------------+----------+
 
28
| 5       |2011-01-03    | Music        |40           |131       |
 
29
+---------+--------------+--------------+-------------+----------+
 
30
| 6       |2011-01-03    | Food         |20           |175       |
32
31
+---------+--------------+--------------+-------------+----------+
33
32
 
34
33
Running the following simple query::
35
34
 
36
35
        SELECT userID
37
36
        FROM activities
38
 
        GROUP BY userID;
39
 
 
 
37
        GROUP BY userID;
 
38
 
40
39
Returns:
41
40
 
42
 
+---------+
43
 
| userID  |
44
 
+=========+
45
 
| 131     |
46
 
+---------+
47
 
| 256     |
48
 
+---------+
49
 
| 022     |
50
 
+---------+
51
 
| 175     |
52
 
+---------+
53
 
 
54
 
(This shows that GROUP BY accepts a column_name and consolidates like customer values.)
55
 
 
56
 
However, GROUP BY is much more powerful when used with an aggregate function. Let's say you want to find the total amount spent by each unique User.
57
 
 
58
 
You could use the following SQL statement: ::
59
 
        
 
41
+---------+
 
42
| userID  |
 
43
+=========+
 
44
| 131     |
 
45
+---------+
 
46
| 256     |
 
47
+---------+
 
48
| 022     |
 
49
+---------+
 
50
| 175     |
 
51
+---------+
 
52
 
 
53
(This shows that GROUP BY accepts a column_name and consolidates like customer values.)
 
54
 
 
55
However, GROUP BY is much more powerful when used with an aggregate function. Let's say you want to find the total amount spent by each unique User.
 
56
 
 
57
You could use the following SQL statement: ::
 
58
 
60
59
        SELECT userID,SUM(ActivityCost) AS "Activity Total"
61
60
        FROM Activities
62
 
        GROUP BY userID;
63
 
 
 
61
        GROUP BY userID;
 
62
 
64
63
The result-set will look like this:
65
 
 
66
 
======    ==============
67
 
userID    Activity Total
68
 
======    ==============
69
 
131       85             
70
 
256       10             
71
 
022       150            
72
 
175       20             
73
 
======    ==============
74
 
 
75
 
With the aggregate SUM() function, SQL can calculate how much each unique user has spent on activities over time.
76
 
 
77
 
We can also use the GROUP BY statement on more than one column, like this: ::
78
 
        
79
 
        SELECT userID,ActivityDate,SUM(ActivityCost) 
80
 
        FROM Activities
 
64
 
 
65
======    ==============
 
66
userID    Activity Total
 
67
======    ==============
 
68
131       85
 
69
256       10
 
70
022       150
 
71
175       20
 
72
======    ==============
 
73
 
 
74
With the aggregate SUM() function, SQL can calculate how much each unique user has spent on activities over time.
 
75
 
 
76
We can also use the GROUP BY statement on more than one column, like this: ::
 
77
 
 
78
        SELECT userID,ActivityDate,SUM(ActivityCost)
 
79
        FROM Activities
81
80
        GROUP BY userID,ActivityDate;
82
81